Помощь в написании студенческих работ
Антистрессовый сервис

Оптимизация процессов бурения скважин

КурсоваяПомощь в написанииУзнать стоимостьмоей работы

Если — данные эксперимента не согласуются с нормальным законом распределения, необходимо дальнейшее проведение опытов. Поскольку вычисленное значение () превосходит табличное значение критерия Пирсона, то данные эксперимента не согласуются с нормальным законом распределения. В выборке № 1 и № 2 по методу Башинского значение выборки вышло за границы критического интервала отбраковки, поэтому… Читать ещё >

Оптимизация процессов бурения скважин (реферат, курсовая, диплом, контрольная)

ГОСУДАРСТВЕННЫЙ ГЕОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ Кафедра Бурения КУРСОВАЯ РАБОТА по курсу:

Оптимизация процессов бурения скважин

2005 г.

Исходные данные

3,5

4,0

4,1

4,2

4,0

4,1

4,2

0,3

3,8

0,5

1,0

5,2

0,9

5,0

3,9

3,9

4,2

3,8

4,1

4,2

4,0

4,3

14,3

4,4

14,0

13,7

Оптимизация процесса бурения возможна по критериям максимальной механической скорости проходки, максимальной рейсовой скорости бурения и стоимости 1 метра проходки, а также по вопросам оптимальной отработки долота при его сработке по вооружению, опоре или по диаметру. Наша задача при этом сводится к нахождению оптимальной механической скорости проходки для осуществления процесса бурения скважин на оптимальном режиме. В данном решении предполагается, что проведены испытания в идентичных горно-геологических условиях и с одинаковыми режимами.

Выборка № 1

3,5

4,1

4,0

4,2

3,8

1,0

0,9

3,9

4,2

4,1

4,0

14,3

14,0

13,7

Выборка № 2

4,0

4,2

4,1

0,3

0,5

5,2

5,0

3,9

3,8

4,2

4,3

4,4

1. Расчёт средней величины.

2. Расчёт дисперсии

Выборка № 1.

Выборка № 2.

3. Расчёт среднеквадратичной величины.

Выборка № 1

Выборка № 2

4. Расчёт коэффициента вариации

Выборка № 1

Выборка № 2

5. Определение размаха варьирования

Выборка № 1

Выборка № 2

6. Отбраковка непредставительных результатов измерений.

Метод 3s:

Выборка № 1

Значения выборки 1 не выходят за границы критического интервала отбраковки.

Выборка № 1

Выборка № 2

3,5

0,0324

4,0

0,1 265 625

4,1

0,1764

4,2

0,765 625

4,0

0,1024

4,1

0,15 625

4,2

0,2704

3,9

0,4 515 625

3,8

0,0144

3,8

0,9 765 625

1,0

7,1824

4,2

0,765 625

3,9

0,0484

4,3

0,3 515 625

4,2

0,2704

4,4

0,8 265 625

4,1

0,1764

4,0

0,1024

Среднее значение

3,68

8,376

Среднее значение

4,1125

0,28 875 625

Дисперсия

0,93

Дисперсия

0,04

Выборка № 2

Значения выборки 2 не выходят за границы критического интервала отбраковки.

Метод Башинского:

где

— коэффициент Башинского;

— размах варьирования.

Выборка № 1

Значения выборки 1 выходят за границы критического интервала отбраковки.

Выборка № 2

Значения выборки 2 выходят за границы критического интервала отбраковки.

В выборке № 1 и № 2 по методу Башинского значение выборки вышло за границы критического интервала отбраковки, поэтому и подлежат отбраковки. Теперь пересчитаем среднюю величину для обоих выборок.

