Помощь в написании студенческих работ
Антистрессовый сервис

Динамика микротрубочкового цитоскелета в аномальном мейозе у трансгенных растений табака (N. tabacum L.)

ДиссертацияПомощь в написанииУзнать стоимостьмоей работы

Практическая ценность данной работы заключается в создании схемы, отражающей общие принципы реорганизации микротрубочкового цитоскелета, характерные для мейоза двудольных растений. Впервые предложен механизм взаимной ориентации веретен второго деления мейоза, в основе которого лежит поворот ядер в профазе 2 и корректная динамика микротрубочкового цитоскелета на этапе перехода от радиальной… Читать ещё >

Динамика микротрубочкового цитоскелета в аномальном мейозе у трансгенных растений табака (N. tabacum L.) (реферат, курсовая, диплом, контрольная)

Содержание

  • Глава 1. Обзор литературы Ю
    • 1. 1. Центры организации МТ и регуляция динамики МТ систем в ходе деления клеток растений Ю
    • 1. 2. Механизмы формирования веретена деления в животных клетках
    • 1. 3. Динамика цитоскелета и механизмы формирования веретена деления в различных типах растительных клеток
      • 1. 3. 1. Клетки, имеющие клеточную стенку
      • 1. 3. 2. Бесстеночные клетки
    • 1. 4. Организация полюсов веретена деления в растительной клетке
    • 1. 5. Динамика микротрубочкового цитоскелета в организации цитокинеза растительной клетки
      • 1. 5. 1. Фрагмопласт в соматических клетках
      • 1. 5. 2. Фрагмопласт в материнских клетках пыльцы
      • 1. 5. 3. Роль МТ цитоскелета в пространственной регуляции цитокинеза
    • 1. 6. Молекулярные механизмы организации микротрубочкового цитоскелета в ходе клеточного деления
      • 1. 6. 1. Структурные белки
      • 1. 6. 2. Моторные белки
    • 1. 7. Трансгенные растения как модель для изучения динамики цитоскелетного цикла
    • 1. 8. Роль актинового цитоскелета в делении растительной клетки

Актуальность проблемы. Микротрубочковый цитоскелет играет исключительно важную роль в таком фундаментальном биологическом процессе, как клеточное деление. В клетках растений цитоскелет представлен различными системами микротрубочек (МТ), поочередно сменяющими друг друга в ходе клеточного деления. К таким системам относятся кортикальные и радиальные пучки, препрофазное кольцо, веретено и фрагмопласт (Mineyuki, 2007). Структура этих основных конфигураций цитоскелета изучена достаточно хорошо, однако их происхождение, механизмы образования и способы перехода из одной конфигурации в другую все еще не вполне понятны и остаются предметом дискуссий (Murata, Hasebe, 2007).

Динамика цитоскелета в ходе деления эукариотической клетки осуществляется центрами организации микротрубочек (ЦОМТ), особыми морфологическими структурами, которые служат затравками для полимеризации микротрубочек. В клетках животных ЦОМТ сконцентрированы в центросомах, специализированных морфологических структурах, регулирующих динамику микротрубочек на субклеточном уровне, что позволяет довольно легко наблюдать перестройки цитоскелета в ходе клеточного цикла (Мамон, 2008). В клетках высших цветковых растений центросома не идентифицирована как самостоятельная морфологическая структура, а ЦОМТ сконцентрированы на поверхности ядерной оболочки, что в значительной степени затрудняет изучение динамики цитоскелета на тех стадиях клеточного цикла, где ядерная оболочка отсутствует. Несмотря на значительный фактический материал, накопленный к настоящему времени по динамике микротрубочкового цитоскелета в ходе клеточного цикла растений, остаются значительные пробелы в понимании этого процесса на всех уровнях его организации (Chan, Cande, 1998; Smirnova, Bajer, 1998; Shamina, 2005; Murata, Hasebe 2007). В частности, это относится к пониманию структурно-морфологических основ реорганизации цитоскелета, изучение которых осложняется его деполимеризацией на некоторых переходных этапах цикла, что в большинстве случаев не позволяет представить динамику МТ систем в виде непрерывного процесса. В результате этого механизмы, регулирующие перестройки цитоскелета в ходе клеточного цикла растений, до сих пор не вполне понятны, а их изучение остается важнейшей задачей клеточной биологии. Одним из подходов к решению этой задачи является анализ возможно большего количества разнообразных аномалий цитоскелетного цикла и выявление детальной картины морфологических преобразований цитоскелета, происходящих во время деления растительной клетки.

В настоящее время для решения целого ряда задач, связанных с изучением процессов клеточного деления, в том числе и для исследования цикла реорганизации микротрубочкового цитоскелета, активно используют мейотическое деление в материнских клетках пыльцы. Использование трансгенных растений в качестве источника аномалий мейоза и модели для изучения процессов клеточного деления, на наш взгляд, имеет ряд преимуществ, по сравнению с традиционными источниками, такими как отдаленная гибридизация, анеуи полиплоидия, гаплоидия, мейотические мутации. Это связано с возникновением у них мутационной изменчивости различной природы (инсерционной и сомаклональной), а также с потенциальной возможностью поиска и клонирования мутантных генов (Latham et al., 2006).

Цель и задачи исследования

.

Целью настоящего исследования является изучение цикла микротрубочкового цитоскелета в материнских клетках пыльцы табака посредством сравнительного анализа этапов его реорганизации в ходе нормального и аномального мейоза. Задачи исследования:

1. Изучить структурную организацию и динамику микротрубочкового цитоскелета в ходе нормального мейоза в МКП растений табака.

2. Выявить механизм формирования и реорганизации систем микротрубочек, функционирующих в процессе построения веретена деления.

3. Провести цитологический скрининг аномалий микроспорогенеза у трансгенных растений табака с мутантным фенотипом.

4. Установить феноменологическую связь выявленных аномалий мейотического деления с микротрубочковым циклом.

Научная новизна и практическая ценность работы.

Детальный цитологический анализ трансгенных растений табака с мутантным фенотипом позволил выявить сложный комплекс нарушений мейотического деления, такие как цитомиксис, внеплановая активация цитокинеза после первого деления, образование деформированных ядер в профазе 2, изменение ориентации веретен в метафазе второго деления мейоза.

Методом иммунофлюоресцентного анализа детально исследован нормальный и аномальный цикл динамики микротрубочкового цитоскелета в МКП растений табака. Цикл цитоскелета представлен в виде непрерывного процесса реорганизации одной микротрубочковой системы в другую. Установлено, что нарушение процессов цитоскелетного цикла, таких как соединение и разъединение (+)-концов микротрубочек на стадии формирования и разборки неподвижного фрагмопласта, приводит к изменению положения телофазных ядер и, в дальнейшем, к нарушению позиций веретен второго деления. Показано, что для формирования веретена деления необходимым является этап элонгации микротрубочковых пучков на стадии перехода от перинуклеарной системы к веретену деления. На основании структурно-морфологического анализа профазной реорганизации цитоскелетных структур в ходе нормального и аномального мейоза предложена «outside-in» (по направлению к хромосомам) модель формирования фибрилл веретена деления в МКП табака. Это противоречит существующему на сегодняшний день представлению о том, что фибриллы веретена деления в мейоцитах формируются посредством «inside-out» (по направлению от хромосом) механизма. Впервые исследована структура и динамика микротрубочкового цитоскелета в цитомиктичных клетках. Установлено, что микротрубочковый цитоскелет не участвует в процессе межклеточных перемещений ядерного материала. Исследован механизм преждевременного цитокинеза в аспекте динамики микротрубочкового цитоскелета. Показано, что причиной разобщения временной координации между кариои цитокинезом является не аномальная динамика цитоскелетных структур, а «внеплановая» активация сигнала, обуславливающего запуск процесса образования плазматической мембраны.

