Асимптотические свойства стационарных распределений телекоммуникационных сетей
Диссертация
Чтобы исследовать поведение соответствующего однородного марковского процесса со счетным числом состояний в был построен жидкостный предел, возникающий в Эйлеровском скейлинге. Похожая идея для изучения эргодичности случайных блужданий в положительных октантах ранее использовалась В. А. Малышевым и его учениками. Исследование эргодических свойств случайных блужданий в этих работах основывается… Читать ещё >
Список литературы
- Рыбко А.Н., Пропускная способность сетей связи и эргодичность марковских процессов со счетным числом состояний// Proceedings of the Third Czechoslovak — Soviet — Hungarian Seminar of 1. formation Theory, Liblice. 1980. C. 71−80.
- Рыбко A.H. Стационарные распределения марковских процессов, описывающих работу коммуникационных сетей// Пробл. передачи информации. 1981. Т. 17, № 1. С. 71−89.
- Mikhaylov V.A., Rybko A.N., The sufficient conditions for existence of stationary mode in channel switching networks with queues// Abs. of Intern. Coll. On Information Theory, Budapest. 1981. P. 58.
- Рыбко A.H. Условия существования стационарного режима для двух классов коммуникационных сетей// Пробл. передачи информации. 1982. Т. 18, № 1. С. 94−103.
- Dobrushin R.L., Rybko A.N., Capacity region of communication networks// Fundamentals of teletraffie theory. Proc. of 3-Int. Sem. On Tele-trafic Theory, Moscow. June 1984. P. 94−100.
- Рыбко A.H., Михайлов В. А. Область пропускной способности сетей с коммутацией каналов и очередями// Пробл. передачи информации. 1986. Т. 22, № 1. С. 65−84.
- Kel’bert M.Y., Kontsevich M.L., Rybko A.N., Ergodicity of infinite Jackson networks// Proc. of the 1-st Bernoully Congress, Tashkent. 1986. V. 2. P. 548.
- Добрушин Р.Л., Кельберт М. Я., Рыбко А. Н., Сухов Ю. М. Качественные методы теории сетей с очередями//Препринт ИППИ АН СССР. М.: ВИНИТИ, 1986. С. 1−54.
- Кельберт М.Я., Концевич М. Л., Рыбко А. Н. Бесконечные сети Джексона/ / Теория вероятностей и ее применения. 1988. Т. 33. С. 379−382.
- Karpelevich F.I., Rybko A.N., On one new class of Markov processes with interaction modeling adsorbtion// Proc. of the Fifth International Vilnius Conference on Probability Theory and Mathematical Statistics. June 1989. V. 3. P. 277.
- Bacelli F., Karpelevich F.I., Kel’bert M.Y., Puhalskii A.A., Rybko A.N., Suhov Y.M. A mean field limit for a class of queuing networks// Journal of statistical Physics. 1992. V 6, N. ¾. P.803−825.
- Рыбко A.H., Столяр А. Л. Эргодичность случайных процессов, описывающая работу открытых сетей массового обслуживания// Пробл. передачи информации. 1992. Т. 28, № 3. С. 3−26.
- Rybko A.N., Stolyar A.L., On the Ergodicity of Markov processes corresponding to the open message switching networks// Proc. of Int. Conf. on Applied Probability in Engineering Computer and Communication Sciences, Paris. 1993. P. 142−143.
- Karpelevich F.I., Malyshev V.A., Rybko A.N. Stochastic evolution of neural networks// Markov processes and related fields. 1995, V. 1, N. 1, P. 141−161.
- Foss S.G., Rybko A.N. Stability of multiclass Jackson-type networks// Markov processes and related fields. 1996. V. 2, N. 3, P. 461−486.
- Rybko A.N., The unstable behavior of fluide models and transientness of corresponding stochastic processes modeling open queuing networks// Abs. of 16th European Conference on Operational Research, Brussels. July 1998. P. 87.
- Пухальский А.А., Рыбко A.H. Неэргодичность сетей массового обслуживания при нестабильности их жидкостных моделей// Пробл. передачи информации. 2000. Т. 36, № 1. С. 26−46.
- Karpelevich F.I., Rybko A.N. Thermodynamical limit for symmetrical closed queueing networks// On Dobrushin’s way. From probability to statistical mechanics, Ed R. Munlos, S. Shlosman, Yu.Suhov. Providence: AMS. 2000. P. 133−155.
- Карпелевич Ф.И., Рыбко A.H. Асимптотическое поведение симметричной замкнутой сети массового обслуживания в термодинамическом пределе// Пробл. передачи информации. 2000. Т. 36, № 2. С. 69−95.
