ΠŸΠΎΠΌΠΎΡ‰ΡŒ Π² написании студСнчСских Ρ€Π°Π±ΠΎΡ‚
АнтистрСссовый сСрвис

Π€ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Π°Ρ топография транспортно-ΠΌΠ°Ρ‚Ρ€ΠΈΡ‡Π½ΠΎΠΉ РНК

Π”ΠΈΡΡΠ΅Ρ€Ρ‚Π°Ρ†ΠΈΡΠŸΠΎΠΌΠΎΡ‰ΡŒ Π² Π½Π°ΠΏΠΈΡΠ°Π½ΠΈΠΈΠ£Π·Π½Π°Ρ‚ΡŒ ΡΡ‚ΠΎΠΈΠΌΠΎΡΡ‚ΡŒΠΌΠΎΠ΅ΠΉ Ρ€Π°Π±ΠΎΡ‚Ρ‹

ΠŸΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠ΅ ΠΏΠΎΠ·ΠΈΡ†ΠΈΠΎΠ½ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΊΠΎ Π΄ΠΎΠ½Π° возобновлСния синтСза Π² Π-участкС рибосомы задаСтся структурным элСмСнтом, сформированным Π±Π΅Π»ΠΊΠΎΠΌ SmpB, псСвдоузлом 1 ΠΈ ΠΏΠ΅Ρ‚Π»Ρ‘ΠΉ А79-А86 Ρ‚ΠΌΠ ΠΠš, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ ΡΠΎΠ²Π΅Ρ€ΡˆΠ°Π΅Ρ‚ ΠΏΠΎΠ²ΠΎΡ€ΠΎΡ‚ ΠΏΡ€ΠΈ транслокации TLD Ρ‚ΠΌΠ ΠΠš ΠΈΠ· Π-участка рибосомы Π² Π -участок. Π‘Π΅Π»ΠΎΠΊ SrapB Π²Ρ…ΠΎΠ΄ΠΈΡ‚ Π² ΡΠΎΡΡ‚Π°Π² Ρ‚ΠΌΠ ΠΠš-рибосомных комплСксов Π½Π° Π²ΡΠ΅Ρ… стадиях транс-трансляции. Π­Π»ΠΎΠ½Π³Π°Ρ†ΠΈΠΎΠ½Π½Ρ‹Π΅ комплСксы содСрТат ΠΏΠΎ ΠΎΠ΄Π½ΠΎΠΉ… Π§ΠΈΡ‚Π°Ρ‚ΡŒ Π΅Ρ‰Ρ‘ >

Π€ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Π°Ρ топография транспортно-ΠΌΠ°Ρ‚Ρ€ΠΈΡ‡Π½ΠΎΠΉ РНК (Ρ€Π΅Ρ„Π΅Ρ€Π°Ρ‚, курсовая, Π΄ΠΈΠΏΠ»ΠΎΠΌ, ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½Π°Ρ)

