Помощь в написании студенческих работ
Антистрессовый сервис

Физика ионных каналов

ДиссертацияПомощь в написанииУзнать стоимостьмоей работы

Александру Михайловичу Бережковскому, Матиасу Винтерхалтеру, Игорю Яковлевичу Водяному, Филиппу Алексеевичу Гурьневу, Джошуа Зиммербергу, Джону Касьяновичу, Ласло Кишу, Марко Коломбини, Олегу Владимировичу Красильникову, Лизен Куллман, Валерию Вениаминовичу Малеву, Екатерине Михайловне Несторович, Ольге Сергеевне Остроумовой, Адриану Парсегяну, Марку Алексеевичу Пустовойту, Питеру Ранду, Татьяне… Читать ещё >

Физика ионных каналов (реферат, курсовая, диплом, контрольная)

Содержание

  • КРАТКАЯ ХАРАКТЕРИСТИКА РАБОТЫ Актуальность проблемы
  • Основная цель работы
  • Научная новизна
  • Практическая значимость работы
  • Апробация работы
  • ОБЩЕЕ
  • ВВЕДЕНИЕ 9 Физическая природа биологических мембран и липидных бислоёв
  • Ионные каналы
  • Реконструкция ионных каналов в липидные бислои
  • Краткая характеристика объектов исследования
  • ГЛАВА I. ЭЛЕКТРОСТАТИЧЕСКИЕ ЭФФЕКТЫ В ПРОВОДИМОСТИ И СЕЛЕКТИВНОСТИ КАНАЛОВ

Грамицидиновый канал как датчик потенциала поверхности 32.

Аламетициновый канал в мембранах из заряженного липида 43.

Электростатические эффекты в транспортных свойствах ОтрБ 47.

ГЛАВА II. ФЛУКТУАЦИОННЫЕ ЯВЛЕНИЯ В ИОННЫХ.

ПРОВОДНИКАХ 59.

Введение

59.

Шум Джонсона 63.

Дробовый шум 67.

Шум проводимости 71.

1/1-шум 99.

ЗАКЛЮЧЕНИЕ

.

Представленная работа посвящена систематическому изучению ионных каналов как наноскопических систем. Одной из главных целей работы являлись развитие, оптимизация и создание новых методов физики конденсированного состояния для проведения исследований на уровне одиночных молекул. Основные результаты работы состоят в следующем.

1. Анализ электростатических эффектов в транспортных свойствах каналов позволил выяснить пределы применимости теоретических подходов, основанных на приближении среднего поля. В частности, для бактериального порина OmpF обнаружено, что ионная селективность и асимметрия его транспортных свойств связаны с распределением заряда во всей белковой молекуле, а не только с зарядом зоны ограничения, как считалось ранее.

2. Всестороннее исследование флуктуаций проводимости на уровне одиночных каналов позволяет утверждать, что: (а) основными источниками шумов ионных токов, протекающих через каналы, являются равновесная конформационная динамика каналообразующих молекул и обратимое протонирование их аминокислотных остатков- (б) l/f-шум не является фундаментальным свойством ионного транспорта и во всех проанализированных нами случаях объясняется равновесными флуктуациями проводимости.

3. Флуктуационный анализ натриевой проницаемости апикальных мембран клеток эпителия Rana temporaria продемонстрировал возможности этого метода в исследовании биологических мембран. В частности, обнаружен ранее неизвестный регуляторный участок натриевых каналов на внешней поверхности апикальной мембраны.

4. Установлено, что стохастический резонанс — индуцированный шумом эффект увеличения степени порядка — можно наблюдать уже на молекулярном уровне потенциалозависимых ионных каналов. Более того, показано, что его существование не обязательно связано с динамическими или пороговыми системами, как считалось ранее.

5. Предложена экспериментально и обоснована теоретически идея использования мезоскопических ионных каналов в качестве сенсорных элементов «молекулярных счётчиков Коултера». Показано, что чувствительность таких сенсорных элементов позволяет детектировать и анализировать одиночные молекулы различной природы.

6. Установлены основные физические принципы взаимодействий водорастворимых полимеров с каналами. Показана роль конфигурационных ограничений в общем балансе свободной энергии полимерных молекул в окружающем растворе и в канале, в том числе с учётом эффектов неидеальности полимерных растворов.