- Karpelevich F.I., Rybko A.N. Thermodynamical limit for the mean field model of simple symmetrical closed queueing network// Markov processes and related fields. 2000. V. 6, N. 1, P. 89−105.
- Khanin K., Khmelev D., Rybko A., Vladimirov A. Steady solutions of fluid dynamics for FIFO networks//Moscow mathematical journal. 2001. V. 1, N. 3, P. 407−419.
- Rybko A.N., Stolyar A.L., Suhov Yu.M. Stability of global LIFO networks// Memory book of F.I.Karpelevich, Providence: AMS. 2002. Ser. 2, V. 207. P. 177−184.
- Karpelevich F.I., Malyshev V.A., Petrov A.A., Pirogov S.A., Rybko A.N. Context free evolution of words// Memory book of F.I.Karpelevich, Providence: AMS. 2002. Ser.2, V. 207. P. 91−114.
- Rybko A., Shlosman S. Poisson hypothesis for large information networks: the study of non-linear Markov processes//Abs. of Intern. Conf. «Kol-mogorov and Contemprorary Mathematics Moscow. June 2003. M, Изд. ЦПИ, Part 2. P. 956−957.
- Malyshev V.A., Pirogov S.A., Rybko A.N. Random walks and chemical networks// Moscow mathematical journal. 2004. V. 4, N. 2, P. 441−453.
- Dinaburg E., Maes C., Pirogov S., Redig F., Rybko A. The Potts model built on sand// Journal of statistical physics. 2004. V. 117, N. ½, P. 179−198.
- Rybko A., Shlosman S. Poisson hypothesis for information networks (A study in non-linear Markov processes) I Domain of Validity// http://arxiv.org/PS-cache/math/arxiv /pdf/0406 /4 066.110vl.pdf. 2004. P. 1−77.
- Rybko A., Shlosman S. Poisson hypothesis for information networks II. Cases of violation and phase transitions// http://arxiv.org/PS-cache/arxiv/math-ph/pdf/0410/0410.053v.lpdf. 2004. P. l-27.
- Rybko A., Shlosman S. Poisson hypothesis for information networks (a study in non-linear Markov processes). Parti// Moscow mathematical journal. 2005. V. 5, N. 3, P. 679−704.
- Rybko A., Shlosman S. Poisson hypothesis for information networks (a study in non-linear Markov processes). Partll// Moscow mathematical journal. 2005. V. 5, N. 4, P. 927−959.
- Рыбко A.H., Шлосман С. Б. Пуассоновская гипотеза: комбинаторный аспект// Пробл. передачи информации. 2005. Т. 41, № 3. С. 51−57.
- Rybko A., Shlosman S., Vladimirov A. Self-averaging property of queuing systems// http://arxiv.org/PS-cache/arxiv/math/pdf/0510/0510.046v.2pdf. 2005. P. 1−18.
- Владимиров A.A., Рыбко A.H., Шлосман С. Б. Свойства самоусредне-иия систем массового обслуживания// Пробл. передачи информации. 2006. Т. 42, № 4, С. 91−103.
- Rybko A.N. Poisson hypothesis for information networks (a study in nonlinear Markov processes// Abs. of IV Intern. Conf. «Limit Theorems in Probability and their Applications Novosibirsk. August, 2006. P. 28.
- Rybko A., Shlosman S., Vladimirov A. Spontaneous resonances and the coherent states of the queuing networks// http://arxiv.org/PS-cache/arxiv/math/pdf/0708/0708.3073v2.pdf 2007. P. 1−53.
- Rybko A., Shlosman S. Poisson hypothesis for information networks. 2. Cases of violations and phase transitions// Moscow mathematical journal.2008. V.8, N. l, P.159−180.
- Rybko A., Shlosman S., Vladimirov A. Absence of breakdown of the Poisson hypothesis. I Closed networks at low load // http://arxiv.org/PS-cache/arxiv/math/pdf/0811/0811.3577 v.lpdf. 2008. P. 1−18.
- Rybko A., Shlosman S., Vladimirov A. Spontaneous resonances and the coherent states of the queuing networks//Abs. of Symphosium on Perspectives in Modeling and Performance of Computer Systems «Model35IN-RIA, Paris-Rocquencourt. April 2008. P. 13.
- Rybko A., Shlosman S., Vladimirov A. Spontaneous resonances and the coherent states of the queueing networks// Journal of statistical physics.2009. V. 134, N. 1, P. 67−104.