Π‘ΠΎΠ΄Π΅Ρ€ΠΆΠ°Π½ΠΈΠ΅

  • БПИБОК Π‘ΠžΠšΠ ΠΠ©Π•ΠΠ˜Π™
  • ΠžΠ‘Π—ΠžΠ  Π›Π˜Π’Π•Π ΠΠ’Π£Π Π«
  • Вранспортно-матричная РНК
  • Вторичная структура Ρ‚ΠΌΠ ΠΠš
  • ΠŸΡ€ΠΎΡ†Π΅ΡΡΠΈΠ½Π³ ΠΏΡ€Π΅Π΄ΡˆΠ΅ΡΡ‚Π²Π΅Π½Π½ΠΈΠΊΠ° Ρ‚ΠΌΠ ΠΠš
  • ΠœΠΎΠ΄ΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Π΅ основания Π² Ρ‚ΠΌΠ ΠΠš
  • АминоацилированиС Ρ‚ΠΌΠ ΠΠš
  • Π‘Π΅Π»ΠΎΠΊ Π‘Ρ‚Ρ€Π’
  • ΠŸΡ€ΠΎΡΡ‚Ρ€Π°Π½ΡΡ‚Π²Π΅Π½Π½Π°Ρ организация Π±Π΅Π»ΠΊΠ° Π‘Ρ‚Ρ€Π’
  • Π‘Ρ‚Ρ€ΡƒΠΊΡ‚ΡƒΡ€Π° комплСкса Ρ‚Π ΠΠš-ΠΏΠΎΠ΄ΠΎΠ±Π½ΠΎΠΉ области Ρ‚ΠΌΠ ΠΠš с Π±Π΅Π»ΠΊΠΎΠΌ Π­Ρ‚Ρ€Π‘
  • Бтруктурная организация комплСксов Ρ‚ΠΌΠ ΠΠš ΠΈ Π±Π΅Π»ΠΊΠ° Π­Ρ‚Ρ€Π’ с Ρ€ΠΈΠ±ΠΎΡΠΎΠΌΠΎΠΉ
  • Вранс- трансляция
  • АминоацилированиС Ρ‚ΠΌΠ ΠΠš, Π΅Ρ‘ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡ‚Π²ΠΈΠ΅ с Π±Π΅Π»ΠΊΠ°ΠΌΠΈ Π‘Ρ‚Ρ€Π’ ΠΈ Π•Π‘-Π’ΠΈ, Π° Ρ‚Π°ΠΊΠΆΠ΅ связываниС этого комплСкса с Ρ€ΠΈΠ±ΠΎΡΠΎΠΌΠΎΠΉ
  • ΠŸΡ€ΠΈΡ‡ΠΈΠ½Ρ‹ появлСния свободного А-участка Π² Ρ‚Ρ€Π°Π½ΡΠ»ΠΈΡ€ΡƒΡŽΡ‰ΠΈΡ… рибосомах
  • РаспознаваниС «Π°Ρ€Π΅ΡΡ‚ΠΎΠ²Π°Π½Π½Ρ‹Ρ…» рибосом ΠΈ ΡΠ²ΠΎΠ±ΠΎΠ΄Π½ΠΎΠ³ΠΎ А-сайта
  • ΠŸΠ΅Ρ€Π΅ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅ Π½Π° ΠΌΠ°Ρ‚Ρ€ΠΈΡ‡Π½ΡƒΡŽ ΠΎΠ±Π»Π°ΡΡ‚ΡŒ, ΡƒΠ·Π½Π°Π²Π°Π½ΠΈΠ΅ ΠΊΠΎΠ΄ΠΎΠ½Π° продолТСния синтСза
  • Элонгация ΠΈ Ρ‚Срминация
  • ДСградация Π±Π΅Π»ΠΊΠ° ΠΈ ΠΌΠ ΠΠš
  • БиологичСская Ρ€ΠΎΠ»ΡŒ /ΠΈ/7ш/с-трансляции
  • РЕЗУЛЬВАВЫ И Π˜Π₯ ΠžΠ‘Π‘Π£Π–Π”Π•ΠΠ˜Π•
  • НСканоничСскоС взаимодСйствиС Ρ‚ΠΌΠ ΠΠš с ΡΠ»ΠΎΠ½Π³Π°Ρ†ΠΈΠΎΠ½Π½Ρ‹ΠΌ Ρ„Π°ΠΊΡ‚ΠΎΡ€ΠΎΠΌ Π’ΠΈ
  • Π‘ΠΈΠ½Ρ‚Π΅Π· ΠΌΠΎΠ΄ΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠΉ Ρ‚ΠΌΠ ΠΠš
  • Π€ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΈ Π°Π½Π°Π»ΠΈΠ· ΠΊΠΎΠ²Π°Π»Π΅Π½Ρ‚Π½ΠΎΠ³ΠΎ соСдинСния Ρ‚ΠΌΠ ΠΠš с Π±Π΅Π»ΠΊΠ°ΠΌΠΈ Π‘100 экстракта
  • КомплСкс Π΄Π΅Π°Ρ†ΠΈΠ»ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠΉ Ρ‚ΠΌΠ ΠΠš с ΡΠ»ΠΎΠ½Π³Π°Ρ†ΠΈΠΎΠ½Π½Ρ‹ΠΌ Ρ„Π°ΠΊΡ‚ΠΎΡ€ΠΎΠΌ Π’ΠΈ Π² ΠΏΡ€ΠΈΡΡƒΡ‚ствии Π²Π’Π  ΠΈΠ»ΠΈ Π²Π‘Π 
  • МодСль взаимодСйствия Ρ‚ΠΌΠ ΠΠš с Ρ€ΠΈΠ±ΠΎΡΠΎΠΌΠΎΠΉ
  • ДвухдомСнная организация Ρ‚ΠΌΠ ΠΠš
  • Поиск элСмСнта Ρ‚ΠΌΠ ΠΠš, ΠΎΠ±Π΅ΡΠΏΠ΅Ρ‡ΠΈΠ²Π°ΡŽΡ‰Π΅Π³ΠΎ ΡƒΠ·Π½Π°Π²Π°Π½ΠΈΠ΅ А-участком рибосомы
  • ИсслСдованиС Ρ€ΠΎΠ»ΠΈ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… консСрвативных Π½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄ΠΎΠ² Ρ‚ΠΌΠ ΠΠš
  • Поиск интрамолСкулярных супрСссоров для Π»Π΅Ρ‚Π°Π»ΡŒΠ½Ρ‹Ρ… ΠΌΡƒΡ‚Π°Ρ†ΠΈΠΉ ЦА85,86Π‘Π‘ иЦАЗ ()0,301Π‘Π‘
  • ΠœΡƒΡ‚Π°Ρ†ΠΈΠΈ Π½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄ΠΎΠ² Ρ‚Π ΠΠš-ΠΏΠΎΠ΄ΠΎΠ±Π½ΠΎΠΉ части, Π·Π°Ρ‚Ρ€Π°Π³ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ Ρ‚ΠΌΠ ΠΠš
  • Π’Ρ‹Π΄Π΅Π»Π΅Π½ΠΈΠ΅ комплСксов транспортно-ΠΌΠ°Ρ‚Ρ€ΠΈΡ‡Π½ΠΎΠΉ РНК с Ρ€ΠΈΠ±ΠΎΡΠΎΠΌΠΎΠΉ
  • Анализ РНК, входящих Π² ΡΠΎΡΡ‚Π°Π² Π²Ρ‹Π΄Π΅Π»Π΅Π½Π½Ρ‹Ρ… комплСксов
  • Анализ Π±Π΅Π»ΠΊΠΎΠ²ΠΎΠ³ΠΎ состава Π²Ρ‹Π΄Π΅Π»Π΅Π½Π½Ρ‹Ρ… комплСксов
  • ИсслСдованиС комплСксов Ρ‚ΠΌΠ ΠΠš с Ρ€ΠΈΠ±ΠΎΡΠΎΠΌΠΎΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ химичСского ΠΏΡ€ΠΎΠ±ΠΈΠ½Π³Π°
  • ИсслСдованиС комплСкса Ρ‚ΠΌΠ ΠΠš-4 с Ρ€ΠΈΠ±ΠΎΡΠΎΠΌΠΎΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ криоэлСктронной Ρ‚ΠΎΠΌΠΎΠ³Ρ€Π°Ρ„ΠΈΠΈ
  • ΠœΠΎΠ΄Π΅Π»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ структуры комплСксов Ρ‚ΠΌΠ ΠΠš с Ρ€ΠΈΠ±ΠΎΡΠΎΠΌΠΎΠΉ
  • ΠœΠΠ’Π•Π Π˜ΠΠ›Π« И ΠœΠ•Π’ΠžΠ”Π«
  • Π Π΅Π°ΠΊΡ‚ΠΈΠ²Ρ‹ ΠΈ Π±ΠΈΠΎΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚Ρ‹
  • Π‘ΡƒΡ„Π΅Ρ€Ρ‹ ΠΈ Ρ€Π°ΡΡ‚Π²ΠΎΡ€Ρ‹
  • ΠžΠ»ΠΈΠ³ΠΎΠ΄Π΅Π·ΠΎΠΊΡΠΈΡ€ΠΈΠ±ΠΎΠ½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄Ρ‹ ΠΈ ΡˆΡ‚Π°ΠΌΠΌΡ‹
  • Π€ΠΎΡ‚ΠΎΠ°Ρ„Ρ„ΠΈΠ½Π½ΠΎΠ΅ химичСскоС сшиваниС Ρ‚ΠΌΠ ΠΠš
  • Π‘ΠΈΠ½Ρ‚Π΅Π· Ρ‚ΠΌΠ ΠΠš с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ Π’7-РНК-ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π°Π·Ρ‹
  • Π‘ΠΈΠ½Ρ‚Π΅Π· Ρ‚ΠΌΠ ΠΠš, содСрТащСй 4-Ρ‚ΠΈΠΎΡƒΡ€ΠΈΠ΄ΠΈΠ½, с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ Π’7-РНК-ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π°Π·Ρ‹
  • Π’ΠΎ-Ρ„ΠΈΠ½Π³Π΅Ρ€ΠΏΡ€ΠΈΠ½Ρ‚Ρ‹
  • ΠšΠΎΠΌΠΏΠ»Π΅ΠΊΡΠΎΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΈ Ρ„ΠΎΡ‚ΠΎΠ°ΠΊΡ‚ΠΈΠ²ΠΈΡ€ΡƒΠ΅ΠΌΠΎΠ΅ химичСскоС сшиваниС Ρ‚ΠΌΠ ΠΠš