Практическая ценность данной работы заключается в создании схемы, отражающей общие принципы реорганизации микротрубочкового цитоскелета, характерные для мейоза двудольных растений. Впервые предложен механизм взаимной ориентации веретен второго деления мейоза, в основе которого лежит поворот ядер в профазе 2 и корректная динамика микротрубочкового цитоскелета на этапе перехода от радиальной системы в телофазе 1 к перинуклеарпой в профазе 2. Отобраны линии трансгенных растений табака с высоким уровнем цитомиксиса, являющиеся удобной моделью для дальнейшего изучения этого явления. В целом, исследованные трансгенные растения табака с аномальным мейозом представляют большой интерес для изучения структуры и динамики актинового цитоскелета в МКП.

Апробация работы. Материалы диссертационной работы были представлены на следующих конференциях, симпозиумах и конгрессах:

— международный симпозиум «Молекулярные механизмы генетических процессов и биотехнология», Москва (18−21 ноября) — Минск (22−24 ноября) 2001 г. (доклад удостоен второй премии);

— 1-й международный конгресс «Биотехнология — состояние и перспективы развития», Москва, 14−18 октября 2002 г.;

— международный симпозиум по проблеме мейоза, Санкт-Петербург, 17 октября 2003 г.;

— Ш-я международная конференция «Проблема вида и видообразования», Томск, 20−22 октября 2004 г.;

— международная научная конференция «Молекулярная генетика, геномика и биотехнология», Минск, 24−26 ноября 2004 г.;

— молодежная школа-конференция по актуальным проблемам химии и биологии, Владивосток, 16−23 сентября 2005 г.;

— VLLI съезд Украинского общества генетиков и селекционеров им. Н. И. Вавилова, Алушта, 24−28 сентября 2007 г.

— V съезд Вавиловского общества генетиков и селекционеров, Москва, 21−27 июня 2009 г.

Материалы диссертационной работы представлялись в устных докладах на отчетных сессиях ИЦиГ СО РАН в 2001, 2004, 2008 гг.

Работа была поддержана отечественными грантами:

РФФИ (№ 00−04−49 557) «Молекулярно-генетические механизмы функционирования чужеродных генов в геноме трансгенных растений» (исполнитель) — РФФИ (№ 01−04−6 341-мае) Программа поддержки молодых ученых (для проекта 9904−49 324) (руководитель);

РФФИ (№ 02−04−6 598-мас) Программа поддержки молодых ученых (для проекта 0204−49 295) (руководитель);

РФФИ (№ 02−04−49 295-а) «Молекулярно-генетический анализ Т-ДНК индуцированной изменчивости у трансгенных растений табака» (исполнитель) — РФФИ (№ 05−04−48 925-а) «Молекулярно-генетический анализ трансгенных растений: изучение районов интеграции Т-ДНК инсерций в ядерный геном» (исполнитель) — РФФИ (№ 08−04−1 046-а) «Изучение особенностей цитомиксиса на примере трансгенных растений табака с мутантным фенотипом» (исполнитель) — Грантом Президента РФ для поддержки ведущих научных школ (№ 00−15−97 968) «Особенности преобразования геномов и функционирование генов в процессе хромосомной и генной инженерии растений» (исполнитель);

Программой РАН (№ 25.8) «Динамика генофондов растений, животных и человека», направление: «Фундаментальные проблемы трансгенеза растений и животных» (исполнитель).

117 ВЫВОДЫ

1. Установлено, что цикл цитоскелета в МКП табака осуществляется посредством реорганизации двух системных структур — радиального интерфазного цитоскелета и веретена деления. Фрагмопласт как отдельная цитоскелетная структура не строится. Его функции выполняет система радиальных пучков МТ, сформированных в телофазе.

2. Формирование веретена деления в МКП табака происходит посредством механизма «outside-in», то есть формирование фибрилл веретена происходит от коротких пучков дезинтегрированного перинуклеарного кольца МТ по направлению к хромосомам.

3. Выявлен ряд аномалий мейоза в МКП трансгенных растений табака с мутантным фенотипом, являющихся удобной моделью для изучения динамики цитоскелета.

4. Показано, что цитомиксис и преждевременный цитокинез в первом делении мейоза в МКП трансгенных растений табака с мутантным фенотипом не являются следствием нарушений динамики микротрубочкового цитоскелета. Преждевременный цитокинез обусловлен внеплановой активацией сигнала, запускающего процесс образования плазматической мембраны.

5. Установлено, что поворот ядер в профазе 2 является частью механизма ориентации веретен второго деления.

6. Причиной нарушения положения профазных ядер и, соответственно, веретен второго деления является нарушение процессов полимеризации-деполимеризации и взаимодействия (+)-концов МТ в поздней телофазе 1 — интеркинезе и в профазе 2.

7. Элонгация микротрубочек перинуклеарной системы на стадии ранней прометафазы является обязательным условием формирования фибрилл веретена деления.

8. Формирование слитных веретен второго деления происходит в результате формирования объединенных структур цитоскелета в профазе — прометафазе 2 при аномальном сближении ядер.

Список публикаций по теме диссертации.

1. Shamina N.V., Dorogova N.V., Sidorchuk Iu.V., Zagorskaya A.A., Deineko E.V. and Shumny V.K. Abnormalities of meiotic division caused by T-DNA tagged mutation in tobacco (Nicotiana tabacum L.) // Cell Biol. Int. 2001. V. 25. № 4. P. 367−369.

2. Сидорчук Ю. В., Дорогова H.B., Шамина H.B., Дейнеко Е. В. Сравнительный анализ цитологических нарушений у трансгенных растений табака с мутантным фенотипом // Международная научная конференция «Молекулярная генетика, геномика и биотехнология». Минск, 24−26 ноября, 2004 г. С. 187−188.

3. Сидорчук Ю. В., Дейнеко Е. В., Шумный В. К. Цитомиксис в материнских клетках пыльцы у трансгенных растений табака (Nicotiana tabacum L.) // ДАН. (Перечень ВАК). 2004. Т. 394. № 2. С. 282−285.

4. Сидорчук Ю. В., Шаталина М. Н., Дейнеко Е. В. Наследование и цитологические особенности цитомиксиса в материнских клетках пыльцы трансгенных растений табака // Вестник ТГУ. (Перечень ВАК). 2004. № ю. С. 112−115.

5. Сидорчук Ю. В., Дейнеко Е. В., Загорская А. А., Шумный В. К. Изменение морфологии цветка и снижение уровня фертильности у трансгенных растений табака (Nicotiana tabacum L., линия SRI) // Материалы Всероссийской научной конференции «Структура и экспрессия митохондриального генома растений». Иркутск, 3−7 сентября 2006 г. С. 94−97.

6. Шамина Н. В., Дорогова Н. В., Сидорчук Ю. В. Динамика микротрубочкового цитоскелета в мейозе у высших растений. IX. Завершение цикла. Переход от фрагмопласта к интерфазной системе цитоскелета // Цитология. (Перечень ВАК). 2006. Т. 48. № 5. С. 418−426.

7. Шамина Н. В., Сидорчук Ю. В. Динамика микротрубочкового цитоскелета в мейозе у высших растений. X. Общая схема цитоскелетного цикла // Цитология. (Перечень ВАК). 2006. Т. 48. № 5. С. 427−437.

8. Сидорчук Ю. В., Дейнеко Е. В., Шумный В. К. Особенности цитомиксиса в материнских клетках пыльцы у трансгенных растений табака (Nicotiana tabacum L.) с мутантным фенотипом. Цитология. (Перечень ВАК). 2007. Т. 49. № 10. С. 870 875.

9. Сидорчук Ю. В., Дейнеко Е. В., Шумный В. К. Роль микротрубочкового цитоскелета и каллозных оболочек в проявлении цитомиксиса в материнских клетках пыльцы растений табака (N. tabacum L.) // Цитология. (Перечень ВАК). 2007. Т. 49. № 10. С. 876−880.

10. Сидорчук Ю. В., Дорогова Н. В., Дейнеко Е. В., Шумный В. К. Преждевременный цитокинез в материнских клетках пыльцы трансгенных растений табака (Nicotiana tabacum L.) // Цитология. (Перечень ВАК). 2008. Т. 50. № 5. С.447−451.