- Рыбко A.H. Пуассоновская гипотеза для больших симметричных коммуникационных сетей// Глобус, общематематический семинар. Вып.4.
- Под ред. М. А. Цфасмана и В. В. Прасолова. М: МЦ НМО. 2009. С. 105 126.
- Rybko A., Shlosman S., Vladimirov A. Spontaneous resonances and the coherent states of the queuing networks// Proc. of Dobrushin International Conference, Moscow. July 2009. ИППИ PAH, C. 149−156.
- Афанасьева JI.Г., Хмелев Д. В., Большие транспортные сети с конечномерным пространством состояний// Теория вероятностей и ее применения. 1999 Т. 44, № 1, С. 157−158.
- Башарин Г. П., Толмачев A.JL Теория сетей массового обслуживания и ее приложения к анализу информационно-вычислительных сетей// В сб.: Итоги науки и техники (сер. теория вероятн., матем. статист., теор. киберн.). М.: ВИНИТИ, 1983. Т. 21. С. 3−119.
- Биллингели П. Сходимость вероятностных мер.// М.: Наука, 1979. 352 с.
- Боровков A.A. Асимптотические методы в теории массового обслужи-вания//М.: Физматгиз, 1980, 381 С.
- Боровков A.A., Могульский A.A., Саханенко А. И., Предельные теоремы для случайниых процессов// М.: ВИНИТИ. Итоги науки и техники. Фундаментальные проблемы математики, 1995, Т. 82, 200 С.
- Боровков A.A., Фосс С. Г. Оценки для эксцесса случайного блуждания через произвольную границу и их применения// Теория вероятностей и ее применения, 1999, Т. 44, № 2, С. 1−24.
- Боровков К. А. Распространение хаоса в сетях обслуживания// Теория вероятностей и ее применения. 1997. Т. 42,№ 3. С. 449−460.
- Введенская Н. Д., Добрушин Р. Л., Карпелевич Ф. И. Система обслуживания с выбором наименьшей из двух очередей асимптотический подход// Пробл. передачи информации. 1996. Т. 32,№ 1. С. 20−34.
- Венцель А. Д., Фрейдлин М. И. Флуктуации в динамических системах под действием малых случайных возмущений.// М.: Наука, 1979. 424с.
- Добрушин P.JT. Центральная предельная теорема для неоднородных цепей Маркова// Теория вероятностей и ее применения, I, II. 1956, Т. 1, С. 72−89, Т. 1, С. 365−425.
- Добрушин P. JL, Сухов Ю. М., Асимптотическое поведение звездообразной сети коммутации сообщений с большим числом радиальных лучей// Пробл. передачи информации. 1976, Т. 12, С. 49−65.
- Добрушин Р.Л., Печерский Е. А. Большие уклонения для случайных процессов с независимыми приращениями на бесконечном интервале// Пробл. передачи информации. 1998. Т. 34, № 4, С. 76−108.
- Замятин A.A., Малышев В. А., Манита А. Д. Явление гомеостаза в сетях химических реакций// Теория вероятностей и ее применения. 2006, Т. 51, С. 793−802.
- Калашников В.В. Качественный анализ поведения сложных систем методом пробных функций// М.: Наука. 1978, 247 с.
- Кемени Дж., Снелл Дж., Кнепп А. Счетные цепи Маркова.// М.: Наука, 1987. 414 с.
- Климов Г. П., Ляху А. К., Матвеев В. Ф. Математические модели систем с разделением времени.// Кишинев: Штиинца, 1983. 109 с.
- Колмогоров А. Н., Фомин С. В. Элементы теории функций и функционального анализа.// М.: Наука, 1968. 496 с.
- Корнфельд И.П., Синай Я. Г., Фомин C.B., Эргодическая теория.// М.: Наука, 1980. 382 с.
- Коршунов Д.А., Предельные теоремы для общих цепей Маркова// Сиб. матем. журнал. 2001, Т. 42, № 2, С. 354−371.
- Лиггет Т. Марковские процессы с локальным взаимодействием.// М.: Мир, 1989. 550 с.
- Липцер Р. Ш., Ширяев А. Н. Теория мартингалов.// М.: Наука, 1986. 512 с.
- Малышев В.А. Случайные блуждания. Уравнения Винера-Хопфа в четверти плоскости. Автоморфизмы Галуа// М.: Изд. МГУ, 1970, 201 с.
- Малышев В. А., Меньшиков М. В. Эргодичность, непрерывность и аналитичность счетных цепей Маркова// Тр. Московского математического общества. М.: Изд-во МГУ, 1979, Т. 39, С. 3−48.