  • Анализ Π±Π΅Π»ΠΊΠΎΠ²ΠΎΠ³ΠΎ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚Π° «ΡΡˆΠΈΠ²ΠΊΠΈ»
  • ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΏΠΎΠ·ΠΈΡ†ΠΈΠΈ «ΡΡˆΠΈΠ²ΠΊΠΈ» Π² Ρ‚ΠΌΠ ΠΠš
  • Π€ΡƒΡ‚ΠΏΡ€ΠΈΠ½Ρ‚ΠΈΠ½Π³
  • ВнутримолСкулярноС Ρ„ΠΎΡ‚ΠΎΠ°Ρ„Ρ„ΠΈΠ½Π½ΠΎΠ΅^химичСскоС сшиваниС Ρ‚ΠΌΠ ΠΠš
  • Анализ ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚ΠΎΠ² сшивания с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ Ρ€Π΅Π°ΠΊΡ†ΠΈΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠΉ транскрипции
  • Π“ΠΈΠ΄Ρ€ΠΎΠ»ΠΈΠ· Ρ‚ΠΌΠ ΠΠš с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ Π ΠΠšΠ°Π·Ρ‹ Н
  • Π˜Π·ΠΌΠ΅Ρ€Π΅Π½ΠΈΠ΅ констант ассоциации комплСксов Ρ‚ΠΌΠ ΠΠš ΠΈ Ρ‚Π ΠΠš с EF-Tu
  • ΠœΠ°Π½ΠΈΠΏΡƒΠ»ΡΡ†ΠΈΠΈ с Π”ΠΠš
  • ΠŸΡ€ΠΈΠ³ΠΎΡ‚ΠΎΠ²Π»Π΅Π½ΠΈΠ΅ ΠΊΠΎΠΌΠΏΠ΅Ρ‚Π΅Π½Ρ‚Π½Ρ‹Ρ… ΠΊΠ»Π΅Ρ‚ΠΎΠΊ Π•. coli для трансформации с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ Ρ‚Π΅ΠΏΠ»ΠΎΠ²ΠΎΠ³ΠΎ шока
  • Врансформация ΠΊΠΎΠΌΠΏΠ΅Ρ‚Π΅Π½Ρ‚Π½Ρ‹Ρ… ΠΊΠ»Π΅Ρ‚ΠΎΠΊ Π•. coli с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ Ρ‚Π΅ΠΏΠ»ΠΎΠ²ΠΎΠ³ΠΎ шока 163 ΠŸΡ€ΠΈΠ³ΠΎΡ‚ΠΎΠ²Π»Π΅Π½ΠΈΠ΅ ΠΊΠΎΠΌΠΏΠ΅Ρ‚Π΅Π½Ρ‚Π½Ρ‹Ρ… ΠΊΠ»Π΅Ρ‚ΠΎΠΊ Π•. coli для элСктротрансформации
  • ЭлСктротрансформация ΠΊΠ»Π΅Ρ‚ΠΎΠΊ Π•. col
  • Π’Ρ‹Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΏΠ»Π°Π·ΠΌΠΈΠ΄Π½ΠΎΠΉ Π”ΠΠš
  • ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΈ Π”ΠΠš Π² Ρ€Π°ΡΡ‚Π²ΠΎΡ€Π΅
  • Π Π°Π·Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Ρ„Ρ€Π°Π³ΠΌΠ΅Π½Ρ‚ΠΎΠ² Π”ΠΠš Π² Π°Π³Π°Ρ€ΠΎΠ·Π½ΠΎΠΌ Π³Π΅Π»Π΅
  • Π’Ρ‹Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Ρ„Ρ€Π°Π³ΠΌΠ΅Π½Ρ‚ΠΎΠ² Π”ΠΠš ΠΈΠ· Π°Π³Π°Ρ€ΠΎΠ·Π½ΠΎΠ³ΠΎ гСля
  • ΠŸΡ€ΠΈΠ³ΠΎΡ‚ΠΎΠ²Π»Π΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² ΠΈ Π²ΡΡ‚Π°Π²ΠΎΠΊ
  • Π›ΠΈΠ³ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅
  • Π‘Π°ΠΉΡ‚-Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Π½Ρ‹ΠΉ ΠΌΡƒΡ‚Π°Π³Π΅Π½Π΅Π·
  • Π‘ΠΎΠ·Π΄Π°Π½ΠΈΠ΅ ΡˆΡ‚Π°ΠΌΠΌΠ° Π•. coli SKZl (Assr./4)
  • ΠšΠ»ΠΎΠ½ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Π³Π΅Π½Π°, ΠΊΠΎΠ΄ΠΈΡ€ΡƒΡŽΡ‰Π΅Π³ΠΎ Ρ‚ΠΌΠ ΠΠš
  • Π‘ΠΎΠ·Π΄Π°Π½ΠΈΠ΅ ΠΏΠ»Π°Π·ΠΌΠΈΠ΄Ρ‹ pR Π΄Π»Ρ гСнСтичСской систСмы опрСдСлСния активности Ρ‚ΠΌΠ ΠΠš
  • ΠšΠΎΠ½ΡΡ‚Ρ€ΡƒΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΏΠ»Π°Π·ΠΌΠΈΠ΄Ρ‹ pGEMstra
  • Π‘Π°ΠΉΡ‚-Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Π½Ρ‹ΠΉ ΠΌΡƒΡ‚Π°Π³Π΅Π½Π΅Π· Ρ‚ΠΌΠ ΠΠš
  • ΠšΠ»ΠΎΠ½ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Π³Π΅Π½Π° Ρ€Π΅ΠΏΠΎΡ€Ρ‚Ρ‘Ρ€Π½ΠΎΠ³ΠΎ ΠΏΠ΅ΠΏΡ‚ΠΈΠ΄Π° Π² ΠΏΠ»Π°Π·ΠΌΠΈΠ΄Ρ‹ сСмСйства pGEM
  • Π‘Π»ΡƒΡ‡Π°ΠΉΠ½Ρ‹ΠΉ ΠΌΡƒΡ‚Π°Π³Π΅Π½Π΅Π· Ρ‚ΠΌΠ ΠΠš in vivo ΠΈ Π°Π½Π°Π»ΠΈΠ· ΠΌΡƒΡ‚Π°Π½Ρ‚ΠΎΠ²
  • ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΏΠ΅Ρ€Π²ΠΈΡ‡Π½ΠΎΠΉ структуры Π”ΠΠš ΠΏΠΎ Π‘энгСру
  • Анализ активности ΠΌΠΎΠ»Π΅ΠΊΡƒΠ» Ρ‚ΠΌΠ ΠΠš
  • Анализ активности ΠΌΠΎΠ»Π΅ΠΊΡƒΠ» Ρ‚ΠΌΠ ΠΠš с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ «Π³Π΅Π½Π΅Ρ‚ичСской» систСмы. 173 ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ активности ΠΌΠΎΠ»Π΅ΠΊΡƒΠ» Ρ‚ΠΌΠ ΠΠš с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ Π³ΠΈΠ±Ρ€ΠΈΠ΄Π½ΠΎΠ³ΠΎ Ρ„Π°Π³Π°
  • Xi. mmP
  • АминоацилированиС Ρ‚ΠΌΠ ΠΠš
  • Анализ полоТСния ΠΏΠ΅ΠΏΡ‚ΠΈΠ΄Π° Π² ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠ΅
  • Π’Ρ‹Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΈ Π°Π½Π°Π»ΠΈΠ· комплСксов Ρ‚ΠΌΠ ΠΠš с Ρ€ΠΈΠ±ΠΎΡΠΎΠΌΠΎΠΉ
  • Π’Ρ‹Π΄Π΅Π»Π΅Π½ΠΈΠ΅ комплСксов
  • Анализ РНК-состава комплСкса
  • Анализ Π±Π΅Π»ΠΊΠΎΠ²ΠΎΠ³ΠΎ состава комплСкса
  • Π˜Π·ΡƒΡ‡Π΅Π½ΠΈΠ΅ комплСксов Ρ‚ΠΌΠ ΠΠš с Ρ€ΠΈΠ±ΠΎΡΠΎΠΌΠΎΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ химичСского ΠΏΡ€ΠΎΠ±ΠΈΠ½Π³Π°.184 ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ структуры комплСкса рибосомы с Ρ‚ΠΌΠ ΠΠš-4 ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ криоэлСктронной Ρ‚ΠΎΠΌΠΎΠ³Ρ€Π°Ρ„ΠΈΠΈ
  • ΠœΠΎΠ΄Π΅Π»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ структуры комплСксов Ρ‚ΠΌΠ ΠΠš с Ρ€ΠΈΠ±ΠΎΡΠΎΠΌΠΎΠΉ
  • Π’Π«Π’ΠžΠ”Π«