ЗАКЛЮЧЕНИЕ

Особенностью растительной клетки является большое разнообразие структур цитоскелета, сменяющих друг друга в ходе клеточного цикла. К ним относятся кортикальные спирали, ППК, радиальные пучки, веретено деления, фрагмопласт. Результаты исследований мейотического деления в МКП растений табака свидетельствуют о том, что цикл реорганизации цитоскелета в данном типе клеток представляет собой смену в ходе клеточного деления двух основных системных структур — радиальных интерфазных пучков и веретена деления. Фрагмопласт как отдельная цитоскелетная структура не строится. В данном случае роль фрагмопласта выполняет система радиальных пучков МТ, сформированных в телофазе.

На сегодняшний день существует предположение, что формирование веретена деления в МКП происходит согласно «inside-out» механизму, то есть фибриллы веретена полимеризуются от зоны расположения хромосом в виде хаотичной системы МТ, которая затем в процессе «самосборки» реорганизуется в биполярную структуру. Это предположение основано на данных о МТ организующей способности хромосом и об отсутствии в мейоцитах биполярных профазных МТ структур наподобие профазного веретена в соматических клетках. Наблюдаемая нами динамика цитоскелета в профазе мейоза в МКП табака показывает, что формирование фибрилл веретена происходит от коротких пучков дезинтегрированной перинуклеарной системы по направлению к хромосомам, то есть в соответствии с «outside-in» механизмом. Это означает, что короткие пучки МТ, расположенные в перинуклеарной области, служат затравками для нуклеации хаотичной системы МТ фибрилл, характерной для прометафазы мейотического деления.

Изученные нами трансгенные растения могут служить ярким примером того, как случайные изменения, в том числе являющиеся результатом сомаклональной изменчивости (спонтанное изменение уровня плоидности), могут оказаться причиной появления новых удобных моделей для решения важнейших цитологических задач, в частности для поиска механизмов, регулирующих перестройки цитоскелета в ходе клеточного цикла растений.

Полученные нами данные доказывают, что часть аномалий мейоза, наблюдаемых в МКП трансгенных растений табака с мутантным фенотипом, является результатом уникальных структурно-морфологических нарушений цитоскелетных структур, влияющих на позиционирование ядер и веретен второго деления. В таблице 7 схематически представлены суммарные данные по визуализации аномалий, выявленных нами в ходе анализа динамики микротрубочкового цитоскелета у трансгенных растений табака с мутантным фенотипом. К ним относятся нарушение полимеризации и соединения (+)-концов микротрубочек в поздней телофазе 1 — интеркинезе, нарушение деполимеризации йнтерзональной системы микротрубочек в профазе 2, объединение цитоскелетных структур в прометафазе 2 и формирование слитного веретена деления при аномальном сближении ядер.

Поскольку оба мейотических деления в МКП двудольных растений происходят в общей цитоплазме, важной проблемой является правильная — взаимно перпендикулярная — пространственная ориентация веретен второго деления. Нами было показано, что отклонения от такого положения приводят к аномальному сближению групп хромосом и возникновению мейотической реституции (табл. 7). На сегодняшний день механизм позиционирования веретена деления в МКП растительной клетки не вполне понятен. Так, если в митотическом делении соматических клеток положение веретена деления и плоскости деления цитоплазмы определяется особой кольцевой цитоскелетной структурой, препрофазным пучком МТ, то в МКП растений такая структура отсутствует.

В ходе проведения цитологического анализа в части МКП трансгенных растений табака с мутантным фенотипом впервые была выделена аномалия, проявляющаяся в значительном изменении формы дочерних ядер в поздней профазе второго деления мейоза. Резко аномальная, вытянутая форма ядер в таких клетках позволила наблюдать их поворот друг относительно друга на 90°, то есть именно так, как в дальнейшем должны быть ориентированы веретена второго деления в норме. Вероятно, что в клетках с нормальными округлыми ядрами этот процесс маскируется