- Малышев В.А., Пирогов С. А. Обратимость и необратимость в стохастической химической кинетике// Успехи матем. наук. 2008, Т. 63, № 1, С. 3−36.
- Малышев В.А., Минлос P.A. Гиббсовские случайные поля// М.: Наука. 1985, 288 с.
- Оселедец В.И., Хмелев Д. В., Глобальная устойчивость бесконечных систем нелинейных дифференциальных уравнений и неоднородные счетные цепи Маркова// Пробл. передачи информации. 2000, Т. 36, № 1, С. 60−76
- Петров В.В. Суммы независимых случайных величин// М.: Наука. 1972. 415 с.
- Скороход А. В. Предельные теоремы для случайных процессов// Теория вероятностей и ее применения. 1956. Т. 1, № 2. С. 261−292.
- Столяр А. Л. Асимптотика стационарного распределения для одной замкнутой системы обслуживания// Пробл. передачи информации. 1989. Т. 25,№ 4. С. 80−92.
- Флеминг У., Ришар Р. Оптимальное управление детерминированными и стохастическими процессами.// М.: Мир, 1978.
- Феллер В. Введение в теорию вероятностей и ее приложения, Т. 2// М.: Мир, 1984, 752 с.
- Фосс С.Г., Денисов Д. Е. Об условиях невозвратности для цепей Маркова// Сиб. Матем. журнал. 2001, Т. 46, № 4, С. 640−657.
- Фосс С.Г., Чернова Н. И., Об оптимальности дисциплины FCFS в многоканальных системах и сетях обслуживания// Сиб. матем. журнал. 2001, Т. 42, № 2, С. 434−450.
- Afanassieva L.G., Delcoigne F., Fayolle G. On polling Systems where servers wait for customers// Markov Processes and Related Fields. 1997, V. 3, N. 4, P. 527−546.
- Anantharam V. The stability region of the finite-user, slotted ALOHA system// IEEE Trans. Inf. Theory. 1991, V. 37, P. 535−540.
- Anantharam V. On the rod placement theorem of Rybko and Shlosman// Queueing Systems. 2006, V. 52, N. 3, P. 185−188.
- Andjel E. D. Invariant measures for the zero range process// Ann. Probab. 1982. V. 10, N. 3. P. 525−547.
- Baccelli F., Foss S.G., Ergodicity of Jackson-type queueing networks I. Queueing Systems. 1994, V. 17, P. 5−72.
- Baccelli F., Bonnard T. Window flow control in FIFO networks with cross traffic// Queueing Systems. 1999, V. 32, P. 195−231.
- Baccelli F., Borovkov A., Mairesse J. Asymptotic results on infinite tandem queueing networks// Probability Theory and Related Fields, 2000, V. 118, N. 3, P. 406−426.
- Baccelli F., Foss S. Moments and tails in monotone-separate stochastic networks// The Annals of Applied Probability, 2004, V. 14, P. 612−650.
- Baryshnikov Yu.M. Supporting-point processes and some of their applications// Probab. Theory Related Fields. 2000, V. 117, N. 2, P. 163−182.
- Baryshnikov Yu.M. GUEs and queues// Probab. Theory Related Fields. 2001, V. 119, N. 2, P. 256−274.
- Baryshnikov Yu.M., Ghrist R. On target enumeration in sensor networks via integration with respect to Euler characteristics// SIAM J. Appl. Math. 2009, V. 70, N. 3, P. 925−844.
- Benjamini I., Haggstrom O., Peres Yu., Steif J., Which properties of a random sequence are dynamically sensitive?// Ann. Probab. 2003, V. 31, N. 1, P. 1−34.
- Blank M. Variational principles in the analisis of traffic flows (why it is worth to go against the flow)// Markov Processes and Related Fields. 2000, V. 6, N. 3, P. 287−304.
- Borovkov A.A. Stochastic processes in queueing theory.// New York: Springer-Verlag, 1976, 280 p.
- Borovkov A.A. An asymptotic exit problem for multidimensional Markov chains// Markov Processes and Related Fields. 1997, V. 3, N. 4, P. 547 564.
- Borovkov A.A., Ergodicity and stability of stochastic processes// N.Y.: Wiley and Sons, 1998, 580 P.
- Borovkov A.A., Korshunov D.A., Schassberger R. Ergodicity of a polling network with an infinite number of stations// Queueing Systems, 1999, V. 1−3, P. 169−193.
- Bramson M. Instability of FIFO queueing networks// Ann. Appl. Probability. 1994. V. 4. P. 414−431.