Π²Ρ‹Π²ΠΎΠ΄Ρ‹.

1. Π­Π»ΠΎΠ½Π³Π°Ρ†ΠΈΠΎΠ½Π½Ρ‹ΠΉ Ρ„Π°ΠΊΡ‚ΠΎΡ€ Tu ΠΈ Ρ‚ΠΌΠ ΠΠš ΡƒΡ‡Π°ΡΡ‚Π²ΡƒΡŽΡ‚ Π²ΠΎ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡ‚Π²ΠΈΠΈ Π½ΠΎΠ²ΠΎΠ³ΠΎ Ρ‚ΠΈΠΏΠ°. Π’ ΠΎΡ‚Π»ΠΈΡ‡ΠΈΠ΅ ΠΎΡ‚ ΠΊΠ°Π½ΠΎΠ½ΠΈΡ‡Π΅ΡΠΊΠΎΠ³ΠΎ комплСкса ΠΌΠ΅ΠΆΠ΄Ρƒ Π°Ρ†ΠΈΠ»ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹ΠΌ Ρ‚Π ΠΠš-ΠΏΠΎΠ΄ΠΎΠ±Π½Ρ‹ΠΌ Π΄ΠΎΠΌΠ΅Π½ΠΎΠΌ Ρ‚ΠΌΠ ΠΠš ΠΈ EF-Tu*GTP дСацилированная Ρ‚ΠΌΠ ΠΠš ΠΎΠ±Ρ€Π°Π·ΡƒΠ΅Ρ‚ комплСкс с EF-Tu*GDP Π·Π° ΡΡ‡Ρ‘Ρ‚ взаимодСйствия со ΡΠΏΠΈΡ€Π°Π»ΡŒΡŽ 2 ΠΈ ΠΏΡΠ΅Π²Π΄ΠΎΡƒΠ·Π»ΠΎΠΌ 4.

2. Π‘Π΅Π»ΠΎΠΊ SrapB Π²Ρ…ΠΎΠ΄ΠΈΡ‚ Π² ΡΠΎΡΡ‚Π°Π² Ρ‚ΠΌΠ ΠΠš-рибосомных комплСксов Π½Π° Π²ΡΠ΅Ρ… стадиях транс-трансляции. Π­Π»ΠΎΠ½Π³Π°Ρ†ΠΈΠΎΠ½Π½Ρ‹Π΅ комплСксы содСрТат ΠΏΠΎ ΠΎΠ΄Π½ΠΎΠΉ ΠΌΠΎΠ»Π΅ΠΊΡƒΠ»Π΅ Π±Π΅Π»ΠΊΠ° SmpB, связанной с ΠΊΠ°Π½ΠΎΠ½ΠΈΡ‡Π΅ΡΠΊΠΈΠΌ участком взаимодСйствия Π½Π° TLD Ρ‚ΠΌΠ ΠΠš.

3. ΠœΠΎΠ»Π΅ΠΊΡƒΠ»Π° Ρ‚ΠΌΠ ΠΠš Π² Ρ€Π°ΡΡ‚Π²ΠΎΡ€Π΅ сущСствуСт Π² Π²ΠΈΠ΄Π΅ Π΄Π²ΡƒΡ… ΠΊΠΎΠΌΠΏΠ°ΠΊΡ‚Π½ΠΎ свСрнутых Π΄ΠΎΠΌΠ΅Π½ΠΎΠ², ΠΌΠ΅ΠΆΠ΄Ρƒ ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΌΠΈ ΡƒΠ»ΠΎΠΆΠ΅Π½Π° одноцСпочСчная мРНК-подобная ΠΎΠ±Π»Π°ΡΡ‚ΡŒ. Π’ Ρ…ΠΎΠ΄Π΅ транс-трансляции Π΄ΠΎΠΌΠ΅Π½Ρ‹, Π½Π΅ ΠΈΠ·ΠΌΠ΅Π½ΡΡ своСй структуры, Π·Π°Π½ΠΈΠΌΠ°ΡŽΡ‚ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Ρ‘Π½Π½Ρ‹Π΅ сайты Π½Π° Ρ€ΠΈΠ±ΠΎΡΠΎΠΌΠ΅, Π² Ρ‚ΠΎ Π²Ρ€Π΅ΠΌΡ ΠΊΠ°ΠΊ матричная ΠΎΠ±Π»Π°ΡΡ‚ΡŒ пСрСмСщаСтся ΠΏΠΎ Π½Π΅ΠΉ Π² ΡΠΊΡΠΏΠΎΠ½ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅.

