Помощь в написании студенческих работ
Антистрессовый сервис

Ферментные системы катаболизма органофосфонатов у почвенных бактерий Achromobacter sp. и Ochrobactrum anthropi GPK 3

ДиссертацияПомощь в написанииУзнать стоимостьмоей работы

Глифосат (ГФ) является одним из наиболее распространенных синтетических фос-фонатов, являясь действующим компонентом популярных гербицидов (Roundup, Ground-Bio, Glycel, Ураган и др.). К 2010 г. объемы поступления ГФ в среду превысили 800 тыс. тонн в год и продолжают возрастать. Крупнейшие производители ГФ приводят доказательства его экологической безопасности, но по данным независимых… Читать ещё >

Ферментные системы катаболизма органофосфонатов у почвенных бактерий Achromobacter sp. и Ochrobactrum anthropi GPK 3 (реферат, курсовая, диплом, контрольная)

Содержание

  • СПИСОК СОКРАЩЕНИЙ
  • ГЛАВА 1. ОБЗОР ЛИТЕРАТУРЫ
    • 1. 1. Фосфонаты — соединения с прямой связью углерод-фосфор
      • 1. 1. 1. Биогенные фосфонаты
      • 1. 1. 2. Синтетические фосфонаты, их свойства и применение
    • 1. 2. Глифосат
      • 1. 2. 1. Опасность глифосата для окружающей среды и здоровья человека
      • 1. 2. 2. Воздействие глифосата на бактериальную микрофлору
      • 1. 2. 3. Экологические последствия широкого применения глифосата
      • 1. 2. 4. Культурные растения, устойчивые к действию глифосата
      • 1. 2. 5. Разработка технологий биодеструкции глифосата
    • 1. 3. Бактерии-деструкторы фосфонатов и их физиология
    • 1. 4. Ферментные системы метаболизма фосфонатов и их регуляция
      • 1. 4. 1. Фосфонопируватгидролаза и фосфоенолпируватфосфомутаза
      • 1. 4. 2. Фосфонатаза
      • 1. 4. 3. Фосфоноацетатгидролаза
      • 1. 4. 4. С-Р лиаза
      • 1. 4. 5. Утилизация ГФ по С-Р лиазному пути
      • 1. 4. 6. Ранние попытки выделения активной С-Р лиазы in vitro
      • 1. 4. 7. Гены С-Р лиазного оперона
      • 1. 4. 8. Роль фосфита в С-Р лиазной реакции
      • 1. 4. 9. Исследования отдельных компонентов С-Р лиазы
      • 1. 4. 10. Разнообразие ферментных систем, кодируемых генами оперонаphn
      • 1. 4. 11. Регуляция экспрессии генов phn
    • 1. 5. Глифосат-оксидоредуктаза
    • 1. 6. Прочие пути деструкции глифосата
    • 1. 7. Методы идентификации фосфонатов и продуктов их метаболизма
  • ГЛАВА 2. МЕТОДЫ ИССЛЕДОВАНИЯ
    • 2. 1. Использованные реактивы
    • 2. 2. Микроорганизмы и их культивирование
      • 2. 2. 1. Объекты исследования
      • 2. 2. 2. Условия культивирования
    • 2. 3. Получение бесклеточных экстрактов
      • 2. 3. 1. Фракционирование биомассы О. аЫгЪорг вРК
    • 2. 4. Аналитические методы
      • 2. 4. 1. Спектрофотометрический анализ убыли фосфонатов в среде культивирования
      • 2. 4. 2. ВЭЖХ-анализ ГФ и продуктов его деструкции
      • 2. 4. 3. ТСХ-анализ ГФ и его метаболитов
    • 2. 5. Методы определения активности ферментов
      • 2. 5. 1. Определение активности С-Р лиазы
      • 2. 5. 2. Определение активности С-Р лиазы II
      • 2. 5. 3. Определение активности щелочной фосфатазы и ее способности отщеплять ортофосфат от ГФ и МФК
      • 2. 5. 4. Определение активности глюкозо-6-фосфат дегидрогеназы
      • 2. 5. 5. Определение активности глифосат-оксидоредуктазы
      • 2. 5. 6. Обнаружение метаболизма АМФК ферментами О. апЙ1гор1 йРК
      • 2. 5. 7. Определение активности фосфонатазы
    • 2. 6. Очистка и характеристика глифосат-оксидоредуктазы
      • 2. 6. 1. Очистка фермента
      • 2. 6. 2. Электрофорез в полиакриламидном геле
      • 2. 6. 3. Определение молекулярной массы нативного препарата ГФ-оксидо-редуктазы
      • 2. 6. 4. Изоэлектрофокусировка
      • 2. 6. 5. Определение оптимума рН и стабильности фермента
      • 2. 6. 6. Идентификация ФАД как кофактора ГФ-оксидоредуктазы и спектральные исследования
      • 2. 6. 7. Определение стехиометрии потребления кислорода при расщеплении ГФ
      • 2. 6. 8. Определение кинетических свойств ГФ-оксидоредуктазы
      • 2. 6. 9. Определение субстратной специфичности
      • 2. 6. 10. Оценка влияния металлов и ингибиторов на активность ГФ-оксидоредуктазы
      • 2. 6. 11. Стабилизация ферментного препарата при хранении
    • 2. 7. Определение концентрации белка
    • 2. 8. Статистическая обработка результатов
  • ГЛАВА 3. РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ
    • 3. 1. Разработка новых методов анализа фосфонатов, продуктов их метаболизма и ферментов катаболизма фосфонатов
      • 3. 1. 1. ВЭЖХ-анализ ГФ и его метаболитов
      • 3. 1. 2. ТСХ ГФ и продуктов его метаболизма
      • 3. 1. 3. Спектрофотометрическое измерение активности ГФ-оксидоредуктазы
    • 3. 2. Выбор бактериальных штаммов — деструкторов МФК и ГФ
      • 3. 2. 1. Адаптация штамма Achromobacter sp. MPS 12 к утилизации ГФ
    • 3. 3. Идентификация путей катаболизма фосфонатов у изучаемых штаммов
      • 3. 3. 1. Метаболизм МФК штаммами Achromobacter sp. MPS 12, MPS 12A и Ochrobactrum anthropi GPK
      • 3. 3. 2. Метаболизм ГФ штаммами Achromobacter sp. MPS 12, MPS 12A и О. anthropi GPK
      • 3. 3. 3. Активность щелочной фосфатазы у штаммов-деструкторов фосфонатов
      • 3. 3. 4. Глифосат-оксидоредуктазная активность и метаболизм образующейся АМФК в бесклеточных экстрактах О. anthropi GPK
      • 3. 3. 5. Активность фосфонатазы в клетках О. anthropi GPK 3, выращенных на средах с различными источниками фосфора
    • 3. 6. Очистка и характеристика ГФ-оксидоредуктазы О. anthropi GPK
      • 3. 6. 1. Влияние способа дезинтеграции биомассы, источников углерода, фазы роста культуры и концентрации ГФ на активность глифосат-оксидоредуктазы
      • 3. 6. 2. Определение субклеточной локализации фермента и отработка условий дезинтеграции биомассы
      • 3. 6. 3. Очистка фермента
      • 3. 6. 4. Молекулярные свойства ГФ-оксидоредуктазы
      • 3. 6. 5. Определение кофактора глифосат-оксидоредуктазной реакции
      • 3. 6. 6. Каталитические свойства глифосат-оксидоредуктазы
  • ГЛАВА 4. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ
    • 4. 1. Новые методы идентификации ГФ и его метаболитов
    • 4. 2. Изученные штаммы-деструкторы фосфонатов
    • 4. 3. Метаболизм МФК исследованными штаммами
    • 4. 4. Адаптация Achromobacter sp. MPS 12 к утилизации ГФ
    • 4. 5. Путь метаболизма ГФ штаммом О. anthropi GPK
    • 4. 6. ГФ-оксидоредуктаза О. anthropi GPK
    • 4. 7. Очистка и характеристика ГФ-оксидоредуктазы
  • ВЫВОДЫ
  • БЛАГОДАРНОСТИ

Актуальность проблемы.

Одним из последствий технологического прогресса является поступление в окружающую среду различных типов ксенобиотиков. К их числу относятся фосфонаты — органические производные фосфоновой кислоты, содержащие прямую связь углерод-фосфор (С-Р). Такая связь чрезвычайно устойчива к химическим и физическим воздействиям, вследствие чего фосфонаты способны сохраняться в окружающей среде в течение длительного времени. Синтетические фосфонаты входят в состав многих пестицидов, применяются как антибиотики, пламегасители, смазки, хелатирующие добавки. Они могут поступать в среду как отходы химической индустрии и продукты детоксикации фосфорор-ганических отравляющих веществ (ФОВ).

Глифосат (ГФ) является одним из наиболее распространенных синтетических фос-фонатов, являясь действующим компонентом популярных гербицидов (Roundup, Ground-Bio, Glycel, Ураган и др.). К 2010 г. объемы поступления ГФ в среду превысили 800 тыс. тонн в год и продолжают возрастать. Крупнейшие производители ГФ приводят доказательства его экологической безопасности, но по данным независимых исследований, ГФ способен обратимо сорбироваться в почвах и сохраняться в них в течение многих лет, изменяя состав почвенной микрофлоры, проникая в культурные растения в сублетальных дозах и просачиваясь в водоносные пласты и поверхностные водоемы. ГФ также может оказывать тератогенное действие на животных, вызывая поражения печени, иммунной системы и нарушения эмбрионального развития.