- Bramson M. Instability of FIFO Queueing networks with quick service times// Ann. Appl. Probability. 1994. V. 4. P. 693−718.
- Bramson M. Convergence to equilibria for fluid models of FIFO queueing netwirks// Queueing Systems. 1996, V. 22, P. 5−45.
- Bramson M. State space collapse with application to heavy traffic limits for multiclass queueing networks// Queueing Systems. 1998, V. 30, P. 89−148.
- Bramson M. A stable queueing network with unstable fluid model// Ann. Appl. Probability. 1999, V. 9, P. 818−849.
- Bramson M., Dai J.G. Heavy traffic limits for some queueing networks// Ann. Appl Probability. 2001, V. 11, P. 49−90.
- Bramson M. Stability of queueing networks// N.Y.: Springer. 2008, VIII. V. 1950, 190 p.
- Chen H., Mandelbaum A. Discrete flow networks: bottlneck analisis and fluid approximations// Math. Oper. Res. 1991, V. 16, P. 408−446.
- Chen H. Fluid approximations and stability of multyclass queueing networks: work-conservativing disciplines// Ann. Appl. Probability. 1995, V. 5, P. 637−655.
- Chen H., Ye H. Existence condition for the diffusion approximations of multiclass priority queueing networks// Queueing Systems. 2001, V. 38, P. 435−470.
- Dai J.G. On Positive Harris recurrence of multiclass queueing networks: a unified approach via fluid models// Ann. Appl. Probability. 1995. V. 5. P. 49−77.
- Dai J.G., Meyn S.P. Stability and convergence of moments for multiclass queueing networks via fluid limit models// IEEE Trans.Automat. Control. 1995, V. 40, P. 1889−1904.
- Dai J.G. A fluid limit model criterion for instability of multiclass queueing networks// Ann. Appl. Probability. 1996, V. 6, P. 751−757.
- Dai J.G., Weiss G. Stability and instability of fluid models for re-entrant lines// Math. Oper. Res. 1996, V. 21, R 115−134.
- Dai J.G., Hassenbein J.J., Vande Vate J.H. Stability of a three-station fluid network// Queueing Systems. 1999, V. 33, R 293−325.
- Dai J.G., Vande Vate J.H. The stability of two-station multitype fluid networks// Operations Research. 2000, V. 48, P. 721−744.
- Dai J.G., Hassenbein J.J., Vande Vate J.H. Stability and instability of a two-station queueing network// Ann. Appl. Probability. 2004, V. 14, P. 326−377.
- Delcoigne F., Fayolle G. Thermodynamical limit and propagation of chaos in polling systems// Markov Processes and Related Fields. 1999. V. 5, N 1. P. 89−124.
- Dembo A., Vershik A., Zeitouni O. Large deviations for integer partitions// Markov Processes and Related Fields. 2000, V. 6, N. 2, P. 147−179.
- Deuschel J. D., Stroock D. W. Large deviations.// New York: Academic Press, 2001. 283 p.
- Duffield N.G., O’Connell N. Large deviations and overflow probabilities for the general single-server queue, with applications// Math. Proc. Camb. Phil. Soc. 1995, V. 118, N. 2, P. 363−374.
- Dumas V. A multiclass network with non-linear, non-convex, nonmonotonic stability conditions// Queueing Systems. 1997, V. 25, P. 1−43.
- Dumas V. Essential fases and stability conditions of multiclass networks with priorities// Markov Processes and Related Fields, 2001, V. 7, N. 4, P. 541−559.
- Dupius P., Ellis R. S., Weiss A. Large deviations for Markov processes with discontinuous statistics. I: general upper bounds// AT&T-BL Technical Memorandum, Work Project N. 311 404−3199. File Case 20 878. 1989.
- Ether S. N., Kurtz T. G. Markov processes: characterization and convergence.// N. Y.: J. Wiley and Sons, 1989. 534 p.
- Fayolle G., Ignatyuk I.A., Malyshev V.A., Mensliikov M.V. Random walks in two dimentional complexes// Queueing Systems. 1991, V. 9, P. 269−300.
- Fayolle G., Malyshev V.A., Mensliikov M.V. Random walks in quarter plane with zero drift. I: ergodicity and nullrecurrence// Annales d’Institut Henry Poincare, 1992, V. 28, N. 2, P. 179−194.
- Fayolle G., Iasnogorodski R., Malyshev V.A. Random walks in quarter plane// N.Y.: Springer, 1999. 158 p.