Показать весь текст

Список литературы

  1. Ван С.Ю., Юй Ч. Х., Ли С., Ван Ч. И., Чжэн Г. Ч. Ультраструктура и возможное происхождение цитоплазматических каналов, обеспечивающих связь между клетками вегетативных тканей пыльников // Физиология растений. 2004. Т. 51. № 1.С. 110−120.
  2. Е.В., Загорская А. А., Шумный В. К. Т-ДНК индуцированные мутации у трансгенных растений // Генетика. 2007. Т. 43. № 1. С. 5−17.
  3. Н.В., Шамина Н. В. Аномалии микротрубочек цитоскелета в мутантной линии сахарной свеклы // Цитология. 2000. Т. 42. № 4. С. 372−377.
  4. Н.В., Шамина Н. В. Организация цитокинеза в делении растительной клетки // Цитология. 2005. Т. 47. № 7. С. 563−576.
  5. Т.А., Лебедева О. В., Огаркова О. А. и др. Arabidopsis thaliana модельный объект генетики растений. М.: Макс-пресс. 2003. С. 212.
  6. М.В. Экструзия ядерного материала в предзародышах у злаковых растений // ДАН. 1983. Т. 269. № 2. С. 509−512.
  7. Т.В., Солдатов И. В. Цитомиксис в апекальной меристеме побегов гибридов Prunus doomestica L. х Persica vulgaris Mill. II Генетика. 1991. Т. 27. № 10. С. 1790−1794.
  8. Л.А. Центросома как «мозг» животной клетки // Цитология. 2008. Т. 50. № 1. С. 5−17.
  9. З.П. Практикум по цитологии растений. М.: Колос. 1980. 118 С.
  10. Подлисских В. Е, Анкудо Т. М., Аношенко Б. Ю. Особенности формирования веретена деления и поведения хромосом в мейозе у образцов диплоидного картофеля с мутацией «слияние веретен» // Цитология. 2002. Т. 44. № 10. С. 9 961 004.
  11. .В., Орлова И. Н. Пшенично-пырейные амфидиплоидиы. Л., Колос. 1977. 279 С.
  12. И.Д., Орлова И. Н. Цитомиксис и его последствия в микроспороцитах тритикале//Генетика. 1971. Т. 7. № 12. С. 5−13.
  13. Н.В. Аномалии веретена деления растительной клетки // Цитология. 2005а. Т. 42. № 7. С. 584−594.
  14. Н.В., Вайсман Н. Я., Дорогова Н. В. и др. Интерзональные микротрубочки и мейотическая реститутция двудольных // Цитология. 2001. Т. 43. № 1. С. 33−38.
  15. Н.В., Гордеева Е. И., Серюкова Е. Г. Динамика микротрубочкового цитоскелета в мейозе у высших растений. VIII. Последовательный и одновременный цитокинез в сравнении // Цитология. 2006 в. Т. 48. № 3. С. 220 225.
  16. Н.В., Дорогова Н. В. Динамика микротрубочкового цитоскелета в мейозе у высших растений. VII. Процессы одновременного (симультанного) цитокинеза // Цитология. 2006 б. Т. 48. № 2. С. 127−132.
  17. Н.В., Дорогова Н. В. Молекулярные механизмы динамики цитоскелета в делении растительной клетки // Биологические мембраны. 2004а. Т. 21. № 6. С. 435−441.
  18. Н.В., Дорогова Н. В., Загорская А. А., Дейнеко Е. В., Шумный В. К. Нарушения мужского мейоза в трансгенной линии res 91 табака // Цитология. 2000. Т. 42. № 12. С. 1173−1178.
  19. Н.В., Дорогова Н. В., Серюкова Е. Г. Динамика микротрубочкового цитоскелета в мейозе высших растений. II. Формирование перинуклеарного кольца микротрубочек // Цитология. 2003. Т. 45. № 7. С. 655−660.
  20. Н.В., Дорогова Н. В., Чередниченко А. Е. Консолидация цитоскелета при формировании веретена деления в растительной клетке. II. «Слившиеся веретена» // Цитология. 20 046. Т. 46. № 8. С. 685−690.
  21. Н.В., Ковалева Н. М., Гордеева Е. И., Серюкова Е. Г. Динамика микротрубочкового цитоскелета в мейозе у высших растений. VI. Механизмы последовательного цитокинеза // Цитология. 2006 а. Т. 48. № 2. С. 121−126.
  22. Н.В., Ковалева Н. М., Соловьева Н. В., Гордеева Е. И. Динамика микротрубочкового цитоскелета в мейозе у высших растений. V. Поздняя прометафаза. Общая схема формирования веретена деления // Цитология. 20 056. Т. 47. № 10. С. 889−897.
  23. Ф.М., Козловская В. Ф. Цитомиксис в мейозе у некоторых гибридных форм злаков подтрибы Triticinae//Генетика. 1974. Т. 10. № 5. С. 5−12.
  24. Т. К вопросу о цитомиксисе у растений // Изв. АН Эст. ССР. 1975. Т. 24. № 3. С. 199−209.
  25. К. Анатомия семенных растений // М.: Мир, 1980. 405 С.
  26. Ambrose J.C., Cyr R. The kinesin АТК5 functions in early spindle assembly in Arabidopsis //Plant Cell. 2007. V. 19. № 1. P. 226−236.
  27. Ambrose J.C., Li W., Marcus A., Ma H., Cyr R. A minus-enddirected kinesin with plus-end tracking protein activity is involved in spindle morphogenesis // Mol. Biol. Cell. 2005. V. 16. P. 1584−1592.
  28. Asaad F.F. Plant cytokinesis. Exploring the links // Plant Physiol. 2001. V. 126. P. 509−516.
  29. Asada Т., Kuriyama R., Shibaoka H. TKRP125, a kinesin-related protein involved in the centrosome-independent organization of the cytokinetic apparatus in tobacco // J. Cell Sci. 1997. V. 110. P. 179−189.
  30. Azimzadeh J., Traas J., Pastuglia M. Molecular aspects of microtubule dynamics in plants // Curr. Opin. Plant Biol. 2001. V. 4. P. 513−519.
  31. Azpiroz-Leehan R, Feldmann K.A. T-DNA insertion mutagenesis in Arabidopsis'. going back and forth // Trends Genet. 1997. V. 13. P.152−156.
  32. Bai Xu., Peirson B.N., Dong F., Xue C., Makaroff Ch.A. Isolation and characterization of SYN1, a RAD21-like gene essential for meiosis in Arabidopsis II The Plant Cell. 1999. V 11. P. 417−430.
  33. Bajer A.S., Mole-Bajer J. Reorganization of microtubules in endosperm cells and cell fragments of the higher plant Haemanthus in vivo // J. Cell Biol. 1986. V. 102. P. 263 281.
  34. Bajer S.B., Smirnova E.A. Reorganization of microtubular cytoskeleton and formation of cellular processes during post-telophase in Haemanthus endosperm // Cell Motil. Cytoskel. 1999. V. 44. P. 96−109.
  35. Bannigan A., Lizotte-Waniewski M., Riley M., Baskin Т. I. Emerging molecular mechanisms that power and regulate the anastral mitotic spindle of flowering plants // Cell Motil. Cytoskel. 2008. V. 65. P. 1−11.
  36. Barroso C., Chan J., Allan V., Doonan J., Hussey P., Lloyd C.W. Two kinesin-related proteins associated with the cold-stable cytoskeleton of carrot cells: characterization of a novel kinesin, DcKRP120−2 // Plant J. 2000. V. 24 P. 859−868.
  37. Basavaiah D., Murthy T.C.S. Cytomixis in pollen mother cells of Urochloapanicoides P.Beauv. (Poaceae) И Cytologia. 1987. V. 52. P. 69−74.
  38. Baskin T.I., Cande W.Z. Structure and function of the mitotic spindle in flowering plants // Ann. Rev. Plant Physiol. Plant Mol. Biol. 1990. V. 41. P. 277−315.
  39. Basto R., Lau J., Vinogradova Т., Gardiol A., Woods C.G., Khodjakov A., Raff J. W. Flies without centrioles // Cell. 2006. V. 125. P. 1375−13.
  40. G.R. 1987. Cytomixis in Agropyron cristatum II Genome. 29:765−769.
  41. Becerra Lopez-Lavalle L.A., Orjeda G. Occurrence and cytological mechanism of 2n pollen formation in a tetraploid accession of Ipomoea batatas (sweet potato) // J. Hered. 2002. V. 93. P. 185−92.
  42. M., Roscini C., Mariani A. 2003. Cytomixis in pollen mother cells of Medicago sativa L. // J. Hered. 94: 512−516.
  43. Bione N.C.P., Pagliarini M.S., de Toledo J.F.F. Meiotic behavior of several Brazilian soybean varieties // Gen. Mol. Biol. 2000. V. 23. P. 623−631.
  44. Sh.R., Hable Wh.E., Kropf D.L. +Tips and microtubule regulation. The beginning of the plus end in plants // Plant Physiol. 2004. V. 136. P. 3855−3863.
  45. Brown R.C., Lemmon B. Control of division plane in normal and griseofulvin-treated microsporocytes of Magnolia // J. Cell Sci. 1992. V. 103. P. 1031−1038.