4. Π­ΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Π°Ρ ΠΏΡ€ΠΎΠ²Π΅Ρ€ΠΊΠ° Π΄Π²ΡƒΡ…Π΄ΠΎΠΌΠ΅Π½Π½ΠΎΠΉ ΠΌΠΎΠ΄Π΅Π»ΠΈ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ химичСских, физичСских ΠΈ Π±ΠΈΠΎΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΎΠ½Π½Ρ‹Ρ… ΠΏΠΎΠ΄Ρ…ΠΎΠ΄ΠΎΠ² позволяСт ΠΏΠΎΡΡ‚Ρ€ΠΎΠΈΡ‚ΡŒ Π΄ΠΈΠ½Π°ΠΌΠΈΡ‡Π΅ΡΠΊΡƒΡŽ модСль транс-трансляции, Π°Π΄Π΅ΠΊΠ²Π°Ρ‚Π½ΡƒΡŽ всСй совокупности ΠΈΠΌΠ΅ΡŽΡ‰ΠΈΡ…ΡΡ Π½Π°' сСгодняшний дСнь Π΄Π°Π½Π½Ρ‹Ρ…. Богласно этой ΠΌΠΎΠ΄Π΅Π»ΠΈ структурныС элСмСнты Ρ‚ΠΌΠ ΠΠš (псСвдоузлы, спирали, Π°Ρ€ΠΊΠ° Π²ΠΎΠΊΡ€ΡƒΠ³ Π³ΠΎΠ»ΠΎΠ²Ρ‹ 30S рибосомной субчастицы, сформированная псСвдоузлами), ΡΠΎΡ…Ρ€Π°Π½ΡΡŽΡ‚ΡΡ Π² ΠΏΡ€ΠΎΡ†Π΅ΡΡΠ΅ ΡˆΡ€Π°Π½ΠΎΡ‚Ρ€Π°Π½ΡΠ»ΡΡ†ΠΈΠΈ. ΠžΡΠ½ΠΎΠ²Π½Ρ‹Π΅ измСнСния ΠΏΡ€ΠΈ ΠΏΡ€ΠΎΡ…ΠΎΠΆΠ΄Π΅Π½ΠΈΠΈ MLD Ρ‚ΠΌΠ ΠΠš Ρ‡Π΅Ρ€Π΅Π· рибосому Π·Π°Ρ‚Ρ€Π°Π³ΠΈΠ²Π°ΡŽΡ‚ Ρ€Π°ΠΉΠΎΠ½ мРНК-ΠΏΠΎΠ΄ΠΎΠ±Π½ΠΎΠΉ области ΠΈ ΡΠΏΠΈΡ€Π°Π»ΠΈ 5 Ρ‚ΠΌΠ ΠΠš.

5. ΠŸΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠ΅ ΠΏΠΎΠ·ΠΈΡ†ΠΈΠΎΠ½ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΊΠΎ Π΄ΠΎΠ½Π° возобновлСния синтСза Π² Π-участкС рибосомы задаСтся структурным элСмСнтом, сформированным Π±Π΅Π»ΠΊΠΎΠΌ SmpB, псСвдоузлом 1 ΠΈ ΠΏΠ΅Ρ‚Π»Ρ‘ΠΉ А79-А86 Ρ‚ΠΌΠ ΠΠš, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ ΡΠΎΠ²Π΅Ρ€ΡˆΠ°Π΅Ρ‚ ΠΏΠΎΠ²ΠΎΡ€ΠΎΡ‚ ΠΏΡ€ΠΈ транслокации TLD Ρ‚ΠΌΠ ΠΠš ΠΈΠ· Π-участка рибосомы Π² Π -участок.

1. Lee S.Y., Bailey S.C., Apirion D. 1978. Small stable RNAs from Escherichia colt evidence for the existence of new molecules and for a new ribonucleoprotein particle containing 6S RNA. J. Bacteriol. 133, 1015−1023.

2. Jentch, S. 1996. When proteins receive deadly message at birth. Science. 271, 955−956.

3. Inouye M., Delihas N. 1988. Small RNAs in the prokaryotes: a growing list of diverse roles. Cell. 53, 5−7.

4. Jain S.K., Gurevitz M., Apirion D. 1982. A small RNA that complements mutants in the RNA processing enzyme ribonuclease P. J. Mol. Biol. 162, 515−533.5. http://rnp .uthct.edu/rnp/tmRDB/tmRDB .html.

5. Komine Y., Inokuchi H. 1991. Physical map locations of the genes that encode small stable RNAs in Escherichia coli. J. Bacteriol. 173, 5252.

6. Chauhan A.K., Apirion D. 1989. The gene for a small stable RNA (lOSa RNA) of Escherichia coli. Mol. Microbiol. 3, 1481−1485.

7. Komine Y., Kitabatake M., Yokogawa Π’., Nishikawa K., Inokuchi H. 1994. A tRNA-like structure is present in lOSa RNA, a small stable RNA from Escherichia coli. Proc. Natl. Acad. Sci. USA. 91, 9223−9227.

8. Keiler K.C., Shapiro L., Williams K.P. 2000. tmRNAs that encode proteolysis-inducing tags are found in all known bacterial genomes: A two-piece tmRNA functions in Caidobacter. Proc. Natl. Acad. Sci. USA. 97, 7778−7783.

9. Mao C., Bhardwaj K., Sharkady S.M., Fish R.I., Driscoll Π’., Wower J., Zwieb C., Sobral B.W., Williams K.P. 2009. Variations on the tmRNA gene. RNA Biol. 6, 355−361.

10. Moore S.D., Sauer R.T. 2005. Ribosome rescue: tmRNA tagging activity and capacity in Escherichia coli. Mol. Microbiol. 58,456−466.