7. В части работы, посвящённой проблемам молекулярной упаковки белковых молекул, установлено, что так называемая «оптимальная упаковка» является в действительности набором полностью функциональных, но различающихся структур, сохраняющих свои индивидуальные свойства во временных масштабах сотен секунд.

8. В рамках диффузионного описания динамики частиц в канале построена физическая теория, объясняющая катализирующий эффект взаимодействий между проникающими частицами и каналом.

9. В качестве потенциальных практических применений показана важность взаимодействий молекул антибиотиков пенициллиновой группы с бактериальными каналамиустановлен механизм блокирования токсинов сибирской язвы производными циклодекстринавыявлены причины низкой проницаемости мембран бактерии Pseudomonas aeruginosa для антибиотиков.

БЛАГОДАРНОСТИ.

Автор глубоко благодарен многим коллегам, с которыми ему посчастливилось работать и которые оказали на него огромное влияние:

В первую очередь, Гильяри Моисеевичу Драбкину, предложившему автору в 1973 году должность стажера-исследователя в Секторе исследования конденсированного состояния ЛИЯФ АН СССР и направившему его в сторону физики биологических объектов;

Августину Ивановичу Сибилёву, Игорю Дмитриевичу Лузянину и Владимиру Петровичу Хавронину за их многотерпение при обучении автора премудростям экспериментальной физики и Аркадию Гиршевичу Аронову за многочисленные обсуждения и помощь в теоретических изысканиях;

Александру Михайловичу Бережковскому, Матиасу Винтерхалтеру, Игорю Яковлевичу Водяному, Филиппу Алексеевичу Гурьневу, Джошуа Зиммербергу, Джону Касьяновичу, Ласло Кишу, Марко Коломбини, Олегу Владимировичу Красильникову, Лизен Куллман, Валерию Вениаминовичу Малеву, Екатерине Михайловне Несторович, Ольге Сергеевне Остроумовой, Адриану Парсегяну, Марку Алексеевичу Пустовойту, Питеру Ранду, Татьяне Кировне Ростовцевой и Людмиле Владимировне Щагиной за удовольствие, полученное от работы над совместными проектами.

Автор также благодарен многим замечательным сотрудникам ЛИЯФ/ПИЯФ за их неизменную психологическую поддержку на протяжении многих лет. Среди тех, кто не является непосредственным соавтором научных трудов, хотелось бы особенно отметить Владимира Андреевича Назаренко, Иосифа Моисеевича Лазебника, Алексея Ивановича Окорокова, Диану Николаевну Орлову, Анатолия Васильевича Ковалёва, Эрнеста Григорьевича Таровика, Игоря Викторовича Голосовского, Леонида Абрамовича Аксельрода и Геннадия Петровича Гордеева.