  46. Brown R.C., Lemmon B. Nuclear cytplasmic domains, microtubules and organelles in microsporocytes of the slipper orchid Cypripedium californicum A. Gray dividing by simultaneous cytokinesis // Sex. Plant Reprod. 1996. V. 9. P. 145−152.
  47. Brown R.C., Lemmon B.E. Minispindles and cytoplasmic domains in microsporogenesis of orchids //Protoplasma. 1989. V. 148. P. 26−32.
  48. Brown R.C., Lemmon B.E. Pollen development in orchids. 1. Cytoskeleton and the control of division plane in irregular patterns of cytokinesis // Protoplasma. 1991. V. 163. P. 9−18.
  49. Brown R.C., Lemmon B.E. The cytoskeleton and spatial control of cytokinesis in the plant life cycle // Protoplasma. 2001. V. 215. P. 35−49.
  50. Brown R.C., Lemmon B.E. The pleomorphic plant MTOC: an evolutionary perspective // J. Integrative Plant. Biol. 2007. V. 49. P. 1142−1153.
  51. Burk D.H., Liu В., Zhong R., et al. A katanin-like protein regulates normal cell wall biosynthesis and cell elongation // Plant Cell. 2001. V. 13. № 4. P. 807−827.
  52. Caetano-Pereira C.M., Pagliarini M.S. Cytomixis in maize microsporocytes // Cytologia. 1997. V. 62. P. 351−355.
  53. Canaday J., Stoppin-Mellet V., Mutterer J., Lambert A.M., Schmit A.C. Higher plant cells: gamma-tubulin and microtubule nucleation in the absence of centrosomes // Microsc. Res. Tech. 2000. V. 49. № 5. P. 487−495.
  54. Chan A., Cande W.Z. Maize meiotic spindles assemble around chromatin and do not require paired chromosomes //J. Cell Sci. 1998. V. 111. P. 3507−3515.
  55. Chan J., Calder G.M., Doonan J.H., Lloyd C.W. EB1 reveals mobile microtubule nucleation sites in Arabidopsis //Nat. Cell Biol. 2003. V. 5. P. 967−971.
  56. Chan W.J., Calder G., Fox S., Lloyd C. Localization of the microtubule end binding protein EB1 reveals alternative pathways of spindle development in arabidopsis suspension cells // The Plant Cell. 2005. V. 17. P. 1737−1748.
  57. Chan J., Jensen C.G., Jensen L.C.W., et al. The 65-kDa carrot microtubule-associated protein forms regularly arranged filamentous cross-bridges between microtubules // 1999. Proc. Natl. Acad. Sci. V. 96. P. 14 931−14 936.
  58. Chen C., Marcus A., Li W., Hu Y., Grossniklaus U., Cyr R., Ma H. The Arabidopsis ATK-1 gene is required for spindle morphogenesis in male meiosis // Development. 2002. V. 129. P. 2401−2409.
  59. Choi H.-W., Lemaux P.G., Cho M. High frequency of cytogenetic aberration in transgenic oat (Avenasativa L.) plants //Plant Science. 2000 б. V. 156. P. 85−94.
  60. Choi H.-W., Lemaux P.G., Cho M. Increased chromosomal variation in transgenic versus nontransgenic barley (Hordeum vulgare L.) plants // Crop Science. 2000 a. V. 40. P. 524−533.
  61. Cleary A.L., Hardham A.R. Depolymerization of microtubule arrays in root tip cells by oryzalin, and their recovery by modified nucleation patterns // Can. J. Bot. 1988 V. 66. P. 2353−2366.
  62. Cleary A.L., Smith L.G. The tangledl gene is required for spatial control of cytoskeletal arrays associated with cell division during maize leaf development // Plant Cell. 1998. V. 10. P. 1875−1888.
  63. Collings D.A., Asada Т., Allen N.S., Shibaoka H. Plasma membrane-associated actin in bright yellow 2 tobacco cells. Evidence for interaction with microtubules // Plant Physiol. 1998. V. 118. P. 917−928.
  64. Compton D.A. Spindle assembly in animal cells // Annu. Rev. Biochem. 2000. V. 69. P. 95−114.
  65. Conicella C., Barone A., Del Giudice A., Frusciante L., Monti L.M. Cytological evidence of, SDR-FDR mixture in the formation of 2n eggs in a potato diploid clone // Theor. Appl. Genet. 1991. V. 81. P. 59−63.
  66. Conicella C., Capo A., Cammareri M. et al. Elucidation of meiotic nuclear restitution mechanisms in potato through analysis of microtubular cytoskeleton // Euphytica. 2003. V. 133. P. 107−115.
  67. Couteau F., Belzile F., Horlow Ch., Grandjean O., Vezon D., Doutriaux M.-P. Random chromosome segregation without meiotic arrest in both male and female meiocytes of a dmcl mutant of Arabidopsis II The Plant Cell. 1999. V. 11. P. 16 231 634.
  68. De Mey J., Lambert A.-M., Moreman M., De Brabander M. Visualization of microtubules in interphase and mitotic plant cells of Haemanthus endosperm with immunogold staining method // Proc. Nat. Acad. Sci. USA. 1982. V. 79. P. 1898−1902.
  69. De Souza A.M., Pagliarini M.S. Cytomixis in Brassica napus var. oleifera and Brassica campestris var. oleifera (Brassicaceae) // Cytologia. 1997. V. 62. P. 25−29.
  70. Deblaere R., Reynaerts J., Hofte H. et al. Vectors for cloning in plant cells // Meth. Enzymol. 1987. V. 153. P. 277−291.
  71. Desai A., Mitchison T.J. Microtubule polymerization dynamics // Ann. Rev. Cell Develop. Biol. 1997. V. 13. P. 83−117.
  72. Dilkes B.P., Feldmann K.A. Gene isolation from T-DNA tagged transformants // In: Methods in molecular biology, Arabidopsis protocols. NY: Humana Press. 1998. V. 82. P. 339−351.
  73. Dinis A.M., Mesquita J.F. The F-actin distribution during microsporogenesis in Magnolia soulangeana Soul. (Magnoliaceae) // Sex. Plant Reprod. 1993. V. 6. P. 5763.
  74. Dixit R., Cyr R. The cortical microtubule array: from dynamics to organization // The Plant Cell. 2004. V. 16. P. 2546−2552.
  75. Dorogova N.V., Shamina N.V., Maletskii S.I. The mutational variation of cytoskeleton and formation of unreduced male gametes in shugar beet // Sugar Tech. 1999. V. 1. P.83−85.
  76. Durso N.A., Leslie J.D., Cyr R.J. In situ immunocytochemical evidence that a homolog of protein translation elongation factor EF-la is associated with microtubules in carrot cells //Protoplasma. 1996. V. 190. P. 141−150.
  77. Eleftheriou E.P., Baskin T.I., Hepler P.K. Aberrant cell plate formation in the Arabidopsis thaliana microtubule organization 1 mutant // Plant Cell Physiol. 2005. V. 46. P. 671−675.
  78. Falconer M. M., Donaldson G., Seagull R. W. MTOCs in higher plant cells: an immunofluorescent study of microtubule assembly sites following depolymerization by АРМ//Protoplasma. 1988. V. 144. P. 46−55.
  79. Falistocco E., Tosti N., Falcinelli M. Cytomixis in pollen mother cells of diploid Dactylis, one of the origins of 2n gametes // The Journal of Heredity. 1995. V. 86. № 6. P. 448−453.
  80. Feijo J., Pais S. Cytomixis in meiosis during the microsporogenesis of Ophris lutea: an ultrastructural study // Caryologia. 1989. V. 42. №. 1. P. 37−48.
  81. Feldmann K.A. T-DNA insertion mutagenesis in Arabidopsis: mutation spectrum // Plant J. 1991. V. 1. P. 71−82.
  82. Feldmann K.A., Marks M.D., Christianson M.L. et al. A dwarf mutant of Arabidopsis generated by T-DNA insertion mutagenesis // Science. 1989. V. 243. P.1351−1354.
  83. Ferris C., Callow R.S., Gray A.J. Mixed first and second division restitution in male meiosis of Hierochloe odorata (L.) Beauv (Holy Grass) // Heredity. 1991. V. 69. P. 21−31.
  84. Franklin A.E., Cande W.Z. Nuclear organization and chromosome segregation // The Plant Cell. 1999. V. 11. P. 523−534.
  85. Genualdo G., Errico A., Tiezzi A., et al. a-Tubulin and F-actin distribution during microsporogenesis in a 2n pollen producer of Solatium // Genome. 1998. 41. P. 63 664.