- Fayolle G., Malyshev V.A., Menshikov M.V. Topics in constructive theory of Markov chains. Part 1.// Cambridge: Cambridge University Press, 1995. 169 p.
- Foss S., Tweedy R.L. Perfect simulation and backward coupling// Stochastic Models, 1998, V. 14, N. 1−2, P. 187−204.
- Foss S., Chernova N. On stability of partially acessible multi-station queue with state-dependent routing// Queueing Systems, 1998, V. 29, N. l, P. 55−73.
- Foss S., Last G. Stability of polling systems with general service policies and with stage depending routing// Probability in the Engineering and Inf. Sciences, 1998, V. 12, N. 1, P. 49−68
- Foss S., Kovalevskii A., Stability criterion via fluid limits and its application to a polling model// Queueing Systems, 1999, V. 32, N. 1−3, P. 131−168
- Foss S., Konstantopoulos T. Extended renovation theoty and limit theorems for stochastic ordered graphs// Markov Processes and Related Fields, 2003, V. 9, N. 3, P. 413−468.
- Gajrat A.S., Iasnogorodski R., Malyshev V.A. Null recurrent string// Markov Processes and Related Fields. 1996, V. 2, N. 3, P. 427−460.
- Gamarnik D., Hasenbein J.J. Instability in stochastic and fluid queueing networks// Ann. Appl. Probability. 2005, V. 15, P. 1652−1690.
- Ganesh A., O’Connell N., Wishik D. Big queues// B.: Springer-Verlag. Lecture Notes in Mathematics, 2004, V. 1838. 260 p.
- Gibbens R.G., Kelly F.P. Dynamic routing in fully connected networks// IMA J. Math. Cont. Inf. 1990, V. 7, P. 77−111.
- Goodman J.B., Massey W.A. The non-ergodic Jackson networks// J. Appl. Probab. 1984. V. 21, N. 4. P. 860−869.
- Graham C., Meleard S. A large deviation principle for a large star-shaped loss network with lines of capacity one// Markov Processes and Related Fields. 1997, V. 3, N. 4, P. 475−492.
- Harrison J.M., Reiman M.I. Reflected Brownian motion on an ortant// Ann. Probability. 1981, V. 9, P. 302−308.
- Harrison J.M. Brownian models of queueing networks with heterogeneous customer populations// N.Y.: Springer. Stochastic Differential Systems, Stochastic Control Theory and their Applications. IMA Math. Appl. 1988, V. 10, P. 147−186.
- Harrison J.M. Balanced fluid models of multyclass queueing networks: a heavy traffic conjecture// N.Y.: Springer. Stochastic Networks. IMA Math. Appl. 1995, V. 71, P. 1−20.
- Harrisom J.M., Williams R.J. A multiclass closed queueing network with unconventional heavy traffic behavior// Ann. Appl. Probability. 1996, V. 6, P. 1−47.
- Hassenbein J.J. Necessary conditions for global stability of multiclass queueing networks// Oper. Res. Lett. 1997, V. 21, P. 87−94.
- Hutson V.C.L., Pym J. S. Applications of functional analysis and Operators theory.// London: Academic Press, 1980. 426 p.
- Ignatyuk I.A., Malyshev V.A., Classification of random walks in Z.// Selecta Mathematica, 1993, V. 12, N. 2, P. 129−194.
- Jackson R.R.P. Queueing systems with phase-type service// Operat. Res. Quart. 1954, V. 5, P. 109−120.
- Jackson R.R.P. Jobshop-like queueing systems// Mgmt. Sci. 1963, V. 10, P. 131−142.
- Jackson J.R. Networks of waiting lines// Operat. Res. 1959. V. 5, N 5. P. 518−521.
- Kantor M. Lower bound for the probability of the overload in certain queueing networks// J. Appl. Probab. 1984. V. 22, N. 2. P. 429−436.
- Kaspi H., Mandelbaum A. On Harris recurrence in continuous time// Math. Oper. Res. 1994, V. 19, P. 211−222.
- Kaspi H., Mandelbaum A. Regenerative closed queueing networks// Stoch. Stoch. Rep. 1992, V. 39, N. 4, P. 239−258.
- Kelly F.P. Networks of queues with customers of different types// J. Appl. Probability. 1975, V. 12, P. 542−554.
- Kelly F.P. Networks of queues// Adv. Appl. Probability. 1976, V. 8, N.2, P. 416−432.
- Kelly F. P. Reversibility and stochastic networks.// N. Y.: Wiley Sons, 1979. 222 p.
- Khas’minskii R.Z. Stochastic stability of differential equations// Ned.: Si-jthoff Nordhoff. 1980. 344 p.