Показать весь текст

Список литературы

  1. S. М. Bezrukov, G. М. Drabkin, and A. I. Sibilev. Conductance fluctuations in the laminar flow of a colloid. Journal of Colloid and Interface Science, 1986,113: 194−202.
  2. С. M. Безруков, В. Г. Покровский и Ю. И. Наточин. Механизм стимуляции ионами кобальта натриевых каналов апикальной мембраны клеток кожи лягушки (флуктуационный анализ). Доклады Академии наук СССР, 1986, 286: 993−997.
  3. S. М. Bezrukov, A. I. Irkhin, and A. I. Sibilev. An upper estimate for 1/f noise intensity in ionic conductors from experiments with a molecular microcontact. Physics Letters A, 1987,123: 477−480.
  4. С. M. Безруков и P. А. Брутян. Флуктуации электропроводности липидных бислоев при односторонней добавке полиеновых антибиотиков. Биофизика, 1987, 32: 526−528.
  5. С.М.Безруков и В. Г. Покровский. Флуктуационный анализ проницаемости натрия через апикальные мембраны кожи лягушки. Биологические мембраны, 1989, 6:67−75.
  6. В. Г. Покровский и С. М. Безруков. Влияние катионов кобальта на натриевую проницаемость апикальных клеточных мембран кожи лягушки. Биологические мембраны, 1989, 6: 76−83.
  7. S. М. Bezrukov, М. A. Pustovoit, A. I. Sibilev, and G. М. Drabkin. Large-scale conductance fluctuations in solutions of strong electrolytes. Physica B, 1989,159: 388−398.
  8. S. M. Bezrukov, M. A. Pustovoit, and A. I. Sibilev. Conductance fluctuation spectroscopy of micellar solutions in flow. Journal of Colloid and Interface Science, 1992, 148: 375−381.
  9. S. M. Bezrukov and I. Vodyanoy. Probing alamethicin channels with water-soluble polymers. Effect on conductance of channel states. Biophysical Journal, 1993, 64: 16−25.
  10. S. M. Bezrukov and J. J. Kasianowicz. Fluctuations in current through a single open ion channel reveal titration kinetics of ionizable residues. Physical Review Letters, 1993, 70: 2352−2355.
  11. S. L. Keller, S. M. Bezrukov, S. M. Gruner, M. W. Tate, I. Vodyanoy, and V. A. Parsegian. Probability of alamethicin conductance states varies with nonlamellar tendency of bilayer phospholipids. Biophysical Journal, 1993,65:23−27.
  12. Vodyanoy, S. M. Bezrukov, and V. A. Parsegian. Probing alamethicin channels with water-soluble polymers. Size-modulated osmotic action. Biophysical Journal, 1993, 65: 2097−2105.
  13. S. M. Bezrukov, I. Vodyanoy, and V. A. Parsegian. Counting polymers moving through a single ion channel. Nature (London), 1994, 370: 279−281.
  14. J. J. Kasianowicz and S. M. Bezrukov. Protonation dynamics of the alpha-toxin channel from spectral analysis of pH dependent current fluctuations. Biophysical Journal, 1995, 69: 94−105.
  15. S. M. Bezrukov and I. Vodyanoy. Noise-induced enhancement of signal transduction across voltage-dependent ion channels. Nature (London), 1995, 378: 362−364.
  16. S. M. Bezrukov, I. Vodyanoy, R. A. Brutyan, and J. J. Kasianowicz. Dynamics and free energy of polymers partitioning into a nanoscale pore. Macromolecules, 1996, 29: 8517−8522.
  17. S. M. Bezrukov and I. Vodyanoy. Stochastic resonance in non-dynamical systems without response thresholds. Nature (London), 1997,385:319−321.
  18. S. M. Bezrukov and I. Vodyanoy. Stochastic resonance at the single-cell level. Nature (London), 1997, 388: 632−633.
  19. S. M. Bezrukov and I. Vodyanoy. Signal transduction across alamethicin ion channels in the presence of noise. Biophysical Journal, 1997, 73: 2456−2464.
  20. T. K. Rostovtseva and S. M. Bezrukov. ATP transport through a single mitochondrial channel, VDAC, studied by current fluctuation analysis. Biophysical Journal, 1998, 74: 2365−2373.
  21. S. M. Bezrukov and I. Vodyanoy. Stochastic resonance in thermally activated reactions: Application to biological ion channels. Chaos, 1998, 8: 557−566.
  22. T. K. Rostovtseva, V. M. Aguilella, I. Vodyanoy, S. M. Bezrukov, and V. A. Parsegian. Membrane surface-charge titration probed by gramicidin A channel conductance. Biophysical Journal, 1998, 75: 1783−1792.