  86. Glover J., Grelon M., Craig S., Chaudhury A. s Dennis E. Cloning and characterization of MS5 from Arabidopsis: a gene critical in male meiosis // The Plant Journal. 1998. V. 15. P. 345−356.
  87. Gonczy P. Mechanisms of spindle positioning: focus on flies and worms // Trends Cell Biol. 2002. V. 12. P. 332−339.
  88. Goshima G., Vale R.D. The roles of microtubule-based motor proteins in mitosis: comprehensive RNAi analysis in the Drosophila S2 cell line // J. Cell Biol. 2003. V. 162. P. 1003−1016.
  89. Guertin D.A., Trautmann S., McCollum D. Cytokinesis in Eukaryotes // Microbiol. Mol. Biol. Rev. 2002. V. 66. P. 155−178.
  90. Guzicka M., Wozny A. Cytomixis in shoot apex of Norway spruce Picea abies (L.) Karst. // Trees. 2004. V. 18. P. 722−724.
  91. Hamada T. Microtubule-associated proteins in higher plants // J. Plant Res. 2007. V. 120. P. 79−98.
  92. Hamada Т., Igarashi H., Itoh T.J., Shimmen Т., Sonobe S. Characterization of a 200 kDa microtubule-associated protein of tobacco BY-2 cells, a member of the XMAP215/MOR1 family // Plant Cell Physiol. 2004. V. 45. P. 1233−1242.
  93. He C., Mascarenhas J.P. MEI1, an Arabidopsis gene required for male meiosis: isolation and characterization // Sex. Plant Reprod. 1998. V. 11. P. 199−207.
  94. He C., Tirlapur U., Cresti M., Peja M., Crone D.E., Mascarenhas J.P. An Arabidopsis mutant showing aberrations in male meiosis // Sex. Plant Reprod. 1996. V. 9. P. 54−57.
  95. Heald R., Tourbize R., Blank Т., et al. Self-organization of microtubules into bipolar spindles around artificial chromosomes in Xenopus egg extracts // Nature. 1996. V. 382. P. 420−425.
  96. Heald R., Tournebize R., Habermann A., et al. Spindle assembly in Xenopus egg extracts: respective roles of centrosomes and microtubule self-organization // J. of Cell Biol. 1997. V. 138. № 3. P. 615−628.
  97. Heese M., Mayer U., Jurgens G. Cytokinesis in flowering plants: cellular process and developmental integration // Curr. Opin. Plant Biol. 1998. V. 1. P. 486−491.
  98. Heslop-Harrison J. Cytoplasmic connections between angiosperm meiocytes // Ann. Bot. 1966. V. 30. P. 592−600.
  99. Himmelspach R., Wymer C.L., Lloyd C.W., Mick P. Gravity-induced reorientation of cortical microtubules observed in vivo //Plant J. 1999. V. 18. P. 449−453.
  100. Hogan C. J. Microtubule patterns during meiosis in two higher plant species // Protoplasma. 1987. V. 138. P. 126−136.
  101. Horsch R.B., Fry J.E., Hoffmann N.I., Eichholtz D., Rogers S.G., Fraley R.T. 1985. A simple and general method for transferring genes into plants. Science. 227:1229−1231.
  102. Hoshino H., Yoneda A., Kumagai F., Hasezawa S. Roles of actin-depleted zone and preprophase band in determining the division site of higher-plant cells, a tobacco BY-2 cell line expressing GFP-tubulin//Protoplasma. 2003. V. 222. P. 157−165.
  103. Hyman A. A., Karsenti E. Morphogenetic properties of microtubules and mitotic spindle assembly // Cell. 1996. V. 84. P. 401−410.
  104. Inoue Y. H, do Carno Avides M., Shiraki M., et al. Orbit, a novel microtubule-associated protein essential for mitosis in Drosophila II J. Cell Biol. 2000. V. 149. P. 153−165.
  105. Jiang Ch.-J., Sonobe S. Identification and preliminary characterization of a 65 kDa higher-plant microtubule-associated protein//J. Cell Sci. 1993. V. 105. P. 891−901.
  106. Jurgens G. Cytokinesis in higher plants // Annu. Rev. Plant Biol. 2005 b. V. 56. P. 281−299.
  107. Jurgens G. Plant cytokinesis: fission by fusion // Trends in Cell Biol. 2005 a. V. 15. P. 277−283.
  108. Kakimoto Т., Shibaoka H. Actin filaments and microtubules in the preprophase band and phragmoplast of tobacco cells // Protoplasma. 1987. V. 140. P. 151−156.
  109. Kamra Om P. Chromatin extrusion and cytomixis in pollen mother cells of Hordeum I I Hereditas. 1960. V. 46. P. 592−600.
  110. Khodjakov A., Cole R.W., Oakley B.R., et al. Centrosome-independent mitotic spindle formation in vertebrates // Curr. Biol. 2000. V. 10. P. 59−67.
  111. Kubiak J., De Brabander M., De Mey J., Tarkowska J. A. Origin of the meiotic spindle in onion root cells // Protoplasma. 1986. V. 130. P. 51−56.
  112. Lambert A.-M. Microtubule-organizing centers in higher plants // Curr. Opin. Cell Biol. 1993. V. 5. P. 116−122.
  113. P. J., Scowcroft W.R. 1981. Somaclonal variation a novel source of variability from cell cultures for plant improvement. Theor. and Appl. Genet. 60:197−214.
  114. Latham J. R, Wilson A.K., Steinbrecher R.A. The mutational consequences of plant transformation// J. Biomed. Biotechnol. 2006. V. 2006. P. 1−7.
  115. Lawrence С J, Dawe RK, Christie KR, et al. A standardized kinesin nomenclature // J. Cell Biol. 2004. V. 167. № 1. P. 19−22.
  116. Lee L., Tirnauer J.S., Li J. et al. Positioning of the mitotic spindle by a cortical-microtubule capture mechanism // Science. 2000. V. 287. P. 2260−2262.
  117. Lee Y.R., Liu B. Cytoskeletal motors in Arabidopsis. Sixty-one kinesins and seventeen myosins // Plant Physiol. 2004. V. 136. P. 3877−3883.
  118. Lee Y.R., Liu B. Identification of a phragmoplast-associated kinesin-related protein in higher plants // Curr. Biol. 2000. V. 10. P. 797−800.
  119. Lim K.Y., Matyasek R., Lichtenstein C.P., Leitch A.R. Molecular cytogenetic analyses and phylogenetic studies in the Nicotiana section Tomentosae // Chromosoma. 2000. V. 109. P. 245−258.
  120. Liu В., Cyr R.J., Palevitz В.A. A kinesin-like protein, KatAp, in the cells of Arabidopsis and other plants // Plant Cell. 1996. V. 8. P. 119−132.
  121. Liu В., Marc J., Joshi H.C., Palevitz B.A. A gamma-tubulin-related protein associated with the microtubule arrays of higher plants in a cell cycle-dependent manner // J. Cell Sci. 1993.V. 104. P. 1217−1228.
  122. Lloyd C., Hussey P. Microtubule-associated proteins in plants why we need a MAP // Nat. Rev. Mol. Cell Biol. 2001. V. 2. № 1. P. 40−47.
  123. Magnard J.-L., Yang Ming, Chen Y.-C. S., Leary M., McCormick Sh. The Arabidopsis gene tardy asynchronous meiosis is required for the normal pace and synchrony of cell division during male meiosis 1 // Plant Physiology. 2001. V. 127. P. 1157−1166.
  124. Manneville J.-B., Etienne-Manneville S. Models and speculations positioning centrosomes and spindle poles: looking at the periphery to find the centre // Biol. Cell. 2006. V. 98. P. 557−565.
  125. Marcus A.I., Dixit R., Cyr R.J. Narrowing of the preprophase microtubule band is not required for cell division plane determination in cultured plant cells // Protoplasma. 2005. V. 226. P. 169−174.
  126. Marcus A.I., Li W., Ma H., Cyr R.J. A kinesis mutant with an atypical bipolar spindle undergoes normal mitosis //Mol. Biol. Cell. 2003. V. 14. P. 1717−1726.
  127. Mariani A., Campanoni P., Giani S., Breviario D. Meiotic mutants of Medicago sativa show altered levels of a- and p-tubulin // Genome. 2000. V. 43. P. 166−171.
  128. Mark J. Microtubule-organizing centres in plants // Trends in Plant Sci. 1997. V. 2. P. 223−230.
  129. Markus A.I., Ambrose J.C., Blickley L., et al. Arabidopsis thaliana protein, ATK1, is minus-end directed kinesin that exhibits non-processive movement // Cell Motil. Cytoskeleton. 2002. V. 52. № 3. P. 144−150.