- Kleinrock L. Communication Nets, Stochastic Message Flow and Delay// N. Y.: McGraw-Hill Book Company, 1964. 209 p.
- Kleinrock L. Queueing Systems, V. l Theory// N. Y.: Wiley Sons, 1975, 432 p.
- Kleinrock L. Queueing Systems, V. 2 Computer Applications// N. Y.: Wiley Sons, 1975, 549 p.
- Kolokoltsov V.N. Kinetic equations for the pure jump models of k-nary interacting particle systems// Markov Processes and Related Fields. 2006, N. 1, P. 95−138.
- Kumar P.R., Seidman T. Dynamic instabilities and stabilization methods in distributed real-time scheduling of manufacturing systems// IEEE Trans. Automat. Control. 1990. V. 35, N 3. P. 289−290.
- Kumar P.R. Re-entrant lines// Queueing Systems. 1993, V. 13, P. 87−110.
- Kumar S., Kumar P.R. Performance bounds for queueing networks and scheduling policies// IEEE Trans. Autom. Control. August 1994, V. AC-39, P. 1600−1611.
- Kumar S., Kumar P.R. Closed queueing networks in heavy traffic: fluid limits and efficiency// N.Y.: Springer-Verlag. Lecture Notes in Statistics. Stochasic networks: stability and rare events. Ed. P. Glasserman, K. Sigman, D.Yao. 1996, V. 117, P. 41−64.
- Kumar S., Kumar P.R. Fluctuation smoothing policies are stable for stochastic reentrant lines// Discrete Event Din. Syst. Theory Appl. 1996, V. 6, N. 4, P. 361−370.
- Kurkova I., Malyshev V.A. Martin boundary and elliptic curves// Markov Processes and Related Fields, 1998, V. 4, N. 2, P. 203−272.
- LeBoudec J.Y., Thiran P. Network calculus a theory of deterministic queuing systems.// Lecture Notes in Computer Science, N. 2050, Springer, 2001. 300 p.
- Lindvall T. Weak convergence of probability measures and random functions in the function space D0, oo) // J. of Appl. Probability. 1973. V. 10. P. 109−121.
- Liptser R., Spokoiny V., Veretennikov A.Yu. Freidlin-Wentzell type large deviations for smooth processes// Markov Processes and Related Fields. 2002, V. 8, N. 4, P. 611−636.
- Loynes R.M. The stability of a queue with nonindependent interarrival and service times// Proc. Camb. Phil. Soc. 1962, V. 58, P. 497−520.
- Loynes R.M., On the waiting time distribution for queues in series// J. Roy. Stat. Soe., 1965, V. 27, P. 491−496.
- Lu S.H., Kumar P.R. Distributed scheduling based on due dates and buffer priorities// IEEE Trans. Automat. Control. 1991, V. 36, P. 1406−1416.
- Malyshev V.A. Networks and Dynamical Systems// Adv. Appl. Probability. 1993. V. 25. P. 140−175.
- Malyshev V.A., Spieksma F. Intrinsic convergence rates of countable Markov chains// Markov Processes and Related Fields. 1995, V. 1, N. 2, P. 203−266.
- Malyshev V., Turova T. Gibbs measures on attractors in biological neural networks// Markov Processes and Related Fields. 1997, V. 3, N. 4, P. 443 464.
- Malyshev V.A. Fixed points for stochastic open» chemical systems// Markov Processes and Related Fields. 2005, V. 11, N. 2, P. 337−354.
- Mandelbaum A, Stolyar A.L. Scheduling flexible servers with convex delay costs: heavy traffic optimality// Oper. Res. 2004, V. 52, N. 6, P. 836−855.
- Manita A., Shcherbakov V. Asymptotic analisis of a particle system with mean-fiels interaction// Markov Processes and Related Fields. 2005, V. 11, N. 3, P. 489−518.
- Massey B. Open Networks of Queues// Adv. Appl. Probability. 1984. V. 16, N.l. P. 176−201.
- McKean H.P., Jr. A class of Markov processes associated with nonlinear parabolic equations.// Proc. Nat. Acad. Sci. U.S.A., 56, 1966, 1907−1911.
- McKean H.P., Jr. An exponential formula for solving Boltzmann’s equation for a Maxwellian gas.// J. Combinatorial Theory, 2, 1967, 358−382.
- Meyn S.P., Tweedie R.L. Generalized resolvents and Harris recurrence of Markov processes// Contemporary Mathematics. 1993, V. 149, P.227−250.