Метилфосфоновая кислота (МФК) — один из основных продуктов переработки ФОВ и побочный продукт ряда промышленных процессов, может накапливаться в почвах, прилегающих к соответствующим предприятиям и местам захоронения обезвреженных ФОВ. Данное соединение крайне стабильно в окружающей среде и способно сохраняться в почве в течение десятков лет, при этом МФК обладает фитотоксическими свойствами.

В связи с этим актуален поиск способов ремедиации почв и водоемов, загрязненных фосфонатами. Из-за высокой стойкости подобных соединений единственный рациональный подход к решению данной проблемы предполагает применение микроорганизмов-деструкторов, обладающих ферментными системами, способными разрывать С-Р связь.

Разработка подобных технологий биодеструкции затрудняется недостатком сведений об организации путей метаболизма этих соединений. Считается, что С-Р связь большинства фосфонатов, в том числе МФК, неспецифически расщепляется ферментным комплексом «С-Р лиаза», необратимо инактивирующимся при дезинтеграции клеток и пото7 му доступным для изучения лишь гп vivo. Известно единственное сообщение о возможном существовании разновидности С-Р лиазы, специфически разлагающей ГФ (в настоящей работе обозначенной как С-Р лиаза II), однако эти исследования не получили развития. Существует предположение об альтернативном пути разложения ГФ, где начальную реакцию расщепления ГФ может катализировать фермент глифосат-оксидоредуктаза с образованием характерного метаболита — аминометилфосфоновой кислоты (АМФК), все еще содержащей С-Р связь. Однако ГФ-оксидоредуктаза не была очищена и охарактеризована. Путь дальнейшего метаболизма АМФК, предполагающий разрыв С-Р связи, также неясен.

Дефицит необходимых знаний о метаболизме фосфонатов во многом объясняется отсутствием доступных и достоверных методов идентификации активности соответствующих ферментов, а также количественного и качественного анализа их метаболитов. Разработка подобных методов и исследование с их помощью метаболизма синтетических фосфонатов бактериями-деструкторами является одной из приоритетных задач современной биохимии.

Цель и задачи исследования

.

Целью настоящей работы было изучение путей катаболизма глифосата и метилфос-фоновой кислоты у почвенных бактерий-деструкторов фосфонатов.

Для достижения цели работы необходимо было решить следующие задачи:

1. Разработка методов количественного и качественного анализа исследуемых фосфонатов и их метаболитов, а также методик измерения активности ферментов их деструкции.

2. Подбор объектов исследования — штаммов, обладающих наибольшей эффективностью деструкции в отношении изучаемых фосфонатов.

3. Изучение возможности адаптации штамма, выделенного под селективным давлением метилфосфоновой кислоты к утилизации глифосата.

4. Выявление путей метаболизма фосфонатов у отобранных штаммов-деструкторов.

5. Очистка нового фермента первичной атаки глифосата — глифосат-оксидоредуктазы.

6. Характеристика глифосат-оксидоредуктазы.

Научная новизна.

Разработаны новые методы идентификации и измерения активности ферментов метаболизма ГФ и МФК с помощью высокоэффективной жидкостной хроматографии (ВЭЖХ), тонкослойной хроматографии (ТСХ) и спектрофотометрического определения, отличающиеся высокой точностью и достоверностью.

Впервые показана возможность адаптации штамма-деструктора МФК {Achromobacter sp. MPS 12), первоначально не способного утилизировать ГФ, к использованию этого соединения в качестве единственного источника фосфора. Адаптированный штамм Achromobacter sp. MPS 12А по показателям деструкции ГФ был близок к О. anthropi GPK 3.

Доказано существование двух С-Р лиазных систем с различающейся субстратной специфичностью: С-Р лиаза I разлагала МФК, С-Р лиаза II — ГФ.

Впервые было выявлено различие в путях метаболизма ГФ у штаммов, выделенных под селективным давлением двух разных фосфонатов: деструктор МФК Achromobacter sp. MPS 12 после адаптации к потреблению ГФ разлагал этот фосфонат с помощью ГФ-специфичной С-Р лиазы II с образованием саркозина. Ферментом первичной атаки ГФ у О. anthropi GPK 3 была ГФ-оксидоредуктазапродуктами этой реакции были АМФК и глиоксилат.

У О. anthropi GPK 3 был идентифицирован ранее не описанный путь метаболизма продукта деструкции ГФ — АМФК, включавший стадии переаминирования и разрыва С-Р связи при вероятном участии фермента фосфоноацетальдегидгидролазы (фосфонатазы).

ГФ-оксидоредуктаза О. anthropi GPK 3 была впервые очищена до электрофоретиче-ски гомогенного состояния. Изучены ее основные молекулярные и каталитические характеристики, определен кофактор реакции, а также выявлены факторы, способствующие повышению выхода фермента.

Практическая значимость.

Разработанные высокоточные методы анализа фосфонатов и продуктов их метаболизма отличаются своей универсальностью и могут применяться для обнаружения фосфонатов в природных образцах почвы и грунтовых вод, сточных водах, а также в лабораторных исследованиях при анализе гомогенатов клеток и культуральной жидкости.

Изученные физиологические и биохимические особенности отобранных высокоактивных штаммов-деструктров ГФ и МФК позволяют давать точную оценку деструктивного потенциала таких микроорганизмов. Обнаруженный эффект адаптации изучаемых бактерий к утилизации фосфонатов разных типов открывает новые возможности селекции универсальных и высокоэффективных деструкторов, активных в отношении широкого диапазона этих соединений.

Данные о различиях в путях деструкции ГФ у штаммов, выделенных под селективным давлением разных фосфонатов, позволяют осуществлять более эффективный скрининг и отбор микроорганизмов, пригодных для последующего дальнейшего применения их в технологиях очистки природных сред от загрязнения фосфонатами. Сведения о факторах, способствующих индукции ГФ-оксидоредуктазы у О. аыЬгорх вРК 3, дают возможность подобрать условия, способствующие наибольшей экспрессии данного фермента.

Впервые полученные сведения об организации и распределении ферментных систем катаболизма фосфонатов у бактерий являются основой для разработки биотехнологий очистки и восстановления природных сред, загрязненных фосфонатами.

выводы.

1. Разработаны качественные и количественные методики ВЭЖХи ТСХ-анализа гли-фосата и его метаболитов, включая их ацил-, бензоил-, дансилпроизводные. Предложен новый спектрофотометрический экспресс-метод измерения активности гли-фосат-оксидоредуктазы, основанный на образовании фенилгидразона глиоксилата как продукта реакции.

2. Деструктор метилфосфоновой кислоты Achromobacter sp. MPS 12 был впервые адаптирован к потреблению глифосата как источника фосфорабиодеструктивные характеристики адаптированного штамма MPS 12А были близки к таковым у О. anthropi GPK 3.

3. Доказано существование у бактерий двух С-Р лиазных систем, специфичных для разных субстратов: С-Р лиаза I (расщепление метилфосфоновой кислоты) и С-Р лиаза II (расщепление глифосата).

4. Изучение путей катаболизма фосфонатов у бактерий показало, что метилфосфоно-вая кислота и глифосат у Achromobacter sp. MPS 12А расщеплялись, соответственно, С-Р лиазой I и С-Р лиазой II, а. у О. anthropi GPK 3 — С-Р лиазой I и глифосат-оксидоредуктазой.

5. Впервые идентифицирован путь катаболизма глифосата с участием глифосат-оксидоредуктазы, продукт которой — аминометилфосфоновая кислота, минерализовался по ранее не описанному метаболическому пути с участием аминометилфосфо-нат-специфичной аминотрансферазы и фосфонатазы.

6. Впервые очищен до гомогенного состояния и охарактеризован фермент первичной атаки глифосата — глифосат-оксидоредуктаза. В нативной форме фермент являлся гомодекамером (ММ 620 кДа) — ММ субъединицы 61,4 кДакофактор ФАДоптимум рН 8,05, температуры — 40 °Сpi 6,85- ингибиторы/?ХМБ, Ag+, Cu2+, Mn2+.

БЛАГОДАРНОСТИ.

Автор выражает искреннюю благодарность сотрудникам ИБФМ РАН Винокуровой Н. Г. и к.х.н. Зеленковой Н. Ф. за помощь в создании методов анализа органофосфона-тов и консультации по их практическому применению, а также за синтез фосфоноацеталь-дегида, д.б.н. Моргунову И. Г. за помощь в разработке метода измерения активности фос-фонатазы и ценные советы по методам очистки белков, к.б.н. Шушковой Т. В. за помощь и консультации по работе с микроорганизмами-деструкторами фосфонатов.

Также автор благодарит к.б.н. Лауринавичюса К. С. за помощь в определении концентрации метана, д.б.н. Степную О. А. за консультации по способам выделения периплазмы, д.б.н. Меденцева А. Г. за советы по идентификации кофактора ГФ-оксидо-редуктазной реакции, к.б.н. Лисова А. В. и к.б.н. Лисову 3. А. за помощь и консультации в очистке ГФ-оксидоредуктазы.

Автор глубоко признателен к.б.н. Ермаковой И. Т. и д.б.н. Леонтьевскому А. А. за неоценимую помощь в подготовке настоящей работы и плодотворное обсуждение ее этапов, а также всем сотрудникам Лаборатории микробной энзимологии ИБФМ РАН за дружескую атмосферу, благожелательное отношение и поддержку.

Особую благодарность автор хочет высказать Сердечной А. И., а также своим родителям и родственникам за внимание, поддержку и заботу.