11. Hallier M., Ivanova N., Rametti A., Pavlov M., Ehrenberg M., Felden B. 2004. Pre-binding of small protein B to a stalled ribosome triggers /raws-translation. J. Biol. Chem. 279, 25 978−25 985.

12. Karzai A.W., Susskind M.M., Sauer R.T. 1999. SmpB, a unique RNA-binding protein essential for the peptide-tagging activity of SsrA (tmRNA). EMBOJ. 18,3793−3799.

13. Hanawa-Suetsugu K., Takagi M., Inokuchi H., Himeno H., Muto A. 2002. SmpB functions in various steps of /ram-translation. Nucleic Acids Res. 30, 1620−1629.

14. Keiler K.C., Shapiro, L. 2003. TmRNA is required for correct timing of DNA replication in Caulobacter crescentus. J. Bacteriol 185, 573−580.

15. Hong S.J., Tran Q.A., Keiler K.C. 2005. Cell cycle-regulated degradation of tmRNA is controlled by RNase R and SmpB. Mol. Microbiol. 57, 565−575.

16. Oh B.K., Apirion D. 1991. lOSa RNA, a small stable RNA of Escherichia coli, is functional. Mol. Gen. Genet. 229, 52−56.

17. Huang C" Wolfgang M.C., Withey J., Koomey M., Friedman D.I. 2000. Charged tmRNA but not tmRNA-mediated proteolysis is essential for Neisseria gonorrhoeae viability. EMBO J. 19, 1098−1107.

18. Hutchison C.A., Peterson S.N., Gill S.R., Cline R.T., White O., Fraser C.M., Smith H.O., Venter J.C. 1999. Global transposon mutagenesis and a minimal Mycoplasma genome. Science. 286, 2165−2169.

19. Akerley B.J., Rubin E.J., Novick V.L., Amaya K., Judson N., Makalanos J.J. 2002. A genome-scale analysis for identification of genes required for growth or survival of Haemophilus influenzae. Proc. Natl. Acad. Sei. USA. 99, 966 971.

20. Thibonnier M., Thiberge J.M., De Reuse H. 2008. Irajw-translation in Helicobacter pylori: essentiality of ribosome rescue and requirement of protein tagging for stress resistance and competence. PLoS One. 3(1 l):e3810.

21. Zwieb C., Wower I., Wower J. 1999. Comparative sequence analysis of tmRNA. Nucleic Acids Res. 27, 2063;2071.

22. Williams K.P., Bartel D.P. 1996. Phylogenetic analysis of tmRNA secondary structure. RNA. 2, 1306−1310.

23. Felden B., Himeno H., Muto A., McCutcheon J.P., Atkins J.F., Gesteland R.F. 1997. Probing the structure of the Escherichia coli 10Sa RNA (tmRNA). RNA. 3, 89−103.

24. Felden B., Himeno H., Muto A., Atkins J. F., Gesteland R. 1996. Structural organization of Escherichia coli tmRNA. Biochimie. 78, 979−983.

25. Gaudin C., Zhou X., Williams K.P., Felden B. 2002. Two-piece tmRNA in cyanobacteria and its structural analysis. Nucleic Acids Res. 30, 2018;2024.

26. Sharkady S.M., Williams K.P. 2004. A third lineage with two-piece tmRNA. Nucleic Acids Res. 32, 4531−4538.

27. Ulve V.M., Cheron A., Trautwetter A., Fontenelle C., Barloy-Hubler F. 2007. Characterization and expression patterns of Sinorhizobium meliloti tmRNA (ssrA). FEMS Microbiol. Lett. 269, 117−123.

28. Gueneau de Novoa P., Williams K.P. 2004. The tmRNA website: reductive evolution of tmRNA in plastids and other endosymbionts. Nucleic Acids Res. 32, D104-D108.

29. Lin-Chao S" Wei C.L., Lin Y.T. 1999. RNase E is required for the maturation of ssrA RNA and normal ssrA RNA peptide-tagging activity. Proc. Natl. Acad. Sei. USA. 96, 12 406−12 411.

30. Li Z., Pandit S., Deutscher M.P. 1998. 3' exoribonucleolytic trimming is a common feature of the maturation of small, stable RNAs in Escherichia coli. Proc. Natl. Acad. Sei. USA. 95, 2856−2861.

31. Ray B.K., Apirion D. 1979. Characterization of 10S RNA: a new stable RNA molecule from Escherichia coli. Mol. Gen. Genet. 174, 25−32.

32. Felden B., Hanawa K., Atkins J.F., Himeno H., Muto A., Gesteland R.F., McCloskey J.A., Crain P.F. 1998. Presence and location of modified nucleotides in Escherichia coli tmRNA: structural mimicry with tRNA acceptor branches. EMBOJ. 17, 3188−3196.

33. Felden B., Atkins J.F., Gesteland R.F. 1996. tRNA and mRNA both in the same molecule. Nat. Struct. Biol. 3, 494.

34. Suddath F.L., Quigley G.J., McPherson A., Sneden D., Kim J.J., Kim S.H., Rich A. 1974. Three-dimensional structure of yeast phenylalanine transfer RNA at 3.0 angstroms resolution. Nature. 248, 20−24.

35. Kealey J.T., Santi D.V. 1994. High-level expression and rapid purification of tRNA (m5U54)-methyltransferase. Protein Expr. Purif. 5, 149−152.

36. Nurse K., Wrzesinski J., Bakin A., Lane B.G., Ofengand J. 1995. Purification, cloning, and properties of the tRNA psi 55 synthase from Escherichia coli. RNA. 1, 102−112.

37. Cusack S., Hartlein M., Leberman R. 1991. Sequence, structural and evolutionary relationships between class 2 aminoacyl-tRNA synthetases. Nucleic Acids Res. 19, 3489−3498.

38. Francklyn C., Schimmel P. 1989. Aminoacylation of RNA minihelices with alanine. Nature. 337, 478−481.

39. Beuning P.J., Yang F., Schimmel P., Musier-Forsyth K. 1997. Specific atomic groups and RNA helix geometry in acceptor stem recognition by a tRNA synthetase. Proc. Natl. Acad. Sei. USA. 94, 10 150−10 154.r β€’ I.

40. Shi J.P., Schimmel P. 1991. Aminoacylation of alanine minihelices. «Discriminator» base modulates transition state of single turnover reaction. J. Biol. Chem. 266, 2705−2708.

41. Hou Y.M., Schimmel P. 1988. A simple structural feature is a major determinant of the identity of a transfer RNA. Nature. 333, 140−145.