  130. Matthies H.J.G., McDonald H.B., Goldstein L.S.B., Theurkauf W.E. Anastral meiotic spindle morphogenesis: role of the non-claret disjunctional kinesin-like protein // J. Cell Biol. 1996.V. 134. P. 455−464.
  131. Matzke M.A., Moscone E.A., Park Y.D., Papp I., Oberkofler H., Neuhuber F., Matzke A.J. Inheritance and expression of a transgene insert in an aneuploid tobacco line // Mol. Gen. Genet. 1994. V. 245. P. 471−485.
  132. Mazia D. The chromosome cycle and the centrosome cycle in the mitotic cycle // Int. Rev. Cytol. 1987. V. 100. P. 49−92.
  133. McClinton R.S., Chandler J.S., Callis J. cDNA isolation, characterization, and protein intracellular localization of a katanin-like p60 subunit from Arabidopsis thaliana И Protoplasma. 2001. V. 216. № 3−4. P. 181−190.
  134. McKearin D., Ohlstein B. A role for the Drosophila bag-of-marbles protein in the differentiation of cytoblasts from germline stem cells // Development. 1995. V. 121. P. 2937−2947.
  135. Meier I. Composition of the plant nuclear envelope: theme and variations // J. Exp. Bot. 2007. V. 58. P. 27−34.
  136. Meier I. The plant nuclear envelope // Cell Mol Life Sci. 2001. V. 58. № 12−13. P. 1774−1780.
  137. Merdes A., Cleveland D.W. Pathways of spindle pole formation: different mechanisms- conserved components // J. Cell Biol. 1997. V. 138. P. 953−956.
  138. Mineyuki Y. Plant microtubule studies: past and present // J. Plant Res. 2007. V. 120. P. 45−51.
  139. Mineyuki Y. The preprophase band of microtubules: its function as a cytokinetic apparatus in higher plants // Int. Rev. Cytol. 1999. V. 187. P. 1−49.
  140. Motamayor J.C., Vezon D., Bajon C., et al. Switch (swiJ), an Arabidopsis thaliana mutant affected in the female meiotic switch // Sex. Plant Reprod. 2000. V. 12. P. 209 218.
  141. Muller S., Smertenko A., Wagner V., et al. The plant microtubule-associated protein AtMAP65−3/PLE is essential for cytokinetic phragmoplast function // Curr. Biol. 2004. V. 14. № 5. P. 412−417.
  142. Murashige Т., Skoog F. A revised medium for rapid growth and bio-assays with tobacco tissue cultures // Physiologia Plantarum. 1962. V. 15. P. 473−497.
  143. Murata Т., Hasebe M. Microtubule-dependent microtubule nucleation in plant cells // J. Plant Res. 2007. V. 120. P. 73−78.
  144. Naciy P., Mayer U., Jiirgens G. Genetic dissection of cytokinesis // Plant Mol. Biol. 2000. V. 43. P. 719−33.
  145. Nedelec F.J., Surrey Т., Maggs A.C., Leibler S. Self-organization of microtubules and motors //Nature. 1997. V. 389. P. 305−308.
  146. Nirmala C., Kaul M.L. Male sterility in Pea VI. Gene action duplicity // Cytologia. 1994. V. 59. P. 195−201.
  147. Ohba Т., Nacamura M., Nishitatni H., et al. Self-organization of microtubule asters induced in Xenopus egg extracts by GTP-bound Ran // Science. 1999. V. 284. P. 1356−1358.
  148. Otegui M., Staehelin L.A. Cytokinesis in flowering plants: more than one way to divide a cell // Curr. Opin. Plant Biol. 2000. V. 3. P. 493−502.
  149. Palevitz B.A. Accumulation of F-actin during cytokinesis in Allium. Correlation with microtubule distribution and the effects of drugs // Protoplasma. 1987. V. 141. P. 2432.
  150. Peirson B.N., Bowling S.E., Makaroff Ch. A defect in synapsis causes male sterility in a T-DNA-tagged Arabidopsis thaliana mutant // The Plant Journal. 1997. V. 11. P. 659−669.
  151. Peirson B.N., Owen H.A., Feldmann K.A., Makaroff Ch.A. Characterization of three male-sterile mutants of Arabidopsis thaliana exhibiting alterations in meiosis // Sex. Plant Reprod. 1996. V. 9. P. 1−16.
  152. Peng Zh.-S., Yang J., Zheng G.-Ch. Cytomixis in pollen mother cells of new synthetic hexaploid amphidiploid (Aegilops tauschiix Triticum turgidum) II Cytologia. 2003. V. 68. P. 335−340.
  153. Premachandran M.N., Sachan J.K.S., Sarkar K.R. Cytomixis in a maize trisomic // Curr. Sci. 1988. V. 57. P. 681−682.
  154. Ramanna M.S. A re-examination of mechanisms of 2n-gamet formation in potato and its implications for breeding // Euphytica. 1979. V. 28. P. 537−561.
  155. Ressayre A., Mignot A., Siljak-Yakovlev S., Raquin C. Postmeiotic cytokinesis and pollen aperture number determination in eudicots: effect of the cleavage wall number // Protoplasma. 2003. V. 221. P. 257−268.
  156. Richardson D.N., Simmons M.P., Reddy A.S. Comprehensive comparative analysis of kinesins in photosynthetic eukaryotes //BMC Genomics. 2006. V. 7. 18.
  157. Rose A., Patel Sh., Meier I. The plant nuclear envelope // Planta. 2004. V. 218. P. 327−336
  158. Ross К.J., Fransz P., Armstrong S.J., Vizir I., Mulligan В., Franclin F.C., Jones J.H. Cytological characterization of four meiotic mutants of Arabidopsis isolated from T-DNA-transformed lines // Chromosome Res. 1997. V. 5. P. 551−559.
  159. Salesses G. Sur le phenomene de cytomixie chez des hybrids triploides de prunier. Consequences genetiques possible // Ann. Amelior. Plantes. 1970. V. 20. P. 383−388.
  160. Schmit A.-C. Acentrosomal microtubule nucleation in higher plants // Int. Rev. Cytol. 2002. V. 220. P. 257−289.
  161. Schmit A.-C., Vantard M., De Mey J., Lambert A.-M. Aster-like microtubule centers establish spindle polarity during interphase-mitosis transition in higher plant cells // Plant Cell Rep. 1983. V. 2. P. 285−288.
  162. Seagull R.W., Falconer M.M., Weerdenburg C.A. Microfilaments: dynamic arrays in higher plant cells // J. Cell Biol. 1987. V. 104. P. 995−1004.
  163. Shamina N.V. Formation of division spindles in higher plant meiosis // Cell Biol. Int. 2005. V. 29. P. 307−318.
  164. Shamina N.V., Gordeeva E.I., Kovaleva N.M., Seriukova E.G., Dorogova N.V. Formation and function of phragmoplast during successive cytokinesis stages in higher plant meiosis // Cell Biol. Int. 2007. V. 31. P. 626−635.
  165. Shaw S.L., Kamyar R., Ehrhardt D.W. Sustained microtubule treadmilling in arabidopsis cortical arrays // Science. 2003. V. 300. P. 1715−1718.
  166. Sheidai M., Attaei S. Meiotic studies of some stipa (Poaceae) species and population in Iran. Cytologia. 2005. V. 70. P. 23−31.
  167. Shimamura M., Brown R.C., Lemmon B.E., et al. y-Tubulin in basal land plants: characterization, localization, and implication in the evolution of acentriolar microtubule organizing centers // The Plant Cell. 2004. V. 16. P. 45−59.
  168. Siddiqi I., Ganesh G., Grossniklaus U., Subbiah V. The dyadgene is required for progression through female meiosis in Arabidopsis II Development. 2000. V. 127. P. 197−207.
  169. Singh R.J., Klein T.M., Mauvais C.J., Knowlton S., Hymowitz Т., Kostow C.M. Cytological characterization of transgenic soybean // Theor. Appl. Genet. 1998. V. 96. P. 319−324.
  170. Smertenko A.P., Chang H.Y., Sonobe S., et al. Control of the AtMAP65-l interaction with microtubules through the cell cycle // J. Cell Sci. 2006. V. 119. P. 3227−3237.
  171. Smiley J.H., Stokes G.W. Induction and identification of tetraploid in burley tobacco // Tobacco Sci. 1966. V. 163. P. 30−32.
  172. Smirnova E.A. Spindle pole formation in higher plant cells // Cell Biology Interactional. 2003. V. 27. P. 273−274.