Показать весь текст

Список литературы

  1. , О. А., Знаменская, JI. В. Pho регулоны бактерий. Микробиология. 2002. № 5. С. 581−595.
  2. , Р., Эллиот, Д., Эллиот, У., Джонс, К. Справочник биохимика. «Мир». 1991. Москва. С. 279.
  3. , И. Т., Шушкова, Т. В., Леонтьевский, А. А. Микробная деструкция органофос-фонатов почвенными бактериям. Микробиология. 2008. Т. 77. С. 689−695.
  4. С. Г. Глифосат и методы его анализа. Агрохимия. 1985. № 1. С. 121−126.
  5. С. Г., Горобец Р. П. Спектрофотометрическое определение нанограммовых количеств гербицида глифосата с использованием фермента алкогольдегидрогеназы. Ж. Ан. Хим. 1989. № 4. С. 741−744.
  6. , Г. М., Бэрри, Д. Ф. Молекула выделенной двунитевой ДНК, молекула рекомби-нантной двунитевой ДНК и способ получения генетически трансформированных растений. 2001. Патент Российской Федерации 2 168 544.
  7. , С. В., Несмеянова, М. А. Фосфонаты и их деградация микроорганизмами. Биохимия. 2002. Т. 67. С. 220−233.
  8. , С. В., Трутко, С. М., Лауринавичюс, К. С. Обнаружение С-Р лиазной активности в бесклеточном экстракте бактерий Escherichia coli. Прикладная биохимия и биотехнология. 2007. № 4. С. 437−442.
  9. , И. С., Янов, С. Н., Дармов, И. В., Ковтун, А. Л. Выделение из окружающей среды микроорганизмов, способных разлагать фосфонаты. Хим. Биол. Безопасность. 2006. Т. 30. С. 3−11.
  10. , Е. М., Чмиль, В. Д. Глифосат: поведение в окружающей среде и уровни остатков. Современные проблемы токсикологии. 2010. № 1. С. 87−95.
  11. С. В., Лауринавичюс, К. С., Несмеянова, М. А. Разложение метилфосфоновой кислоты и его физиологическая регуляция у Escherichia coli. Микробиология. 1996. № 4. С. 481−487.
  12. , Т. Я., Кабачник, М. И. Ацилирование аминоалкилфосфиновых и аминоалкил-тиофосфоновых кислот. Известия Академии наук СССР. Отделение химических наук. 1955. № 6. С. 1043−1047.
  13. , С. Ю., Головка, Т. К. Влияние метилфосфоновой кислоты на растения пелюшки. Агрохимия. 2005. № 4. С. 37−41.
  14. Jl. Д., Ларина Г. Е., Спиридонов Ю. Я., Раскин М. С., Абубикеров В. А. Фито-санитарный мониторинг парового поля и адаптация сорняков к раундапу и либерти. Агрохимия. 2008. № 4. С. 59−72.
  15. Е. И., Радилов А. С., Кузнецова Т. А., Волынец Н. Ф. Определение метилфос-фоновой кислоты и ее эфиров как химических маркеров фосфорорганических отравляющих веществ. Журнал прикладной химии. 2001. № 10. С. 1671−1676.
  16. , Д. И., Римаренко, Л. В., Макеев А. М., Назарова Т. А. Анализ остатков глифо-сата в растениях. Агрохимия. 1987. № 4. С. 117−123.
  17. , Т. В. Биодеструкция глифосата почвенными бактериями. Диссертация на соискание ученой степени кандидата биологических наук. 2010. Пущино
  18. Adams, M. A., Luo, Y., Hove-Jensen, В., He, S.-M., van Staalduinen, L. M., Zechel, D. L., Jua, Z. Crystal structure of PhnH: an essential component of carbon-phosphorus lyase in Escherichia coli. J. Bacteriol. 2008. V. 190. P. 1072−1083.
  19. Agricultural chemical usage 2007 field crops summary. United States department of agriculture. 2008. www.nass.usda.gov
  20. Alferness, P. L., Iwata, Y. Determination of glyphosate and (aminomethyl)phosphonic acid in soil, plant and animal matrices, and water by capillary gas chromatography with mass-selective detection. J. Agric. Food. Chem. 1994. V. 42. P. 2751−2759.
  21. Archer, T. E., Stokes, J. D. Residue analysis of glyphosate in blackberries by high-performance liquid chromatography and postcolumn reaction detection. J. Agric. Food. Chem. 1984. V. 32. P. 586−588.
  22. Avila L. Z., Loo. S. H., Frost, J. W. Chemical and mutagenic analysis of aminomethylphosphonate biodegradation. J. Am. Chem. Soc. 1987. V. 109. P. 6758−6764.
  23. Avila, L. Z. Draths, К. M., Frost, J. W. Metabolites associated with organophosphonate C-P bond cleavage: chemical synthesis and microbial degradation of 32P.-ethylphosphonic acid. Bioorg. Med. Chem. Lett. V. 1. P. 51−54.
  24. Avila, L. Z., Bishop, P. A., Frost, J. W. Hydrocarbon and phosphate triester formation during hemolytic hydrolysis of organophosphonium ions: an alternate model for organophosphonate biodegradation. J. Am. Chem. Soc. 1991. V. 113. P. 2242−2246.
  25. Baldwin, M. W., Braven, J. 2-aminoethylphosphonic acid in Monochrysis. J. Mar. Biol. Ass. U. K. 1968. V. 48. P. 603−608.
  26. Balthazor, T. M., Hallas L. E. Glyphosate-degrading microorganisms from industrial activated sludge. Appl. Environ. Microbiol. 1986. V. 51. P. 432134.
  27. Barrett, K. A., McBride, M. B. Oxidative degradation of glyphosate and aminomethylphosphonate by manganese oxide. Environ. Sci. Technol. 2005. V. 39. P. 92 239 228.
  28. Barrett, K. A., McBride, M. B. Phosphate and glyphosate mobility in soil columns amended with roundup. Soil Sci. 2007. V. 172. P. 17−26.
  29. Barry, G. F., Kishore, G. M. Glyphosate tolerant plants. 1998. United States patent 5 776 760.
  30. Bazot, S., Lebeau, T. Simultaneous mineralization of glyphosate and diuron by a consortium of three bacteria as free-and/or immobilized-cells formulations. Appl. Microbiol. Biotechnol. 2008. V. 77. P.1351−1358.
  31. Benachour, N., Sipahutar, H., Moslemi, S., Gasnier, C., TRavert, C., Seralini, G. E. Time- and dose-dependent effects of Roundup on human embryonic and placental cells. Arch. Environ. Contain. Toxicol. 2007. V. 53. P. 126−133.
  32. Branum, M. E., Reardon, J. T., Sancar, A. DNA repair exicision nuclease attacks undamaged DNA. A potential source of spontaneous mutations. J. Biol. Chem. 2001. V. 276. P. 2 542 125 426.
  33. Britton, H. T. K., Robinson, R. A. Universal buffer solutions and the dissociation constant of veronal. J. Chem. Soc. 1931. P. 1456−1462.
  34. Bujacz, B., Wieczorek, P., Krzysko-Lupicka, T., Golab, Z., Lejczak, B., Kavfarski, P. Organophosphonate utilization by the wild-type strain of Penicillum notanum. Appl. Environ. Microbiol. 1995. V. 61. P. 2905−2910.
  35. Burns, A. J., Tomkins, D. F. The determination of N-(phosphonomethyl)glycine in formulation and technical samples by high pressure liquid chromatography. J. Chromatogr. Sci. 1979. V. 17. P. 333−335.
  36. Caldinelli, L., Pedotti, M., Motteran, L., Molla, G., Pollegioni, L. FAD binding in glycine oxidase from Bacillus subtilis. Biochimie. 2009. V. 91. P. 1499−1508.
  37. Carson, D. B., Heitkamp, M. A., Hallas, L. E. Biodegradation of N-phosphonomethyliminodiacetic acid by microorganisms from industrial activated sludge. Can. J. Microbiol. 1997. V. 43. P. 97−101.
  38. Castle, L. A., Siehl, D. L., Gorton, R., Patten, P. A., Chen, Y. H., Bertain, S., Cho, H.-J., Duck, N., Wong, J., Liu, D., Lassner, M. W. Discovery and directed evolution of a glyphosate tolerance gene. Science. 2004. V. 304. P. 1151−1154.
  39. Cessna, A. J., Darwenet, A. L., Townley-Smith. L., Harker, K. N., Kirkland, K. J. Residues of glyphosate and its metabolite AMPA in field pea, barley and flax seed following reharvest application. Can. J. Plant. Sci. 2002. V. 82. P. 485−489.
  40. Chen, C-M., Ye, Q-Z., Zhu, Z., Wanner, B. L., Walsh, C. T. Molecular biology of carbon-phosphorus bond cleavage. J. Biol. Chem. 1990. V. 265. P. 4461−4471.
  41. Chen, K. Research report on Chinese glyphosate industry. China Research and Intelligence. 2009. www.shscri.com
  42. Chen, R.-F., Wang, H.-H., Wang, C.-Y. Translocation and metabolism of injected glyphosate in lead tree (Leucaena leucocephala). Weed Sci. 2009. V. 57. P. 229−234.
  43. Chen, W., Mulchandani, A. The use of live biocatalysts for pesticide detoxification. Trends Biotechnol. 1998. V. 16. P. 71−76.
  44. Clark, L. L., Ingall, E. D., Benner, R. Marine organic phosphorus cycling: novel insights from nuclear magnetic resonance. Am. J. Sci. 1999. V. 299. P. 724−737.
  45. Cook A. M., Daughton, C. G., Alexander, M. Phosphonate utilization by bacteria. J. Bacteriol. 1978a. V. 133. P. 85−90.