7. Расчёт средней величины

8. Расчёт дисперсии

Выборка № 1

Выборка № 2

3,5

2,343 961

4,0

0,0016

4,1

0,866 761

4,2

0,0576

4,0

1,62 961

4,1

0,0196

4,2

0,690 561

0,5

11,9716

3,8

1,515 361

5,2

1,5376

1,0

16,248 961

5,0

1,0816

0,9

17,65 161

3,9

0,0036

3,9

1,279 161

3,8

0,0256

4,2

0,690 561

4,2

0,0576

4,1

0,866 761

4,3

0,1156

4,0

1,62 961

4,4

0,1936

14,0

80,442 961

13,7

75,151 561

Среднее значение

5,031

199,287 693

Среднее значение

3,96

15,0656

Дисперсия

16,60 730 775

Дисперсия

1,50 656

9. Расчёт среднеквадратичной величины

10. Расчёт коэффициента вариации.

11. Определение размаха варьирования

12. Отбраковка непредставительных результатов измерений.

Метод 3s:

Выборка № 1

Значения выборки 1 не выходят за границы критического интервала отбраковки.

Выборка № 2

Значения выборки 2 не выходят за границы критического интервала отбраковки.

Метод Башинского:

Выборка № 1

Значения выборки 1 выходят за границы критического интервала отбраковки.

Выборка № 2

Значения выборки 2 выходят за границы критического интервала отбраковки.

В выборке № 1 и № 2 по методу Башинского значение выборки вышло за границы критического интервала отбраковки, поэтому и подлежат отбраковки. Теперь пересчитаем среднюю величину для обоих выборок.

13. Расчёт средней величины

Выборка № 1

Выборка № 2

3,5

0,6084

4,0

0,0961

4,1

0,0324

4,2

0,0121

4,0

0,0784

4,1

0,0441

4,2

0,0064

5,2

0,7921

3,8

0,2304

5,0

0,4761

1,0

10,7584

3,9

0,1681

0,9

11,4244

3,8

0,2601

3,9

0,1444

4,2

0,0121

4,2

0,0064

4,3

0,0001

4,1

0,0324

4,4

0,0081

4,0

0,0784

13,7

88,7364

Среднее значение

4,28

112,1368

Среднее значение

4,31

1,869

Дисперсия

10,194

Дисперсия

0,2076

14. Расчёт дисперсии

15. Расчёт среднеквадратичной величины.

16. Расчёт коэффициента вариации.

17. Определение размаха варьирования.

18. Отбраковка непредставительных результатов измерений.

Метод 3s:

Выборка № 1

Значения выборки 1 не выходят за границы критического интервала отбраковки.

Выборка № 2

Значения выборки 2 не выходят за границы критического интервала отбраковки.

Метод Башинского:

Выборка № 1

Значения выборки 1 выходят за границы критического интервала отбраковки.

Выборка № 2

Значения выборки 2 выходят за границы критического интервала отбраковки.

В выборке № 1 и № 2 по методу Башинского значение выборки вышло за границы критического интервала отбраковки, поэтому и подлежат отбраковки. Теперь пересчитаем среднюю величину для обоих выборок.

19. Расчёт средней величины

Выборка № 1

Выборка № 2

3,5

0,5 329

4,0

0,0441

4,1

0,452 929

4,2

0,0001

4,0

0,328 329

4,1

0,0121

4,2

0,597 529

5,0

0,6241

3,8

0,139 129

3,9

0,0961

1,0

5,890 329

3,8

0,1681

0,9

6,385 729

4,2

0,0001

3,9

0,223 729

4,3

0,0081

4,2

0,597 529

4,4

0,0361

4,1

0,452 929

4,0

0,328 329

Среднее значение

3,427

15,401 819

Среднее значение

4,21

0,9889

Дисперсия

1,5 401 819

Дисперсия

0,1 236 125

20. расчет дисперсии

21. Расчёт среднеквадратичной величины

22. Расчёт коэффициента вариации

23. Определение размаха варьирования

24. Отбраковка непредставительных результатов измерений.

Метод 3s:

Выборка № 1

Значения выборки 1 не выходят за границы критического интервала отбраковки.