42. McClain W.H., Foss K. 1988. Changing the identity of a tRNA by introducing a G-U wobble pair near the 3' acceptor end. Science. 240, 793 796.

43. Nameki N., Tadaki T., Muto A., Himeno H. 1999. Amino acid acceptor identity switch of Escherichia coli tmRNA from alanine to histidine in vitro. J. Mol. Biol. 289, 1−7.

44. Barends S., Karzai A.W., Sauer R.T., Wower J., Kraal B. 2001. Simultaneous and functional binding of SmpB and EF-Tu-GTP to the alanyl acceptor arm of tmRNA. J. Mol. Biol 314, 9−21.

45. Rudinger-Thirion J., Giege R., Felden B. 1999. Aminoacylated tmRNA from Escherichia coli interacts with prokaryotic elongation factor Tu. RNA. 5, 989 992.

46. Corvaisier S., Bordeau V., Felden B. 2003. Inhibition of transfer messenger RNA aminoacylation and /raws-translation by aminoglycoside antibiotics. J. Biol. Chem. 278, 14 788−14 797.

47. Miczak A., Chauhan A.K., Apirion D. 1991. Two new genes located between 2758 and 2761 kilobase pairs on the Escherichia coli genome. J. Bacteriol. 173, 3271−3272.

48. Sundermeier T.R., Dulebohn D.P., Cho H.J., Karzai A.W. 2005. A previously uncharacterized role for small protein B (SmpB) in transfer messenger RNA-mediated /raws-translation. Proc. Nail. Acad. Sci. USA. 102, 2316−2321.

49. Jacob Y., Sharkady S.M., Bhardwaj K., Sanda A., Williams, K.P. 2005. Function of the SmpB tail in transfer-messenger RNA translation revealed by a nucleus-encoded form. J. Biol. Chem. 280, 5503−5509.

50. Dong G., Nowakowski J., Hoffman D.W. 2002. Structure of small protein B: the protein component of the tmRNA-SmpB system for ribosome rescue. EMBOJ. 21, 1845−1854.

51. Gutmann S., Haebel P.W., Metzinger L., Sutter M., Felden B., Ban N. 2003. Crystal structure of the transfer-RNA domain of transfer-messenger RNA in complex with SmpB. Nature. 424, 699−703.

52. Stagg S.M., Frazer-Abel A.A., Hagerman P.J., Harvey S.C. 2001. Structural studies of the tRNA domain of tmRNA. J. Mol. Biol. 309, 727−735.

53. Valle M" Gillet R., Kaur S., Henne A., Ramakrishnan V., Frank J. 2003. Visualizing tmRNA entry into a stalled ribosome. Science. 300, 127−130.

54. Nissen P., Kjeldgaard M., Thirup S., Polekhina G., Reshetnikova L., Clark B.F., Nyborg J. 1995. Crystal structure of the ternary complex of Phe-tRNAPhe, EF-Tu, and a GTP analog. Science. 270, 1464−1472.

55. Wimberly B.T., Brodersen D.E., Clemons W.M., Morgan-Warren R.J., Carter A.P., Vonrhein C., Hartsch T., Ramakrishnan V. 2000. Structure of the 30S ribosomal subunit. Nature. 407, 327−339.

56. Yusupov M.M., Yusupova G.Z., Baucom A., Lieberman K., Earnest T.N., Cate J.H., Noller H.F. 2001. Crystal structure of the ribosome at 5.5 A resolution. Science. 292, 883−896.

57. Valle M., Sengupta J., Swami N.K., Grassucci R.A., Burkhardt N., Nierhaus K.H., Agrawal R.K., Frank J. 2002. Cryo-EM reveals an active role for aminoacyl-tRNA in the accommodation process. EMBOJ. 21, 3557−3567.

58. Valle M., Zavialov A., Li W., Stagg S.M., Sengupta J., Nielsen R.C., Nissen P., Harvey S.C., Ehrenberg M., Frank J. 2003. Incorporation of aminoacyl-tRNA into the ribosome as seen by cryo-electron microscopy. Nat. Struct. Biol. 10, 899−906.

59. Knudsen B., Wower J., Zwieb C., Gorodkin J. 2001. tmRDB (tmRNA database). Nucleic Acids Res. 29, 171−172.

60. Stark H., Rodnina M.V., Wieden H.J., Zemlin F., Wintermeyer W., van Heel M. 2002. Ribosome interactions of aminoacyl-tRNA and elongation factor Tu in the codon-recognition complex. Nat. Struct. Biol. 9, 849−854.

61. Haebel P.W., Gutmann S., Ban N. 2004 Dial tm for rescue: tmRNA engages ribosomes stalled on defective mRNAs. Curr. Opin. Struct. Biol. 14, 58−65.

62. Kaur S., Gil let R., Li W" Gursky R., Frank J. 2006. Cryo-EM visualization of transfer messenger RNA with two SmpBs in a stalled ribosome. Proc. Natl. Acad. Sci. USA. 103, 16 484−16 489.

63. Metzinger L., Hallier M., Felden B. 2005. Independent binding sites of small protein B onto transfer-messenger RNA during /raws-translation. Nucleic Acids Res. 33, 2384−2394.

64. Ivanova N., Pavlov M.Y., Bouakaz E., Ehrenberg M., Schiavone L.H. 2005. Mapping the interaction of SmpB with ribosomes by footprinting of ribosomal RNA. Nucleic Acids Res. 33, 3529−3539.

65. Cheng K., Ivanova N., Scheres S.H., Pavlov M.Y., Carazo J.M., Hebert H., Ehrenberg M., Lindahl M. 2010. tmRNA-SmpB complex mimics native aminoacyl-tRNAs in the A site of stalled ribosomes. J. Struct. Biol. 169, 342 348.

66. Weis F., Bron P., Rolland J.P., Thomas D., Felden B., Gillet R. 2010. Accomodation of tmRNA-SmpB into stalled ribosomes: a cryo-EM study. RNA. 16, 299−306.

67. Hallier M., Desreac J., Felden B. 2006. Small protein B interacts with the large and the small subunits of a stalled ribosome during /ram-translation. Nucleic Acids Res. 34, 1935;1943.

68. Gillet R., Kaur S., Li W., Hallier M., Felden B., Frank J. 2007. Scaffolding as an organizing principle in? raws-translation. The roles of small protein B and ribosomal protein SI. J. Biol. Chem. 282, 6356−6363.