  23. S. M. Bezrukov. Stochastic resonance as an inherent property of rate-modulated random series of events. Physics Letters A, 1998, 248: 29−36.
  24. S. M. Bezrukov, R. P. Rand, I. Vodyanoy, and V. A. Parsegian. Lipid packing stress and polypeptide aggregation: Alamethicin channels probed by proton titration of lipid charge. Faraday Discussions, 1998,111: 173−183.
  25. S. M. Bezrukov. Ion channels as molecular Coulter counters to probe metabolite transport. Journal of Membrane Biology, 2000,174: 1−13.
  26. S. M. Bezrukov and M. Winterhalter. Examining noise sources at the single-molecule level: 1/f noise of an open maltoporin channel. Physical Review Letters, 2000, 85: 202−205.
  27. T. K. Rostovtseva, T.-T. Liu, M. Colombini, V. A. Parsegian, and S. M. Bezrukov. Positive cooperativity without domains or subunits in a monomeric membrane channel. Proc. Natl Acad. Sci. USA, 2000, 97: 7819−7822.
  28. S. M. Bezrukov, L. Kullman, and M. Winterhalter. Probing sugar translocation through maltoporin at the single channel level. FEBSLetters, 2000, 476: 224−228.
  29. S. A. Desai, S. M. Bezrukov, and J. Zimmerberg. A voltage-dependent channel involved in nutrient uptake by red blood cells infected with malaria parasite. Nature (London), 2000, 406: 1001−1005.
  30. S. M. Bezrukov. Functional consequences of lipid packing stress. Current Opinion in Colloid and Interface Science, 2000, 5: 237−243.
  31. S. M. Bezrukov, A. M. Berezhkovskii, M. A. Pustovoit, and A. Szabo. Particle number fluctuations in a membrane channel. Journal of Chemical Physics, 2000, 113: 8206−8211.
  32. В. В. Малев, Ю. А. Каулин, Ф. А. Гурьнев, С. М. Безруков, Дж. Я. Такемото и JI. В. Щагина. Эффект распределения заряда на проводимость одиночных каналов, образуемых сирингомицином Е в липидных бислоях. Биологические мембраны, 2001,18: 145−153.
  33. V. M. Aguilella and S. M. Bezrukov. Alamethicin channel conductance modified by lipid charge. European Biophysics Journal, 2001, 30: 233−241.
  34. P. S. Ruszczynski, L. B. Kish, and S. M. Bezrukov. Noise-assisted traffic of spikes through neuronal junctions. Chaos, 2001,11: 581−586.
  35. С. M. Безруков и Дж. Дж. Касьянович. Нейтральные полимеры в нанопорах аламетицина и альфа-гемолизина. Биологические мембраны, 2001,18: 453−457.
  36. Т. К. Rostovtseva, Е. М. Nestorovich, and S. М. Bezrukov. Partitioning of differently sized poly (ethylene glycol) s into OmpF porin. Biophysical Journal, 2002, 82: 160−169.
  37. L. Kullman, M. Winterhalter, and S. M. Bezrukov. Transport of maltodextrins through maltoporin: A single-channel study. Biophysical Journal, 2002, 82: 803−812.
  38. V. V. Malev, L. V. Schagina, P. A. Gurnev, J. Y. Takemoto, E. M. Nestorovich, and S. M. Bezrukov. Syringomycin E channel: A lipidic pore stabilized by lipopeptide? Biophysical Journal, 2002, 82: 1985−1994.
  39. A. M. Berezhkovskii, M. A. Pustovoit, and S. M. Bezrukov. Effect of binding on particle number fluctuations in a membrane channel. Journal of Chemical Physics, 2002,116: 6216−6220.
  40. A. M. Berezhkovskii, M. A. Pustovoit, and S. M. Bezrukov. Channel-facilitated membrane transport: Transit probability and interaction with the channel. Journal of Chemical Physics, 2002,116: 9952−9956.
  41. Т. K. Rostovtseva, A. Komarov, S. M. Bezrukov, and M. Colombini. VDAC channels differentiate between natural metabolites and synthetic molecules. Journal of Membrane Biology, 2002,187: 147−156.
  42. S. M. Bezrukov and L. B. Kish. How much power does neural signal propagation need? Smart Materials and Structures, 2002,11: 800−803.
  43. E. M. Nestorovich, C. Danelon, M. Winterhalter, and S. M. Bezrukov. Designed to penetrate: Time-resolved interaction of single antibiotic molecules with bacterial pores. Proc. Natl. Acad. Sci. USA, 2002, 99: 9789−9794.
  44. A. M. Berezhkovskii, M. A. Pustovoit, and S. M. Bezrukov. Channel-facilitated membrane transport: Average lifetimes in the channel. Journal of Chemical Physics, 2003,119: 3943−3951.