Выборка № 2

Значения выборки 2 не выходят за границы критического интервала отбраковки.

Метод Башинского:

Выборка № 1

Значения выборки 1 выходят за границы критического интервала отбраковки.

Выборка № 2

Значения выборки 2 выходят за границы критического интервала отбраковки.

В выборке № 1 и № 2 по методу Башинского значение выборки вышло за границы критического интервала отбраковки, поэтому и подлежат отбраковки. Теперь пересчитаем среднюю величину для обоих выборок.

25. Расчёт средней величины

Выборка № 1

Выборка № 2

3,5

0,0324

4,0

0,1 265 625

4,1

0,1764

4,2

0,765 625

4,0

0,1024

4,1

0,15 625

4,2

0,2704

3,9

0,4 515 625

3,8

0,0144

3,8

0,9 765 625

1,0

7,1824

4,2

0,765 625

3,9

0,0484

4,3

0,3 515 625

4,2

0,2704

4,4

0,8 265 625

4,1

0,1764

4,0

0,1024

Среднее значение

3,68

8,376

Среднее значение

4,1125

0,28 875 625

Дисперсия

0,93

Дисперсия

0,04

26. Расчёт дисперсии

27. Расчёт среднеквадратичной величины.

28. Расчёт коэффициента вариации

29. Определение размаха варьирования.

30. Отбраковка непредставительных результатов измерений.

Метод 3s:

Выборка № 1

Значения выборки 1 не выходят за границы критического интервала отбраковки.

Выборка № 2

Значения выборки 2 не выходят за границы критического интервала отбраковки.

Метод Башинского:

Выборка № 1

Значения выборки 1 выходят за границы критического интервала отбраковки.

Выборка № 2

Значения выборки 2 не выходят за границы критического интервала отбраковки.

В выборке № 1 по методу Башинского значение выборки вышло за границы критического интервала отбраковки, поэтому подлежит отбраковки. Теперь пересчитаем среднюю величину для выборки № 1.

31. Расчёт средней величины.

Выборка № 1

Выборка № 2

3,5

0,2 282 716

4,0

0,1 265 625

4,1

0,149 382

4,2

0,765 625

4,0

0,4 938

4,1

0,15 625

4,2

0,493 827

3,9

0,4 515 625

3,8

0,316 049

3,8

0,9 765 625

3,9

0,60 494

4,2

0,765 625

4,2

0,493 827

4,3

0,3 515 625

4,1

0,149 382

4,4

0,8 265 625

4,0

0,4 938

Среднее значение

3,97

0,395 555

Среднее значение

4,1125

0,28 875 625

Дисперсия

0,049

Дисперсия

0,04

32. Расчёт дисперсии.

33. Расчёт среднеквадратичной величины.

34. Расчёт коэффициента вариации.

35. Определение размаха варьирования.

36. Отбраковка непредставительных результатов измерений.

Метод 3s:

Выборка № 1

Метод Башинского:

Выборка № 1

Значения выборки 1 выходят за границы критического интервала отбраковки.

В выборке № 1 по методу Башинского значение выборки вышло за границы критического интервала отбраковки, поэтому подлежит отбраковки. Теперь пересчитаем среднюю величину для выборки № 1.

37. Расчёт средней величины.

Выборка № 1

Выборка № 2

4,1

4,0

0,1 265 625

4,0

4,2

0,765 625

4,2

4,1

0,15 625

3,8

3,9

0,4 515 625

3,9

3,8

0,9 765 625

4,2

4,2

0,765 625

4,1

4,3

0,3 515 625

4,0

4,4

0,8 265 625

Среднее значение

4,0375

Среднее значение

4,1125

0,28 875 625

Дисперсия

Дисперсия

0,04

38. Расчёт дисперсии.

39. Расчёт среднеквадратичной величины.

40. Расчёт коэффициента вариации.

41. Определение размаха варьирования.