  46. Cook, A. M., Daughton, C. G., Alexander, M. Phosphorus-containing pesticide breakdown products: quantitative utilization as phosphorus sources by bacteria. Appl. Env. Microbiol. 1978b. V. 36. P. 668−672.
  47. Cook, R. J., Misono, K. S., Wagner, C. Identification of the covalently bound flavin of dimethylglycine dehydrogenase and sarcosine dehydrogenase from rat liver mitochondria. J. Biol. Chem. 1980. V. 259. P. 12 475−12 480.
  48. Cordeiro, M. L., Pompiliano, D. L., Frost J. W. Degradation and detoxification of organophosphonates: cleavage of the carbon to phosphorus bond. J. Am. Chem. Soc. 1986. V. 108. P.332−334.
  49. Costas, A. M. G., White, A. K., Metcalf, W. W. Purification and characterization of a novel phosphorus-oxidizing enzyme from Pseudomonas stutzeri WM88. J. Biol. Chem. 2001. V. 276. P. 17 429−17 436.
  50. Dalrymple, B. P., Peters J. M., Vuocolo T. Characterisation of genes encoding two novel members of the aldo-keto reductase superfamily. Biochem. Int. 1992. V. 28. P. 651−657.
  51. Daughton, C. G., Cook A. M., Alexander M. Biodegradation of phosphonate toxicants yields methane or ethane on cleavage of C-P bond. FEMS Lett. 1979a. V. 5. P. 91−93.
  52. Daughton, C. G., Cook, A. M., Alexander, M. Bacterial conversion of alkylphosphonates to natural products via carbon-phosphorus bond cleavage. J. Agric. Food Chem. 1979b. V. 27. P. 1375−1382.
  53. Daughton, C. G., Cook, A. M., Alexander, M. Phosphate and soil binding: factors limiting bacterial degradation of ionic phosphorus-containing pesticide metabolites. Appl. Env. Microbiol. 1979c. V. 37. P. 605−609.
  54. Davis, B. J. Disc Electrophoresis-II. Method and application to human serum proteins. Ann New York Acad. Sci. 1964. V. 121. P. 404−427.
  55. Devai, I., Felfoldy, L., Wittner, I., Plosz, S. Detection of phosphine: new aspects of the phosphorus cycle in the hydrosphere. Nature. 1988. V. 333. P. 343−345.
  56. Dick, R. E., Quinn, J. P. Control of glyphosate uptake and metabolism in Pseudomonas sp. 4ASW. FEMS Lett. 1995a. V. 134. P. 177−182.
  57. Dick, R. E., Quinn, J. P. Glyphosate-degrading isolates from environmental samples: occurrence and pathways of degradation. Appl. Microbiol. Biotechnol. 1995b. V. 43. P. 545−550.
  58. Dousset, S., Chauvin, C., Durlet, P., Thevenot, M. Transfer of hexazinone and glyphosate through undisturbed soil columns in soils under Christmas tree cultivation. Chemosphere. 2004. V. 57. P. 265−272.
  59. Duke, S. O. Glyphosate degradation in glyphosate-resistant and -susceptible crops and weeds. J. Agric. Food. Chem. 2011. V. 59. P. 5835−5841.
  60. Dumora, C., Lacoste, A.-M., Cassaigne, A. Phosphonoacetaldehyde hydrolase from Pseudomonas aeruginosa: purification properties compared with Bacillus cereus enzyme. Biochim. Biophys. Acta. 1989. V. 997. P. 193−198.
  61. Dumora, C., Lacoste, A.-M., Cassaigne, A., Mazat J.-P. Allosteric regulation of phosphonoacetaldehyde hydrolase by n-butylphosphonic acid. Biochem. J. 1991. V. 280. P. 557 559.
  62. Dumora, C., Lacoste, A.-M., Cassaigne, A., Mazat, J.-P. Allosteric regulation of phosphonoacetaldehyde hydrolase by n-butylphosphonic acid. Biochem. J. 1991. V. 280. P. 557 559.
  63. Dumora, C., Lacoste, A.-M., Cassaigne. A. Purification and properties of 2-aminoethylphosphonate: pyruvate aminotransferase from Pseudomonas aeruginosa. Eur. J. Biochem. 1983. V. 133. P. 119−125.
  64. Dumora, C., Marche, M., Doignon, F., Aigle, M., Cassaigne, A., Crouzet, M. First characterization of the phosphonoacetaldehyde hydrolase gene of Pseudomonas aeruginosa. Gene. 1997. V. 197. P.405−412.
  65. Dunhill, R. H. The manufacture and properties of phosphonic (phosphorus) acid. Australian Plant Pathology. 2003. V. 19. P. 138−139.
  66. Ehrmann, M. The periplasm. ACM Press. 2007. Washington, DC. P. 378.
  67. Eisenman, H. C., Frases, S., Nicola, A. M., Rodrigues, M. L., Casadevali, A. Vesicle-associated melanization in Cryptococcus neoformans. Microbiology. 2009. V. 155. P. 3860−3867.
  68. Eisenman, H. C., Mues, M., Weber, S. E., Frases, S., Chaskes, S. Gerfen, G., Casadevali, A. Cryptococcus neoformans laccase catalyses melanin synthesis from D- and L-DOPA. Microbiology. 2007. V. 153. P. 3954−3962.
  69. Ermakova, I. T., Kiseleva, N. I., Shushkova, T., Zharikov, M., Zharikov, G. A., Leontievsky, A. A. Bioremediation of glyphosate-contaminated soils. Appl. Microbiol. Biotechnol. 2010. V. 88. P. 585−594.
  70. Errey, J. C., Blanchard, J. S. Functional annotation and kinetic characterization of PhnO from Salmonella enterica. Biochemistry. 2006. V. 45. P. 3033−3039.
  71. Eschenburg, S., Kabsch, W., Healy, M. L., Schonbrunn, E. A new view of the mechanisms of
  72. UDP-iV-acetylglucosamine enolpyruvyl transferase (MurA) and 5-enolpyruvylshimikate-3135phosphate synthase (AroA) derived from X-ray structures of their tetrahedral reaction intermediate states. J. Biol. Chem. 2003. V. 278. P. 49 215−49 222.
  73. Fairbanks, J., Steek, T. K., Wallach. D. F. Electrophoretic analysis of the major polypeptides of the human erythrocyte membrane. Biochemistry. 1971. V. 10. P. 2606−2617.
  74. Fischer, R. S., Berry, A., Gaines, C. G., Jensen, R. A. Comparative action of glyphosate as a trigger of energy drain in eubacteria. J. Bacterid. 1986. V. 168. P. 1147−1154.
  75. Fiske, C. H., Subbarow, Y. The colourimetric determination of phosphorus. J. Biol. Chem. 1925. V.66. P.375−400.
  76. Fitzgibbon, J. E., Braymer H. D. Cloning of a gene from Pseudomonas sp. PG2982 conferring increased glyphosate resistance. Appl. Env. Microbiol. 1990. V. 56. P. 3382−3388.
  77. Fitzgibbon, J., Braymer, H. D. Phosphate starvation induces uptake of glyphosate by Peudomonas sp. strain PG2982. Appl. Environ. Microbiol. 1988. V. 54. P. 1886−1888.
  78. Fleisch, H. The role of bisphosphonates in breast cancer: development of bisphoshonates. Breast Cancer Res. 2002. V. 4. P. 33−34.
  79. Freedman, L. D., Doak, G. The preparation and properties of phosphonic acids. Chem. Rev. 1957. V. 57. P. 479−523.
  80. Freeman, S., Pollack, S. J., Knowles, J. R. Synthesis of the unusual metabolite carboxyphosphonoenolpyruvate. Cloning and expression of carboxyphosphonoenolpyruvate mutase J. Am! Chem. Soc. 1992. V. 114, p. 377−378.
  81. Frost, J. W., Loo, S., Cordeiro, M. L., Li, D. Radical based dephosphorylation and organophosphonate degradation. J. Am. Chem. Soc. 1987. V. 109. P. 2166−2171.
  82. Gard, J. K., Feng, P. C. C., Hutton, W. C. Nuclear magnetic resonance timecourse studies of glyphosate metabolism by microbial isolates. Xenobiotica. 1997. V. 27. P. 633−644.
  83. Glass, R. L. Liquid chromatographic determination of glyphosate in fortified soil and water samples. J. Agric. Food. Chem. 1983. V. 31. P. 280−282.
  84. Gomi, K., Horiguchi, T. Purification and characterization of a new enzyme, JV-alkylglycine oxidase from Cladosporium sp. G-10. Biochim. Biophys. Acta. 1999. V. 1429. P. 439−445.
  85. Goodman, D. B. P., Davis, W. L., Jones, R. G. Glyoxylate cycle in toad urinary bladder: possible stimulation by aldosterone. Proc. Natl. Acad. Sci. 1980. V. 77. P. 1521−1525.
  86. Gougler, J. A., Geiger D. R. Uptake and distribution of N-phosphonomethylglycine in sugar beet plants. Plant Physiol. 1981. V. 68. P. 668−672.
  87. Graaf, de R. M., Visscher, J., Schwartz, A. W. A plausibly prebiotic synthesis of phosphonic acids. Nature. 1995. V. 378. P. 474−477.
  88. Hallas, L. E., Adams, W. J., Heitkamp, M. A. Glyphosate degradation by immobilized bacteria: field studies with industrial wastewater effluent. Appl. Environ. Microbiol. 1992. V. 58. P. 12 151 219.