  45. К. S. Stojilkovic, A. M. Berezhkovskii, V. Yu. Zitserman, and S. M. Bezrukov. Conductivity and microviscosity of electrolyte solutions containing polyethylene glycols. Journal of Chemical Physics, 2003,119: 6973−6978.
  46. E. M. Nestorovich, Т. K. Rostovtseva, and S. M. Bezrukov. Residue ionization and ion transport through OmpF channels. Biophysical Journal, 2003, 85: 3718−3729.
  47. V. Krasilnikov and S. M. Bezrukov. Polymer partitioning from non-ideal solutions into protein voids. Macromolecules, 2004, 37: 2650−2657.
  48. S. M. Bezrukov. Noise analysis in studies of protein dynamics and molecular transport. Fluctuation and Noise Letters, 2004, 4: L23-L31.
  49. A. Alcaraz, E. M. Nestorovich, M. Aguilella-Arzo, V. M. Aguilella, and S. M. Bezrukov. Salting out the ionic selectivity of a wide channel: The asymmetry of OmpF. Biophysical Journal, 2004, 87: 943−957.
  50. S. M. Bezrukov, О. V. Krasilnikov, L. N. Yuldasheva, A. M. Berezhkovskii, and C. G. Rodrigues. Field-dependent effect of crown ether (18-crown-6) on ionic conductance of alpha-hemolysin channels. Biophysical Journal, 2004, 87: 3162−3171.
  51. A. M. Berezhkovskii and S. M. Bezrukov. Optimizing transport of metabolites through large channels: Molecular sieves with and without binding. Biophysical Journal, 2005, 88: L17-L19.
  52. B. Ю. Зицерман, К. С. Стожилкович, А. М. Бережковский и С. М. Безруков. Электропроводность водных растворов полиэтиленгликоля. Журнал физической химии, 2005, 79: 1245−1252.
  53. А. М. Berezhkovskii and S. М. Bezrukov. Channel-facilitated membrane transport: Constructive role of particle attraction to the channel pore. Chemical Physics, 2005, 319: 342−349.
  54. V. Yu. Zitserman, A. M. Berezhkovskii, V. A. Parsegian, and S. M. Bezrukov. Non-ideality of polymer solutions in the pore and concentration-dependent partitioning. Journal of Chemical Physics, 2005,123: 146 101−146 102.
  55. V. A. Karginov, E. M. Nestorovich, M. Moayeri, S. H. Leppla, and S. M. Bezrukov. Blocking anthrax lethal toxin at the protective antigen channel by using structure-inspired drug design. Proc. Natl. Acad. Sci. USA, 2005,102: 15 075−15 080.
  56. L. Kullman, P. A. Gurnev, M. Winterhalter, and S. M. Bezrukov. Functional subconformations in protein folding: Evidence from single-channel experiments. Physical Review Letters, 2006, 96: 38 101.
  57. C. Danelon, E. M. Nestorovich, M. Winterhalter, M. Ceccarelli, and S. M. Bezrukov. Interaction of zwitterionic penicillins with the OmpF channel facilitates their translocation. Biophysical Journal, 2006,90: 1617−1627.
  58. E. M. Nestorovich, E. Sugawara, H. Nikaido, and S. M. Bezrukov. Pseudomonas aeruginosa porin OprF: Properties of the channel. Journal of Biological Chemistry, 2006,281:16 230−16 237.
  59. P. A. Gurnev, A. B. Oppenheim, M. Winterhalter, and S. M. Bezrukov. Docking of a single phage lambda to its membrane receptor maltoporin as a time-resolved event. Journal of Molecular Biology, 2006, 359: 1447−1455.
  60. V. Krasilnikov, C. G. Rodrigues, and S. M. Bezrukov. Single polymer molecules in a protein nanopore in the limit of a strong polymer-pore attraction. Physical Review Letters, 2006, 97:18 301.
  61. A. M. Berezhkovskii, G. Hummer, and S. M. Bezrukov. Identity of distributions of direct uphill and downhill translocation times for particles traversing membrane channels. Physical Review Letters, 2006, 97: 20 601.
  62. T. K. Rostovtseva, N. Kazemi, M. Weinrich, and S. M. Bezrukov. Voltage gating of VDAC is regulated by non-lamellar lipids of mitochondrial membranes. Journal of Biological Chemistry, 2006, 281: 37 496−37 506.
  63. A. M. Berezhkovskii and S. M. Bezrukov. Site model for channel-facilitated membrane transport: Invariance of translocation-time distribution with respect to direction of passage. Journal of Physics: Condensed Matter, 2007,19: 65 148.
  64. Jiang, Y. X., et al., X-ray structure of a voltage-dependent K+ channel. Nature, 2003. 423(6935): p. 33−41.
  65. , В. Г. and Г. H. Берестовский, Динамическая структура липидного бислоя. 1981, М.: Наука. 293 с.