  173. Smirnova E.A., Bajer A.S. Early stages of spindle formation and independence of chromosome and microtubule cycles in Haemanthus endosperm // Cell Motil. Cytoskel. 1998. V. 40. P. 22−37.
  174. Smirnova E.A., Bajer A.S. Microtubule converging centers and reorganization of the interphase cytoskeleton and the mitotic spindle in higher plant Haemanthus II Cell Motil. Cytoskel. 1994. V. 27. P. 219−33.
  175. Smirnova E.A., Bajer A.S. Spindle poles in higher plant mitosis // Cell Motil. Cytoskel. 1992. V. 23 P. 1−7.
  176. Smith L.G., Gerttula S.M., Han S., Levy J. Tangledl: a microtubule binding protein required for the spatial control of cytokinesis in maize // J. Cell Biol. 2001. V. 152. P. 231−236.
  177. A.S., Wafai B.A. 1987. Spontaneous occurrence of cytomixis during microsporogenesis in almond (Prunus amygdalus Batsch) and peach (P. persika Batsch). Cytologic 52:361−364.
  178. Spielman M., Preuss D., Li F.-L., Browne W.E., Scott R.J., Dickinson H.G. Tetraspore is required for male meiotic cytokinesis in Arabidopsis thaliana I I Development. 1997. V. 124. P. 2645−2657.
  179. Staehelin L.A., Hepler P.K. Cytokinesis in higher plant // Cell. 1996. V. 84. P. 821 824.
  180. Staiger C.J., Cande W.Z. Cytoskeletal analysis of maize meiotic mutants. In: Molecular and cell biology of the plant cell cycle // Netherlands: Kluwer Acad. Press Publ. 1993. P. 157−171.
  181. Staiger С.J., Cande W.Z. Microfilament distribution in maize meiotic mutants correlates with microtubule organization // The Plant Cell. 1991. V. 3. P. 637−644.
  182. Staiger C.J., Cande W.Z. Microtubule distribution in dv, a maize meiotic mutant defective in the prophase to metaphase transition // Develop. Biol. 1990. V. 138. P. 231−242.
  183. Staiger C.J., Lloyd C. W. The plant cytoskeleton // Curr. Opin. Cell Biol. 1991. V. 3. P. 33−42.
  184. Staiger C.J., Schliwa M. Actin localization and function in higher plants // Protoplasma. 1987. V. 141. P. 1−12.
  185. Stoppin V., Vantard M., Schmit A.-C., Lambert A.-M. Isolated plant nuclei nucleate microtubule assembly: the nuclear surface in higher plants has centrosome-like activity //Plant Cell. 1994. V. 16. P. 1099−1106.
  186. Stoppin-Mellet V., Peter C., Lambert A.-M. Distribution of a-tubulin in higher plant cells: cytosolic a-tubulin is part of high molecular weight complexes // Plant Biol. 2000. V. 2. P. 290−296.
  187. Traas J.A., Burgain S.- Dumas De Vaulx R. The organization of the cytoskeleton during meiosis in eggplant (Solanum melongena (L.)): microtubules and F-actin are both necessary for coordinated meiotic division // J. Cell Sci. 1989. V. 92. P. 541−550.
  188. Ueda K., Matsuyama T. Rearrangement of cortical microtubules from transverse to oblique or longitudinal in living cells of transgenic Arabidopsis thaliana II Protoplasma. 2000. V. 213. V. 28−38.
  189. Van Damme D., Geelen D. Demarcation of the cortical division zone in dividing plant cells // Cell Biol. Int. 2008. V. 32. P. 178−187.
  190. Vantard M., Cowling R., Delichere C. Cell cycle regulation of the microtubular cytoskeleton // Plant Mol. Biol. 2000. V. 43. P. 691−703.
  191. Vantard M., Levilliers N., Hill A.M., et al. Incorporation of Paramecium axonemal tubulin into higher plant cells reveals functional sites of microtubule assembly // Proc. Natl. Acad. Sci. USA. 1990. V. 87. № 22. P. 8825−8829.
  192. Vaughn K.C., Harper J.D. Microtubule-organizing centers and nucleating sites in land plants // Int. Rev. Cytol. 1998. V. 181. P. 75−149.
  193. Verma D.P.S. Cytokinesis and building of the cell plate // Annu. Rev. Plant Physisol. Plant Mol. Biol. 2001. V. 52. P. 751−784.
  194. Vernos I., Karsenty E. Chromosomes take the lead in spindle assembly // Trends in Cell Biol. 1995. V. 5. P. 297−301.
  195. Vos J.W., Safadi F., Reddy A.S.N., Hepler P.K. The kinesin-like calmodulin binding protein is differentially involved in cell division // Plant Cell. 2000. V. 12. P. 979−990.
  196. Wada В., Kusunoki F. Spindle membrane in meiosis of pollen mother cells of Tradescantia and in mitosis of endosperm cells of Zephyranthes // Cytologia. 1964. V. 10. P. 158−179.
  197. Wasteneys G.O. Microtubule organization in the green kingdom: chaos or self-order? //J. Cell Sci. 2002. V. 115. P. 1345−1354.
  198. Watanabe K., Peloquin S.J. Cytological basis of 2n pollen formation in a wide range of 2x, 4x, and 6x from tuber-bearing Solarium species // Genome. 1993. V. 36. P. 8−13.
  199. Werner J.E., Peloquin S.J. Occurrence and mechanisms of 2n egg formation in 2x potato // Genome. 1991. V. 34. P. 975−982.
  200. Whittington A.T., Vugrek O., Wei K.J., et al. MORI is essential for organizing cortical microtubules in plants // Nature. 2001. V. 411. P. 610−613.
  201. Wick S.M. Immunofluorescence microscopy of tubulin and microtubule arrays in plant cells. II. Transition between mitotic/cytokinetic and inteiphase microtubule arrays // Cell Biol. Int. Rep. 1985. V. 9. P. 357−371.
  202. Wick S.M. Spatial aspects of cytokinesis in plant cells // Curr. Opin. Cell Biol. 1991. V. 3. P. 253−260.
  203. Wick S.M., Duniec J. Immunofluorescence microscopy of tubulin and microtubule arrays in plant cells. I. Pre-prophase band development and concomitant appearance of nuclear envelope tubulin // J. Cell Biol. 1983. V. 97. P. 235−243.
  204. Wittmann Т., Hyman A., Desai A. The spindle: a dynamic assembly of microtubules and motors //Nature Cell Biol. 2001. V. 3. P. E28-E34.
  205. Yang C-Y., Spielman M., Coles J.P., et al. Tetraspore encodes a kinesin required for male meiotic cytokinesis in Arabidopsis II The Plant Journal. 2003. V. 34. P. 229−240.
  206. Yang M., Hu Y., Lodhi M., et al. The Arabidopsis SKP1-LIKE1 gene is essential for male meiosis and may control homologue separation // Proc. Natl. Acad. Sci. USA. 1999. V. 96. P. 11 416−11 421.
  207. Yasuda H., Kanda K., Koiwa H., Suenaga K., Kidou Sh., Ejiri SH. Localization of actin filaments on mitotic apparatusin tobacco BY-2 cells // Planta. 2005. V. 222. P. 118−129.
  208. Yasuhara H., Muraoka M., Shogaki H., et al. TMBP200, a microtubule bundling polypeptide isolated from telophase tobacco BY-2 cells is a MORI homologue // Plant Cell Physiol. 2002. V. 43. P. 595−603.
  209. Yasuhara H., Sonobe S., Shibaoka H. Effects of taxol on the development of the cell plate and of the phragmoplast in tobacco BY-2 cells // Plant Cell Physiol. 1993. V. 34. P. 21−29.
  210. Yu M., Yuan M., Ren H. Visualization of actin cytoskeletal dynamics during the cell cycle in tobacco (Nicotiana tabacum L. cv Bright Yellow) cells // Biol. Cell. 2006. V. 98. P. 295−306.
  211. Yuan M., Shaw P.J., Warn R.M., Lloyd C.W. Dynamic reorientation of cortical microtubules, from transverse to longitudinal, in living plant cells // Proc. Nat. Acad. Sci. USA. 1994. V. 91. P. 6050−6053.
  212. Zhou Shi-Qi. Viewing the difference between diploid and polyploid in the light of the upland cotton aneuploid // Hereditas. 2003. V. 138. P. 65−72.
  213. Zhu Zi-Yu, Chen Da-Yuan, Li Jin-Song, et al. Rotation of meiotic spindle is controlled by microfilaments in mouse oocytes // Biol. Reprod. 2003. V. 68. P. 943−946.
Заполнить форму текущей работой