  89. Hallas, L. E., Hahn, E. M., Korndorfer, C. Characterization of microbial traits associated with glyphosate biodegradation in industrial activated sludge. J. Ind. Microbiol. 1988. V. 3. P. 377 385.
  90. Handler, P., Bernheim., M. L. C., Klein, J. R. The oxidative demethylation of sarcosine to glycine. J. Biol. Chem. 1941. V. 138. P. 211−218.
  91. Harkness, D. R. Bacterial growth on aminoalkylphosphonic acids. J. Bacteriol. 1966. V. 92. P. 623−627.
  92. Hassan-Abdallah, A., Bruckner, R. C., Zhao, G., Jorns, M. S. Biosynthesis of covalently bound flavin: isolation and in vitro flavinylation of the monomeric sarcosine oxidase apoprotein. Biochemistry. 2005. V. 44. P. 6452−6462.
  93. Hefti, M. H., Vervoort, J., van Berkel, W. J. H. Deflavination and reconstitution of flavoproteins. Tackling fold and function. Eur. J. Biochem. 2003. V. 270. P. 4227−4242.
  94. Herrman, K. M., Weaver, L. M. The shikimate pathway. Annu. Rev. Plant Mol. Biol. 1999. V. 50. P. 473−503.
  95. Hess, H. H., Derr, J. E. Assay of inorganic and organic phosphorus in the 0.1−5 nanomole range. Anal. Biochem. 1975. V. 63. P. 607−613.
  96. Hidaka, T. Seto, H. Comparison of two C-P bond-forming enzymes involved in the biosynthesis of bialaphos. Agric. Biol. Chem. 1990. V. 54. P. 2467−2468.
  97. Hidaka, T., Imai, S. Seto, H. Biosynthesis mechanism of carbon-phosphorus bond formation. Isolation of carboxyphosphonoenolpyruvate and its conversion to phosphonopyruvate. J. Am. Chem. Soc. 1989. V. Ill p. 8012−8013.
  98. Hidaka, T., Imai, S., Hara, O., Anzai, H., Murakami, T., Nagaoka, K., Seto, H. Carboxyphosphoenolpyruvate phosphonomutase, a novel enzyme catalyzing C-P bond formation. J. Bacteriol. 1990. V. 172. P. 3066−3072.
  99. Hildebrand, R. L., Henderson, T. G. Phosphonic acids in nature. The role of phosphonates in living systems. C. R. C. Press. 1983. P. 5−30.
  100. Holt, J. S., Powles, S. B., Holtum, J. A. M. Mechanisms and agronomic aspects of herbicide resistance. Annu. Rev. Plant Mol. Biol. 1993. V. 44. P. 203−229.
  101. Hon, T., Horiguchi, M., Hayashi, A. Biochemistry of natural C-P compounds. Maruzen, Ltd. 1984. Tokyo. P. 116−122.
  102. Horigane, A., Horiguchi, M., Matsumoto, T. Metabolism of 2-amino-3-phosphono 3−14C. propionic acid in cell-free preparations of rat liver. Biochim. Biophys. Acta. 1979. V. 584. P.254−260.
  103. Horiguchi, J. S., Kandatsu, M. Ciliatine: a new aminophosphonic acid contained in rumen ciliate Protozoa Bull. Agric. Chem. Soc. Japan. 1960. V. 24. P. 565−570.
  104. Horiguchi, J. S., Kandatsu, M. Isolation of 2-aminoethane phosphonic acid from rumen protozoa. Nature. 1959. V. 187. P. 901−902.
  105. Hove-Jensen, B., Rosenkrantz, T. J., Zechel, D. L., Willemoes, M. Accumulation of intermediates of the carbon-phosphorus lyase pathway for phosphonate degradation in phn mutants of Escherichia coli. J. Bacteriol. 2010. V. 192. P. 370−374.
  106. Hu, J-Y., Chen, C-L., Li, J-Z. A simple method for the determination of glyphosate residues in soil by capillary gas chromatography with nitrogen-phosphorus detection.)K. Ah. Xhm. 2008. № 4. C. 406−410.
  107. Huang, J., Su, Z., Xu., Y. The evolution of microbial phosphonate degradative pathways. J. Mol. Evol. 2005. V. 61. P. 682−690.
  108. Imazu, K., Tanaka, S., Kuroda, A., Anbe, Y., Kato, J., Ohtake, H. Enhanced utilization of phosphonate and phosphite by Klebsiella aerogenes. Appl. Environ. Microbiol. 1998. V. 64. P. 3754−3758.
  109. Iqbal, S., Parker, G., Davidson, H., Moslehi-Rahmani, E., Robson, R. L. Reversible phase variation in the phnE gene, which is reauired for phosphonate metabolism in Escherichia coli K-12. J. Bacteriol. 2004. V. 186. P. 6118−6123.
  110. Jacob, G. S., Garbow, J. R., Hallas, L. E., Kimack, N. M., Kishore, G. M. Metabolism of glyphosate in Pseudomonas sp. strain LBr. Appl. Environ. Microbiol. 1988. V. 54. P. 2953−2958.
  111. Jacob, G. S., Schaefer, J., Stejskal, E. O., McKay, R. A. Solid-state NMR determination of glyphosate metabolism in Pseudomonas sp. J. Biol. Chem. 1985. V. 260. P. 5899−5905.
  112. James, C. Global review of commercialized transgenic crops: 2002 feature Bt maize. International service for the acquisition of agri-biotech applications, ISAAA Briefs, no. 29 (ISAAA, Ithaca, NY, 2003).
  113. Jiang, W., Metcalf, W. W., Lee, K-S., Wanner, B. L. Molecular cloning, mapping and regulation of Pho regulon genes for phosphonate breakdown by phosphonatase pathway of Salmonella typhimurium LT2. J. Bacteriol. 1995. V. 177. P. 6411−6421.
  114. Jin, J., Mazon, H., van dan Heuvel, R. H. H., Heck, A. J., Janssen, D. B., Fraaije, M. W. Covalent flavinylation of vanillyl-alcohol oxidase is an autocatalytic process. FEBS Journal. 2008. V. 275. P. 5191−5200.
  115. Job, V., Marcone, G. L., Pilone, M. S., Pollegioni, L. Glyxine oxidase from Bacillus subtilis. J. Biol. Chem. 2002. V. 277. P. 6985−6993.
  116. Kafarski, P., Lejczak, B., Forlani, G. Biodegradation of pesticides containing carbon-to-phosphorus bond. ACS Sym. Ser. 2001. V. 777. P. 145−163.
  117. Kamat, S. S., Williams, H. J., Raushel, F. M. Intermediates in the transformation of phosphonates to phosphate by bacteria. Nature. 2011. V. 480. P. 570−573.
  118. Kandatsu, M., Horuguchi, M. The occurrence of ciliatine (2-aminoethylphosphonic acid) in the goat liver. Agric. Biol. Chem. 1965. V. 29. P. 781−782.
  119. Kandatsu, M., Horuguchi, M., Tamari, M. The incorporation of ciliatine (2-aminomethylphosphonic acid) into lipids of the rat liver. Agric. Biol. Chem. 1965. V. 29. P. 779 780.
  120. Kataoka H., Horii K., Makita M. Determination of the herbicide glyphosate and its metabolite (aminomethyl)phosphonic acid by gas chromatography with flame photometric detection. Agric. Biol. Chem. 1991. V. 55. P. 195−199.
  121. Kawai S., Uno B., Tomita M. J. Chromatogr. Determination of glyphosate and its major metabolite aminomethylphosphonic acid by high-performance liquid chromatography after derivatization with p-toluenesulphonyl chloride. 1991. V. 540. P. 411−419.
  122. Keese, P. Risks from GMO due to horizontal gene transfer. Environ. Biosaf. Res. 2008. V. 7. P. 123−149.
  123. Kennedy, K. E., Thompson, G. A. Jr. Phosphonolipids: localization in surface membranes of Tetrahymena. Science. 1970. V. 168. P. 989−991.
  124. Kertesz, M., Elgorriaga, A., Amrhein, N. Eveidence for two distinct phosphonate-degrading enzymes (C-P lyases) in Arthrobacter sp. GLP-1. Biodegradation. 1991. V. 2. P.53−59.
  125. Kim, A. D., Baker, A. S., Dunaway-Mariano, D., Metcalf, W. W., Wanner, B. L., Martin, B. M. The 2-aminoethylphosphonate-specific transaminase of the 2-aminoethylphosphonate degradation pathway. J. Bacteriol. 2002. V. 184. P. 4134−4140.
  126. Kim, A., Kim, J., Martin, B. M., Dunaway-Mariano, D. Isolation and characterization of the carbon-phosphorus bond-forming enzyme phosphoenolpyruvate mutase from mollusk Mytilus edulis. J. Biol. Chem. 1998. V. 273. P. 4443−4448.
  127. Kishore, G. M., Barry, G. F. Glyphosate tolerant plants. International patent W092/377. 1992.
  128. Kishore, G. M., Jacob, G. S. Degradation of glyphosate by Pseudomonas sp. PG2982 via a sarcosine intermediate. J. Biol. Chem. 1987. V. 262. P. 12 164−12 168.
  129. Kishore, G. M., Shah, D. M. Amino acid biosynthesis inhibitors as herbicides. Ann. Rev. Biochem. 1988. V. 57. P. 627−63.
  130. Kitteredge, J. S., Roberts E. A carbon-phosphorus bond in nature. Science. 1969. V. 164. P. 37−42.
  131. Kitteredge, J. S., Roberts, E., Simonsen, D. G. Occurrence of free 2AEP in the sea anemone, Anthopleura elegantissima. Biochemistry. 1962. V. 1. P. 624−625.
  132. Kolowith, L. C., Ingall, E. D., Benner, R. Composition and cycling of marine organic phosphorus. Limnol. Oceanogr. 2001. V. 46. P. 309−320.