  66. Overton, Е., Uber die osmotischen Eigenschaften der lebenden Pflanzen- und Tierzelle. Vierteljahresschrift der Naturforschenden Gesellschaft in Zurich, 1895. 30: p. 159−201.
  67. Gorter, E. and F. Grendel, On bimolecular layers of lipid on the chromacytes of the blood. Journal of Experimental Medicine, 1925. 41: p. 439−443.
  68. , В. Ф., Липиды и ионная проницаемость мембран. 1982, М.: Наука. 150 с.
  69. Mueller, Р., et al., Reconstitution of cell membrane structure in vitro and its transformation into an excitable system. Nature, 1962.194: p. 979−980.
  70. Montal, M. and P. Mueller, Formation of biomolecular membranes from lipid monolayers and a study of their electrical properties. Proc. Natl. Acad. Sei. USA, 1972. 69: p. 3561−3566.
  71. Parsegian, V. A., Energy of an ion crossing a low dielectric membrane: Solutions to four relevant electrostatic problems. Nature, 1969. 221: p. 844−846.
  72. Luzzati, V. and F. Husson, The structure of the liquid-crystalline phases of lipid-water systems. Journal of Cell Biology, 1962.12: p. 207−219.
  73. , R. В., Biomembranes: Molecular Structure and Function. 1989, N. Y.: Springer-Verlag. 622 p.
  74. Cullis, P. R., et al., Structural properties of lipids and their functional roles in biological membranes, in Membrane Fluidity in Biology, R.C. Aloia, Editor. 1983, N. Y.: Academic Press, p. 39−81.
  75. Cullis, P. R. and B. de Kruijff, Lipid polymorphism and the functional roles of lipids in biological membranes. Biochimica et Biophysica Acta, 1979. 559: p. 399−420.
  76. Rand, R. P. and N. L. Fuller, Structural Dimensions and Their Changes in a Reentrant Hexagonal-Lamellar Transition of Phospholipids. Biophysical Journal, 1994. 66(6): p. 2127−2138.
  77. Fuller, N., C. R. Benatti, and R. P. Rand, Curvature and bending constants for phosphatidylserine-containing membranes. Biophysical Journal, 2003. 85(3): p. 1667−1674.
  78. Shears, S. B., The versatility of inositol phosphates as cellular signals. Biochimica et Biophysica Acta Molecular and Cell Biology of Lipids, 1998.1436(1−2): p. 49−67.
  79. Marsh, D. and L. I. Horvath, Structure, dynamics and composition of the lipid-protein interface. Perspectives from spin-labelling. Biochimica et Biophysica Acta -Reviews on Biomembranes, 1998.1376(3): p. 267−296.
  80. Bogdanov, M. and W. Dowhan, Lipid-assisted proteinfolding. Journal of Biological Chemistry, 1999. 274(52): p. 36 827−36 830.
  81. Balla, T., T. Bondeva, and P. Varnai, How accurately can we image inositol lipids in living cells? Trends in Pharmacological Sciences, 2000. 21(7): p. 238−241.
  82. Gruner, S. M. and E. Shyamsunder, Is the Mechanism of General-Anesthesia Related to Lipid-Membrane Spontaneous Curvature. Annals of the New York Academy of Sciences, 1991. 625: p. 685−697.
  83. Gruner, S. M., Relations between Curvature Elasticity, Nonlamellar Phases, and Biomembrane Function. Biophysical Journal, 1990. 57(2): p. A20-A20.
  84. Gruner, S. M., Intrinsic Curvature Hypothesis for Biomembrane Lipid-Composition a Role for Nonbilayer Lipids. Proceedings of the National Academy of Sciences of the United States of America, 1985. 82(11): p. 3665−3669.
  85. Cantor, R. S., Lipid composition and the lateral pressure profile in membranes. Biophysical Journal, 1999. 76(1): p. A58-A58.
  86. Templer, R. H., et al., Sensing isothermal changes in the lateral pressure in model membranes using di-pyrenylphosphatidylcholine. Faraday Discussions, 1998. Ill: p. 41−53.
  87. Cantor, R. S., The lateral pressure profile in membranes: A physical mechanism of general anesthesia. Biochemistry, 1997. 36(9): p. 2339−2344.
  88. Cantor, R. S., Lateral pressures in cell membranes: A mechanism for modulation of protein function. Journal of Physical Chemistry B, 1997.101(10): p. 1723−1725.
  89. Harries, D. and A. BenShaul, Conformational chain statistics in a model lipid bilayer: Comparison between mean field and Monte Carlo calculations. Journal of Chemical Physics, 1997. 106(4): p. 1609−1619.27,28
Заполнить форму текущей работой