- Mein S.P., Tweedie R.L. Stability of Markov processes II: continuous-time processes and sample chains// Adv. Appl. Probability. 1993, V. 25, P. 487 517.
- Meyn S.P., Tweedie R.L. Stability of Markov processes III: Foster-Lyapunov criteria for continuous-time processes// Adv. Appl. Probability. 1993, V. 25, P. 518−548.
- Meyn S.P., Tweedie R.L. Markov chains and stochastic stability// N.Y.: Springer. 1993. 568 p.
- Meyn S.P., Tweedie R.L. State dependent criteria for convergence of Markoc chains// Ann. Appl. Probability. 1994, V. 4, P. 149−168.
- Meyn S.P., Down D. Stability of generalized Jackson networks// Ann. Appl. Probability. 1994, V. 4, P. 124−148.
- Meyn S.P. Transience of multiclass queueing networks and their fluid models// Ann. Appl. Probability. 1995. V. 5. P. 946−957.
- Milstein G.N., Veretennikov A.Yu. On deterministic and stochastic sliding modes via small diffusion approximation// Markov Processes and Related Fields. 2000, V. 6, N. 3, P. 371−396.
- Moustafa M.D. Input-output Markov processes// Proc. Konjukijke Netherlands Aqad. Netenschappen. 1957, V. 60, P. 112−118.
- Perkins J.R., Kumar P.R. Stable, distributed, real-time scheduling of flexible manufacturing / assembly / disassembly systems// IEEE Trans. Automatic Control. 1989, V. 34, N. 2, P. 139−147.
- O’Connell N. Prom laws of large numbers to large deviation principles// Markov Processes and Related Fields. 1997, V. 3, N. 4, P. 589−596.
- Puhalskii A. On functional principle of large deviations//New Trends in Probability and Statistics. Utrecht: VSPMoks’las, 1991. V. 1. P. 198−218.
- Puhalskii A. Large deviation analysis of the single server queue// Queue-ing Systems. 1995. V. 21. P. 5−66- erratum: 1996. V. 23. P. 33
- Puhalskii A., Whitt W. Functional large deviation principles for firstpassage-time processes// Ann. Appl. Probability. 1997. V. 7, N 2. P. 362 381.
- Reiman M.I., Williams R.J. A boundary property of semimartingale reflecting Brownian motions// Probab. Theory Related Fields. 1988, V. 77, P. 87−97.
- Seidman T.I. «First come, first served"can be unstable// IEEE Trans. Automat. Control. 1994, V. 39, P. 2166−2170.
- Stolyar A. On the stability of multiclass queueing networks: a relaxed sufficient condition via limiting fluid processes// Markov Proc. Rel. Fields. 1995. V. 1, N. 4. P. 491−512.
- Stolyar A.L., Ramakrishnan K.K. The stability of a flow merge point with non-interleaving cut-through scheduling disciplines// Proceedings of IFO-COM 1999.
- Stolyar A.L. Maxweight scheduling in a generalized switch: state space collapse and workload minimization in heavy traffic// Adv. Appl. Probability. 2004, V. 14, N. 2, P. 1−53.
- Stoyan D., Daley D. Comparison methods for queues and other stochastic models.// Chichester New York: Wiley, 1983. 217 p.
- Taylor L.M., Williams R.J. Existence and uniqueness of semimartingale reflecting Brownian motions in an ortant// Probab. Theory Related Fields. 1993, V. 96, P. 283−317.
- Varadhan S. H. S. Large deviations and applications.// Philadelphia: SIAM, 1984. 75 p.
- Varakin A.B., Veretennikov A.Yu. On parameter estimation for «poli-nomial ergodic"Markov chains with polinomial growth loss functions// Markov Processes and Related Fields. 2002, V. 8, N. 1, P. 127−144.
- Whitt W. Large fluctuations in a deterministic multiclass network of queues// Managm. Sci. 1993, V. 39, P. 1020−1028.
- Whitt W. Stochastic-process limits: an introduction to stochastic process limits and their application to queues// N.Y.: Springer. 2002. 529 p.
- Williams R.J. An invariant principle for semimartingale reflecting Brownian motion in ortant// Queueing Systems. 1998, V. 30, P. 5−25
- Williams R.J. Diffusion approximation for open multiclass queueing networks: sufficient conditions involving state space collapse// Queueing Systems. 1998, V. 30, P. 27−88.
- Yambartsev A.A., Zamyatin A.A. Dynamics of two interacting queues// Markov Processes and Related Fields. 2001, V. 7, N. 2, P. 301−324.