  133. Krzysko-Lupicka, T., Strof, W., Kubs, K., Skorupa, M., Wieczorek, P., Lejczak, B., Kafarski, P. The ability of soil-borne fungi to degrade organophosphonate carbon-to-phosphorus bond. Appl. Microbiol. Biotechnol. 1997. V. 48. P. 549−552.
  134. Kudzin, Z. H., Gralak, D. K., Drabowicz, J. Luczak, J. Novel approach for the simultaneous analysis of glyphosate and its metabolites. J. Chromatogr. A. 2002. V. 947. P. 129−141.
  135. Kulakova, A. N., Wisdom, B. G., Kulakov, L. A., Quinn, J. P. The purification and characterization of phosphonopyruvate hydrolase, a novel carbon-phosphorus bond cleavage enzyme from Variovorax sp. Pal2. J. Biol. Chem. 2003. V. 278. P. 23 426−23 431.
  136. Laemmli, U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970. V. 227. P. 680−685.
  137. LaNauze, J., Coggins, J. R., Dixon, H. B. F. Aldolase-like imine formation in the mechanism of action of phosphonoacetaldehyde hydrolase. Biochem. J. 1977. V. 165. P. 409−411.
  138. LaNauze, J., Rosenberg, H., Shaw, D. C. The enzymic cleavage of the carbon-phosphorus bond: purification and properties of phosphonatase. Biochim. Biophys. Acta. 1970. V. 212. P. 332−350.
  139. Landau, M., Ivey, C., Riehm, J. P. D-Glucose-6-phosphate dehydrogenase from the cysts of the brine shrimp, Artemia salina leach. The effects of certain ions and coenzymes. Compar. Biochem. Physiol. B. 1980. V. 66. P. 147−150.
  140. Lee, K-S., Metcalf, W. W., Wanner, B. L. Evidence for two phosphonate degradative pathways in Enterobacter aerogenes. J. Bacteriol. 1992. V. 174. P. 2501−2510.
  141. Lerbs, W., Stock, M., Parthier, B. Physiological aspects of glyphosate degradation in Alcaligenes spec, strain GL. Arch. Microbiol. 1990. V. 153. P. 146−150.
  142. Levesque, C. A., Rahe, J. E. Herbicide interactions with fungal root pathogens, with special reference to glyphosate. Annu. Rev. Phytopathol. 1992. V. 30. P. 579−602.
  143. Lioi, M. B., Scarfi, M. R., Santoro, A., Barbieri, R., Zeni, O., Berardino, D. D., Ursini, M. V. Genotoxicity and oxidative stress induced by pesticide exposure in bovine lymphocyte cultures in vitro. Mutation Res. 1998. V. 403. P. 13−20.
  144. Liu, C.-M., McLean, P. A., Sookdeo, C. C., Cannon, F. C. Degradation of the herbicide glyphosate by members of the family Rhizobiaceae. Appl. Env. Microbiol. 1991. V. 57. P. 1799−1804.
  145. Loo, S. H., Peters, N. K., Frost, J. W. Genetic characterization of an Escherichia coli mutant deficient in organophosphonate biodegradation. Biochem. Biophys. Research Communications. 1987. V. 148. P. 148−152.
  146. Lovdahla, M. J., Pietrzyk, D. J. Liquid chromatography and postcolumn indirect detection of glyphosate. J. Chrom. A. 1992. V. 602. P. 197−204.
  147. Low, F. L., Shaw, I. C., Gerrard J.A. The effect of Saccharomyces cerevisiae on the stability of the herbicide glyphosate during bread leavening. Letters in Applied Microbiology. 2005. V. 40. P. 133−137.
  148. Lund-H0ie, K., Friestad, H. O. Photodegradation of the herbicide glyphosate in water. Bull. Environ. Contam. Toxicol. 1986. V. 36. P. 723−729.
  149. Maile J. R., Fischesser G. J, Anderson, M. M. TLC separation of organic phosphoric acid derivatives. J. Chromatogr. 1977. V. 132. P. 366−368.
  150. Makino, K., Kim, S-K., Shinagawa, H., Amemura, M., Nakata, A. Molecular analysis of the cryptic and functional phn operons for phosphonate use in Escherichia coli K-12. J. Bacteriol. 1991. V. 173. P. 2665−2672.
  151. Malik, J. Barry, G., Kishore, G. The herbicide glyphosate. Biofactors. 1989. V. 2. P.17−25.
  152. Mann, R. M., Bidwell, J. R. The toxicity of glyphosate and several glyphosate formulations to four species of southwestern Australian frogs. Arch. Environ. Contam. Toxicol. 1999. V. 36. P.193−199.
  153. Maria, N. de, de Felipe, M. R., Fernandez-Pascual, M. Alterations induced by glyphosate on lupin photosynthetic apparatus and nodule ultrastructure and some oxygen diffusion related proteins. Plant Physiol. Biochem. 2005. V. 43. P. 985−996.
  154. Matys S. V., Laurinavichus, K. S., Krupyanko, V. I., Nesmeyanova M. A. Optimization of degradation of methylphosphonate analogue of toxic pollutants with direct C-P bond by Escherichia coli. Proc. Biochem. 2001. V. 36. P. 821−827.
  155. Matys, S. V., Kuzmina, N. M., Laurinavichius, K. S., Nesmeyanova, M. A. Effect of environmental factors on degradation of the C-P bond of methylphosphonate by Escherichia coli cells. Proc. Biochem. 2004. V. 39. P. 1063−1071.
  156. McAuliffe, K. S., Hallas, L. E., Kulpa, C. F. Glyphosate degradation by Agrobacterium radiobacter isolated from activated sludge. J. Ind. Microbiol. 1990. V. 6. P. 219−221.
  157. McGrath, J. W., Wisdom, G. B., McMullan, G., Larkon, M. J., Quinn, J. P. The purification and properties of phosphonoacetate hydrolase, a novel carbon-phosphorus bond-cleavage enzyme. Eur. J. Biochem. 1995. V. 234. P. 225−230.
  158. McMullan, G., Harrington, F., Quinn, J. P. Metabolism of phosphonoacetate as the sole carbon and phosphorus source by and environmental bacterial isolate. Appl. Env. Microbiol. 1992. V. 58. P. 1364−1366.
  159. McMullan, G., Quinn, J. P. Detection of a novel carbon-phosphorus bond cleavage activity in cell-free extracts of and environmental Pseudomonas fluorescens isolate. Biochem. Biophys. Res. Commun. 1992. V. 184. P. 1022−1027.
  160. McMullan, G., Quinn, J. P. In vitro characterization of a phosphate starvation-independent carbon-phosphorus bond cleavage activity in Pseudomonas fluorescens 23 °F. J. Bacteriol. 1994. V. 176. P. 320−324.
  161. McMullan, G., Watkins, R., Harper, D. B., Quinn, J. P. Carbon-phosphorus bond cleavage activity in cell-free extracts of Enterobacter aerogenes ATCC 15 038 and Pseudomonas sp. 4ASW. Biochem. International. 1991. V. 25. P. 271−279.
  162. Metealf, W. W., Wanner B. L. Involvement of the Escherichia coli phn (psiD) gene cluster in assimilation of phosphorus in the form of phosphonates, phosphite, P, esters and P,. J. Bacteriol. 1991. V. 173. P. 587−600.
  163. Metealf, W. W., Wolfe, R. S. Molecular genetic analysis of phosphite and hypophosphite oxidation by Pseudomonas stutzen WM88. J. Bacteriol. 1998. v 180. P. 5547−5558.
  164. Mewies, M., Mclntire, W. S., Scrutton, N. S. Covalent attachment of flavin adenine dinu-cleotide (FAD) and flavin mononucleotide (FMN) to enzymes: the current state of affairs. Prot. Sei. 1998. V. 7. P. 7−20.
  165. Miller, D. S. Nucleoside phosphonate interactions with multiple organic anion transporters in renal proximal tubule. The Journal of Pharmacology and Experimental Therapeutics. 2001. V. 299. P. 567−574.
  166. Moore, J. K., Braymer, H. D., Larson. A. D. Isolation of Pseudomonas sp. which utilizes the phosphonate herbicide glyphosate. Appl. Environ. Microbiol. 1983. V. 46. P. 316−320.
  167. Morais, M. C., Baker, A. S., Dunaway-Mariano, D., Allen, K. N. Crystallization and preliminary crystallographic analysis of phosphonoacetaldehyde hydrolase. Acta Cryst. D. 2000a. V. 56. P. 206−209.
  168. Morovjan, G. Fekete, J., Repasi, J. Determination of glyphosate and some related compounds by ion-exchange high performance liquid chromatography. J. Liq. Chromatogr. 1995. V. 18. P. 3219−3232.
  169. Mortl, M., Diederich, K., Welte, W., Mollas, G., Motteran, L., Andriolo, G., Pilone, M. S., Pollegioni, L. Structure-function correlation in glycine oxidase from Bacillus subtilis. J. Biol. Chem. 2004. V. 279. P. 29 718−29 727.
  170. Motohashi N., Nagashima H., Parkanyi C., Subrahmanyam B., Zhang Guo-Wen. Official multiresidue methods of pesticide analysis in vegetables, fruits and soil. J. Chromatogr. 1996. V. 754. P. 333−338.
  171. Murakami, T., Anzai, S., Satoh, K., Nagaoka, K., Thompson, C. J. The bialophos biosyn-thetic genes of Streptomyces hygroscopius: molecular cloning and characterization of the gene cluster. Mol. Gen. Genet. 1986. V. 205. P. 42−50.