42. Отбраковка непредставительных результатов измерений.

Метод 3s:

Выборка № 1

Метод Башинского:

Выборка № 1

Значения выборки 1 выходят за границы критического интервала отбраковки.

43. Определение предельной относительной ошибки испытаний.

Выборка № 1

Выборка № 2

44. Проверка согласуемости экспериментальных данных с нормальным законом распределения при помощи критерия Пирсона.

Интервал

Среднее значение

Частота

3,8 — 3,9

3,85

3,9 — 4,0

3,95

4,0 — 4,1

4,05

4,1 — 4,2

4,15

Выборка № 1 Определим количество интервалов:

где — размер выборки 1

1. Сравнение с теоретической кривой.

— параметр функции

где

— среднее значение на интервале;

2. Рассчитываем для каждого интервала

— функция плотности вероятности нормально распределения;

3. Расчёт теоретической частоты.

— теоретическая частота в i-том интервале.

3,85

— 1,332

0,1647

0,9364

0,0040

0,004

3,95

— 0,622

0,3292

1,8717

1,2730

0,680

4,05

0,088

0,3977

2,2612

0,0682

0,030

4,15

0,799

0,2920

1,6603

0,3397

0,204

Число подчиняется — закону Пирсона

— число степеней свободы;

— порог чувствительности;

— вероятность;

Если, то данные эксперимента согласуются с нормальным законом распределения, где — табличное значение критерия Пирсона.

Если — данные эксперимента не согласуются с нормальным законом распределения, необходимо дальнейшее проведение опытов. Поскольку вычисленное значение () превосходит табличное значение критерия Пирсона, то данные эксперимента не согласуются с нормальным законом распределения.

Выборка № 2

Определим количество интервалов:

где — размер выборки 2

Интервал

Среднее значение

Частота

3,8 — 3,95

3,875

3,95 — 4,10

4,025

4,10- 4,25

4,175

4,25 — 4,4

4,325

1. Сравнение с теоретической кривой.

— параметр функции, где

— среднее значение на интервале;

2. Рассчитываем для каждого интервала

— функция плотности вероятности нормально распределения;

3. Расчёт теоретической частоты.

— теоретическая частота в i-том интервале.

3,88

— 1,1694

0,2012

1,1887

0,6582

0,5537

4,04

— 0,4310

0,3637

2,1489

0,0222

0,0103

4,2

0,3077

0,3814

2,2535

0,5572

0,2473

4,34

1,0460

0,2323

1,3725

0,3937

0,2869

— число степеней свободы;

— порог чувствительности;

— вероятность;

Если, то данные эксперимента согласуются с нормальным законом распределения, где — табличное значение критерия Пирсона.

Если — данные эксперимента не согласуются с нормальным законом распределения, необходимо дальнейшее проведение опытов. Поскольку вычисленное значение () превосходит табличное значение критерия Пирсона, то данные эксперимента не согласуются с нормальным законом распределения.

45. Определение доверительного интервала Форма распределения Стьюдента зависит от числа степеней свободы.

где коэффициент Стьюдента

Выборка № 1

где — при вероятности и числе опытов .

Выборка № 2

где — при вероятности и числе опытов .

Доверительные интервалы Выборка № 1

Интервал 3,945 — 4,0375 — 4,13.

46. Дисперсионный анализ Основной целью дисперсионного анализа является исследование значимости различия между средними. В нашем случае мы просто сравниваем средние в двух выборках. Дисперсионный анализ даст тот же результат, что и обычный — критерий для зависимых выборок (сравниваются две переменные на одном и том же объекте).

— критерий Фишера

для и

— различие между дисперсиями несущественно, необходимо дополнительное исследование.

Проверим существенность различия и по — критерию для зависимых выборок.

при и

— различие между средними величинами существенно.

Проверим по непараметрическому Т — критерию:

где

Разница между средними величинами несущественна.

Показать весь текст
Заполнить форму текущей работой