  172. Murata, K., Higaki, N., Kimura, A. A microbial carbon-phosphorus bond cleavage enzyme requires two protein components for activity. J. Bacterid. 1989. V. 171. P. 4504−4506.
  173. Murata, K., Higaki, N., Kimura, A. Carbon-phosphorus hydrolase: functional association of two different proteins for the enzyme activity in Enterobacter aerogenes. Agric. Biol. Chem. 1989. V. 53. P. 1419−1420.
  174. Murata, K., Higaki, N., Kimura, A. Carbon-phosphorus hydrolase: some properties of the enzyme in cell extracls of Enterobacter aerogenes. Agric. Biol. Chem. 1989. V. 53. P. 1225−1229.
  175. Murata, K., Higaki, N., Kimura, A. Detection of carbon-phosphorus lyase activity in cell free extracts of Enterobacter aerogenes. Biochem. Biophys. Research Communications. 1988. V. 157. P.190−195.
  176. Nafziger, E. D., Widholm J. M., Steinrucken H. C., Killmer, J. L. Selection and characterization of a carrot cell line tolerant to glyphosate. Plant Physiol. 1984. V. 76. P. 571−574.
  177. Nakashita, H., Seto, H. A microorganism with both abilities to form and cleave C-P bonds. Agric. Biol. Chem. 1991. V. 55. P. 2913−2915.
  178. Nakashita, H., Shimazu, A., Seto, H. A new screening method for C-P compound producing organisms by the use of phosphoenolpyruvate phosphomutase. Agric. Biol. Chem. 1991. V. 55. P. 2825−2829.
  179. Nishiya, Y., Imanaka, T. Purification and characterization of a novel glycine oxidase from Bacillus subtilis. FEBS Lett. 1998. V. 438. P. 263−266.
  180. Nossal, N. G., Heppel, L. A. The release of enzymes by osmotic shock from Escherichia coli in exponential phase. 1966. J. Biol. Chem. V. 241. P. 3055−3062.
  181. Obojska, A., Lejczak, B., Kubrak, M. Degradation of phosphonates by Streptomyces isolates. Appl. Microbiol. Biotechnol. 1999. V. 51. P. 872−876.
  182. Obojska, A., Ternan, N. G., Lejczak, B., Kafarski, P., McMullan, G. Organophosphonate utilization by the thermophile Geobacillus caldoxylosilyticus T20. Appl. Env. Microbiol. 2002. V. 68. P. 2081−2084.
  183. Ornstein, L. Disc Electrophoresis-I. Background and Theory. Ann New York Acad. Sci. 1964. V. 121 p. 321−349.
  184. Parker, G. F., Higgins, T. P., Hawkes, T., Robson, R. L. Rhizobium (Sinorhizobium) meliloti phn genes: characterization and identification of their protein products. J. Bacteriol. 1999. V. 181. P. 389−395.
  185. Pedotti, M., Ghisla, S., Motteran, L., Molla, G., Pollegioni, L. Catalytic and redox properties of glycine oxidase from Bacillus subtilis. Biochimie. 2009. V. 91. P. 604−612.
  186. Pedotti, M., Rosini, E., Molla, G., Moschetti, T., Savino, C., Vallone, B., Pollegioni, L. Glyphosate resistance by engineering the flavoenzyme glycine oxidase. J. Biol. Chem. 2009. V. 284. P. 36 415−36 423.
  187. Penaloza-Vasquez, A., Mena, G. L., Herrera-Estrella, L., Bauley, A. M. Cloning and sequencing of the genes involved in glyphosate utilization by Pseudomonas pseudomallei. Appl. Env. Microbiol. 1995. V. 61. P. 538−543.
  188. Pipke, R., Amrhein, N. Carbon-phosphorus lyase activity in permeabilized cells of Arthrobacter sp. GLP-1. FEBS Lett. 1988a. V. 236. P. 135−138.
  189. Pipke, R., Amrhein, N. Degradation of the phosphonate herbicide glyphosate by Arthrobacter atrocyaneus ATCC 13 752. Appl. Env. Microbiol. 1988b. V. 54. P. 1293−1296.
  190. Pipke, R., Amrhein, N. Isolation and characterization of a mutant of Arthrobacter sp. strain GLP-1 which utilizes the herbicide glyphosate as its sole source of phosphorus and nitrogen. Appl. Env. Microbiol. 1988c. V. 54. P. 2868−2870.
  191. Pipke, R., Amrhein, N., Jacob, G. S., Schaefer, J., Kishore, G. M. Metabolism of glyphosate in an Arthrobacter sp. GLP-1. Eur. J. Biochem. 1987a. V. 165. P. 267−273.
  192. Pipke, R., Schulz, A., Amrhein, N. Uptake of glyphosate by Arthrobacter sp. Appl. Env. Microbiol. 1987b. V. 53. P. 974−978.
  193. Pizzul, L., Castillo, M. del P., Stenstrom, J. Degradation of glyphosate and other pesticides by ligninolytic enzymes. Biodegradation. 2009. V. 20. P. 751−759.
  194. Pline-Srnic, W. Physiological mechanisms of glyphosate resistance. Weed Technol. 2006. V. 20. P. 280−300.
  195. Pollack, S. J., Freeman, S., Pompliano, D. L., Knowles, F. R. Cloning, overexpression and mechanistic studies of carboxyphosphoenolpyruvate mutase from Streptomyces hygroscopicus. Eur. J. Biochem. 1992. V. 209. P. 735−743.
  196. Pratley, J., Baines, P., Eberbach, P., Incerti, M., Broster, J. Glyphosate resistance in annual ryegrass. Proceedings of the 11th annual conference of the grassland society of NSW. The Grassland society of NSW Inc., Orange, Australia, p. 122.
  197. Quinn, J. P., Kulakova, A. N., Cooley, N. A., McGrath, J. W. New ways to break an old bond: the bacterial carbon-phosphorus hydrolases and their role in biogeochemical phosphorus cycling. Environ. Microbiol. 2007. V. 9. P. 2392−2400.
  198. Quinn, J. P., Peden, J. M. M., Dick, R. E. Carbon-phosphorus bond cleavage by grampositive and gram-negative soil bacteria. Appl. Microbiol. Biotechnol. 1989. V. 31. P. 283−287.
  199. Quinn, J. P., Peden, J. M. M., Dick, R. E. Glyphosate tolerance and utilization by the microflora of soils treated with the herbicide. Appl. Microbiol. Biotechnol. 1988. V. 29. P.511−516.
  200. Ratner, B. S., Nocito, V., Green, D. E. Glycine oxidase. J. Biol. Chem. 1944. V. 152. P. 119−133.
  201. Richard, S., Moslemi, S., Sipahutar, H., Benachour, N., Seralini, G.-E. Differential effects of glyphosate and roundup on human placental cells and aromatase. Environ. Health Prospect. 2005. V. 113. P. 716−720.
  202. Rosenberg, H., LaNauze, J. The metabolism of phosphonates by microorganism. The transport of aminomethylphosphonic acid in Bacillus cereus. Biochim. Biophys. Acta. 1967. V. 141. P. 79−90.
  203. Rueppel, M. L., Brightwell, B. B., Schaefer, J., Marvel, J. T. Metabolism and degradation of glyphosate in soil and water. J. Agric. Food. Chem. 1977. V. 25. P. 517−528.
  204. Sandberg, C. L., Meggitt, W. F., Penner, D. Absorption, translocation and metabolism of 14C-glyphosate in several weed species. Weed Sci. 1980. V. 20. P. 195−200.
  205. Sarkar, M., Hamilton, C. J., Fairlamb, A. H. Properties of phosphoenolpyruvate mutase, the first enzyme in the aminoethylphosphonate biosynthetic pathway in Trypanosoma cruzi. J. Biol. Chem. 2003. V. 278. P. 22 703−22 708.
  206. Schilling, B. S., Harker, K. N., King, J. R. Glyphosate can reduce glyphosate-resistant canola growth after individual or sequential Applications. Weed. Technol. 2006. V. 20. P. 825−830.
  207. Schink, B., Friedrich, M. Phosphite oxidation by sulphate reduction. Nature. 2000. V. 406. P.6791.
  208. Schowanek, D., Verstraete, W. Phosphonate utilization by bacterial cultures and enrichments from environmental samples. Appl. Environ. Microbiol. 1990a. V. 56. P. 895−903.
  209. Schowanek, D., Verstraete, W. Phosphonate utilization by bacteria in the presence of alternative phosphorus sources. Biodegradation. 1990b. V. 1. P. 43−53.
  210. Seidel, H.M., Freeman, S., Seto, H., Knowles, J.R. Phosphonate biosynthesis: isolation of the enzyme responsible for the formation of a carbon-phosphorus bond. Nature. 1988. V. 335. P. 457−458.
  211. Selvapandiyan, A., Bhatnagar, R. K. Isolation of a glyphosate-metabolising Pseudomonas'. detection, partial purification and localization of carbon-phosphorus lyase. Appl. Microbiol. Biotechnol. 1994. V. 40. P. 876−882.
  212. Seto, H., Kuzuyama, T. Bioactive natural products with carbon-phosphorus bonds and their biosynthesis. Nat. Prod. Rep. 1999. V. 16. P. 589−596.
  213. Shinabarger, D. L., Braymer, H. D. Glyphosate catabolism by Pseudomonas sp. strain PG2982. J. Bacteriol. 1986. V. 168. P. 702−707.
  214. Shushkova, T., Ermakova, I., Leontievsky, A. Glyphosate bioavailability in soil. Biodegradation. 2010. V. 21. P. 403−410.
  215. Siehl, D. L., Castle, L. A., Gorton, R., Keenan, R. J. The molecular basis of glyphosate resistance by an optimized microbial acetyltransferase. J. Biol. Chem. 2007. V. 282. P. 11 446−11 455.
  216. Simeonova, D. D., Wilson, M. M., Metcalf, W. W., Schink, B. Identification and heterologous expression of genes involved in anaerobic dissimilatory phosphite oxidation by Desulfotignum phosphitoxidans. J. Bacteriol. 2010. V. 192. P. 5237−5244.
  217. Spira, B., Silberstein, N., Yagil, E. Guanosine 3', 5'-bispyrophosphate (ppGpp) synthesis in cells of Escherichia coli starved for Pj. J. Bacteriol. 1995. V. 177. P. 4053−4058.
  218. Sprankle, P., Sandberg, C. L., Meggitt, W. F., Penner, D. Separation of glyphosate and possible metabolites by thin-layer chromatography. Weed Sci. 1978. V. 26. P. 673−674.
  219. Talbot, H. W., Johnson, L. M., Munnecke, D. M. Glyphosate utilization by Pseudomonas sp. and Alcaligenes sp. isolated from environmental sources. Current Microbiol. 1984. V. 10. P. 255−260.
  220. Ternan, N. G., McGrath, J. W., McMullan, G., Quinn, J. P. Review: Organophonates: occurrence, synthesis and biodegradation by microorganisms. World J. Microbiol. Biotechnol. 1998a. V. 14. P. 635−647.
  221. Ternan, N. G., McGrath, J. W., Quinn, J. P. Phosphoenolpyruvate phosphomutase activity in an L-phosphonoalanine-mineralizing strain of Burkholderia cepacia. Appl. Env. Microbiol. 1998b. V. 64. P. 2291−2294.
  222. Ternan, N. G., McMullan, G. The utilization of 4-aminobutylphosphonate as sole nitrogen source by a strain of Kluyveromyces fragilis. FEMS Lett. 2000. V. 184. P. 237−240.
  223. Ternan, N. G., Quinn, J. P. In vitro cleavage of the carbon-phosphorus bond on phosphonopyruvate by cell extracts of an environmental Burkholderia cepacia isolate. Biochem. Biophys. Res. Commun. 1998a. V. 248. P. 378−381.
  224. Ternan, N. G., Quinn, J. P. Phosphate starvation-independent 2-aminoethylphosphonic acid biodegradation in a newly isolated strain of Pseudomonas putida, NG2. Syst. Appl. Microbiol. 1998b. V. 21. P. 346−352.
  225. Torriani, A. Influence of inorganic phosphate in the formation of phosphatases by Escherichia coli. Biochim. Biophys. Acta. 1960. V. 38. P. 460−469.
  226. Torstensson, L. The Herbicide Glyphosate. Butterworths. 1985. London. P. 137−149.
  227. Trickey, P., Wagner, M. A., Jorns, M. S., Mathews, F. S. Monomeric sarcosine oxidase: structure of a covalently flavinylated amine oxidizing enzyme. Structure. 1999. V. 7. P. 331−345.
  228. Tsunoda, N. Simultaneous determination of the herbicide glyphosate, glufosinate and bialaphos and their metabolites by capillary gas chromatography-ion-trap mass spectrometry. J. Chrom. A. 1993. V. 637. P. 167−173.
  229. Villareal-Chiu, J. F., Quinn, J. P., McGrath, J. W. The genes and enzymes of phosphonate metabolism by bacteria, and their distribution in the marine environment. Front. Microbio. 2012. V. 3.P. 1−13.
  230. Vrtis, J. M., White, A. K., Metcalf, W. W., van der Donk, W. A. Phopshite dehydrogenase: an unusual phosphoryl reaction. J. Am. Chem. Soc. 2001. V. 123. P. 2672−2673.
  231. Wackett, L. P., Shames, S. L., Venditti, C. P., Walsh, C. T. Bacterial carbon-phosphorus lyase: products, rates and regulation of phosphonic and phosphinic acid metabolism. J. Bacteriol. 1987. V. 169. P. 710−717.
  232. Wackett, L. P., Wanner, B. L., Venditti, C. P., Walsh, C. T. Involvement of the phosphate regulon and the psiD locus in carbon-phosphorus lyase activity of Escherichia coli K-12. J. Bacteriol. 1987. V. 169. P. 1753−1756.
  233. Wanner, B. L. Bacterial alkaline phosphatase clonal variation in some Escherichia coli K-12 phoR mutant strains. J. Bacteriol. 1986. V. 168. P. 1366−1371.
  234. Wanner, B. L. Phosphorus assimilation and control of phosphate regulon. In: Neidgardt, F. C. (ed.) Escherichia coli and Salmonella. Cellular and molecular biology. ASM, Washington D.C. 1996. P. 1357−1381.
  235. Wanner, B. L., Boline, J. A. Mapping and molecular cloning of the phn (psiD) locus for phosphonate utilization in Escherichia coli. J. Bacteriol. 1990. V. 172. P. 1186−1196.
  236. Wanner, B. L., Metcalf, W. W. Molecular genetic studies of a 10.9-kb operon in Escherichia coli for phosphonate uptake and biodegradation. FEMS Lett. 1992. V. 100. P. 133−140.
  237. Wanner, B. L., Wilmes-Riesenberg, M. R. Involvement of phosphotransacetylase, acetate kinase and acetyl phosphate synthesis in control of the phosphate regulon in Escherichia coli. J. Bacteriol. 1992. V. 174. P. 2124−2130.
  238. Warren, W. A. Biosynthesis of phosphonic acids in Tetrahymena. Biochim. Biophys. Acta. 1968. V. 156. P. 340−346.
  239. White, A. K., Metcalf, W. W. Microbial metabolism of reduced phosphorus compounds. Ann. Rev. Microbiol. 2007. V. 61. P. 379−400.
  240. White, A. K., Metcalf, W. W. Two C-P lyase operons in Pseudomonas stutzeri and their roles in the oxidation of phosphonates, phosphite and hypophosphite. J. Bacteriol. 2004. V. 186. P. 4730−4739.
  241. Whittaker, M. M., Whittaker, J. W. A tyrosine-derived free radical in apogalactose oxidase. J. Biol. Chem. 1990. V. 265. P. 9610−9613.
  242. Williams, G. M., Kroes, R., Munro, I. C. Safety evaluation and risk assessment of the herbicide Roundup and its active ingredient, glyphosate, for humans. Reg. Toxicol. Pharmacol. 2000. V. 31. P. 117−165.
  243. Wilson, M. M. Characterization of reduced phosphorus metabolism in Alcaligenes faecalis WM2072 and Xanthobacterflavus WM2814. PhD Thesis. 2006. Univ. 111. Urbana.
  244. Wilson, M. M., Metcalf, W. W. Genetic diversity and horizontal transfer of genes involved in oxidation of reduced phosphorus compounds by Alcaligenes faecalis WM2027. Appl. Env. Microbiol. 2005. V. 71. P. 290−296.
  245. Winans, S. Transcriptional induction of an Agrobacterium regulatory gene at tandem promoters by plant-released phenolic compounds, phosphate starvation, and acidic growth media. J. Bacteriol. 1990. V. 172. P. 2433−2438.
  246. Xiang, W.-S., Wang, X.-J., Ren, T.-R., Ju, X.-L. Expression of a wheat cytochrome P450 monooxygenase in yeast and its inhibition by glyphosate. Pest. Manag. Sci. 2005. V. 61. P. 402−406.
  247. Yakovleva, G. M., Kim, S.-K., Wanner, B. L. Phosphate-independent expression of the carbon-phopshorus lyase activity of Escherichia coli. Appl. Microbiol. Biotechnol. 1998. V. 49. P.573−578.
  248. Yang, K., Metcalf, W. W. A new activity for an old enzyme: Escherichia coli bacterial alkaline phosphatase is a phosphite-dependent hydrogenase. PNAS. 2004. V. 101. P. 7919−7924.
  249. Zablotowicz, R. M., Reddy, Krishna N. Impact of glyphosate of the Bradyrhizobium japonicum symbiosis with glyphosate-resistant transgenic soybean: a minireview. J. Environ. Qual. 2004. V. 33. P. 825−831.
  250. Zeleznick, L. D., Myers, T. C., Titchener, E. B. Growth of Escherichia coli on methyl-and ethylphosphonic acids. Biochim. Biophys. Acta. 1963. P. 546−547.
  251. Zhang, G., Allen, K. N., Dunaway-Mariano, D. Enzymatic synthesis of radiolabeled phosphonoacetaldehyde. Anal. Biochem. 2003a. V. 322. P. 233−237.
  252. Zhang, G., Dai, J., Lu, Z., Dunaway-Mariano, D. The phosphonopyruvate decarboxylase from Bacteroides fragilis. J. Biol. Chem. 2003b. V. 278. P. 41 302−41 308.
  253. Zhang, G., Mazurkie, A. S., Dunaway-Mariano, D., Allen, K. N. Kinetic evidence for a substrate-induced fit in phosphonoacetaldehyde hydrolase catalysis. Biochemistry. 2002. V. 41. P. 13 370−13 377.
  254. Zhang, Q., van der Donk, W. A. Answers to the carbon-phosphorus lyase conundrum. ChemBioChem. 2012. V. 13. P. 627−629.
Заполнить форму текущей работой