69. Tu G.F., Reid G.E., Zhang J.G., Moritz R.L., Simpson RJ. 1995. C-terminal extension of truncated recombinant proteins in Escherichia coli with a lOSa RNA decapeptide. J. Biol. Chem. 270, 9322−9326.

70. Keiler K.C., Sauer R.T. 1996. Sequence determinants of C-terminal substrate recognition by the Tsp protease. J. Biol Chem. 271, 2589−2593.

71. Keiler K.C., Waller P.R., Sauer R.T. 1996. Role of a peptide tagging system in degradation of proteins synthesized from damaged messenger RNA. Science. 271, 990−993.

72. Withey J., Friedman D. 1999. Analysis of the role of? raws-translation in the requirement of tmRNA for lambdaimmP22 growth in Escherichia coli. J. Bacteriol 181, 2148−2157.

73. Gottesman S., Roche E., Zhou Y., Sauer R.T. 1998. The ClpXP and ClpAP proteases degrade proteins with carboxy-terminal peptide tails added by the SsrA-tagging system. Genes Dev. 12, 1338−1347.

74. Herman C" Thevenet D., Bouloc P., Walker G.C., D’Ari R. 1998. Degradation of carboxy-terminal-tagged cytoplasmic proteins by the Escherichia coli protease HflB (FtsH). Genes Dev. 12, 1348−1355.

75. Metzinger L., Hallier M., Felden B. 2008. The highest affinity binding site of small protein B on transfer messenger RNA is outside the tRNA domain. RNA. 14, 1761−1772.

76. Konno T., Kurita D., Takada K., Muto A., Himeno H. 2007. A functional interaction of SmpB with tmRNA for determination of the resuming point of iraws-translation. RNA. 13, 1723−1731.

77. Ivanova N., Lindell M., Pavlov M., Holmberg Schiavone L., Wagner E.G., Ehrenberg M. 2007. Structure probing of tmRNA in distinct stages of transtranslation. RNA. 13, 713−722.

78. Sundermeier T.R., Karzai A.W. 2007. Functional SmpB-ribosome interactions require tmRNA. J. Biol. Chem. 282, 34 779−34 786.

79. Abo T., Inada T., Ogawa K., Aiba H. 2000. SsrA-mediated tagging and proteolysis of LacI and its role in the regulation of lac operon. EMBO J. 19, 3762−3769.

80. Ujiie H, Matsutani T, Tomatsu H, Fujihara A, Ushida C, Miwa Y, Fujita Y, Himeno H, Muto A. 2009. 7ra/"-translation is involved in the CcpA-dependent tagging and degradation of TreP in Bacillus subtilis. J. Biochem. 145, 59−66.

81. Yamamoto Y., Sunohara T., Jojima K., Inada T., Aiba H. 2003. SsrA-mediated /ram-translation plays a role in mRNA quality control by facilitating degradation of truncated mRNAs. RNA. 9, 408−418.

82. Ueda K., Yamamoto Y., Ogawa K., Abo T., Inokuchi H" Aiba H. 2002. Bacterial SsrA system plays a role in coping with unwanted translational readthrough caused by suppressor tRNAs. Genes Cells. 7, 509−519.

83. Abo T., Ueda K., Sunohara T., Ogawa K., Aiba H. 2002. SsrA-mediated protein tagging in the presence of miscoding drugs and its physiological role in Escherichia co/i. Genes Cells. 7, 629−638.

84. Li X., Hirano R., Tagami H., Aiba H. 2006. Protein tagging at rare codons is caused by tmRNA action at the 3' end of nonstop mRNA generated in response to ribosome stalling. RNA. 12, 248−255.

85. Roche E.D., Saue R.T. 1999. SsrA-mediated peptide tagging caused by rare codons and tRNA scarcity. EMBO J. 18, 4579−4589.

86. Hayes C.S., Bose B., Sauer R.T. 2002. Stop codons preceded by rare arginine codons are efficient determinants of SsrA tagging in Escherichia coli. Proc. Natl. Acad. Set USA. 99, 3440−3445.

87. Li X., Yagi M., Morita T" Aiba H. 2008. Cleavage of mRNAs and role of tmRNA system under amino acid starvation in Escherichia coli. Mol. Microbiol '. 68, 462−473.

88. Hayes C.S., Sauer R.T. 2003. Cleavage of the A site mRNA codon during ribosome pausing provides a mechanism for translational quality control. Mol. Cell. 12, 903−911.

89. Roche E.D., Sauer R.T. 2001. Identification of endogenous SsrA-tagged proteins reveals tagging at positions corresponding to stop codons. J. Biol. Chem. 276, 28 509−28 515.

90. Collier J., Binet E., Bouloc P. 2002. Competition between SsrA tagging and translational termination at weak stop codons in Escherichia coli. Mol. Microbiol. 45, 745−754.

91. Hayes C.S., Bose B., Sauer R.T. 2002. Proline residues at the C terminus of nascent chains induce SsrA tagging during translation termination. J. Biol. Chem. 277, 33 825−33 832.

92. Sunohara T., Abo T., Inada T., Aiba H. 2002. The C-terminal amino acid sequence of nascent peptide is a major determinant of SsrA tagging at all three stop codons. RNA. 8, 1416−1427.

93. Li X., Yokota T., Ito K., Nakamura Y., Aiba H. 2007. Reduced action of polypeptide release factors induces mRNA cleavage and tmRNA tagging at stop codons in Escherichia coli. Mol. Microbiol. 63, 116−126.

94. Muto H., Ito K. 2008. Peptidyl-prolyl-tRNA at the ribosomal P-site reacts poorly with puromycin. Biochem. Biophys. Res. Commim. 366, 1043−1047.

95. Garza-Sanchez F., Janssen B.D., Hayes C.S. 2006. Prolyl-tRNA (Pro) in the A-site of SecM-arrested ribosomes inhibits the recruitment of transfermessenger RNA. J. Biol. Chem. 281, 34 258−34 268.

96. Cruz-Vera LR, Rajagopal S, Squires C, Yanofsky C. 2005. Features of ribosome-peptidyl-tRNA interactions essential for tryptophan induction of tna operon expression. Mol. Cell. 19, 333−343.

97. Sunohara T., Jojima K., Yamamoto Y., Inada T., Aiba H. 2004. Nascent-peptide-mediated ribosome stalling at a stop codon induces rnRNA cleavage resulting in nonstop mRNA that is recognized by tmRNA. RNA. 10, 378−386.

98. Asano K., Kurita D., Takada K., Konno T., Muto A., Himeno H. 2005. Competition between trans-translation and termination or elongation of translation. Nucleic Acids Res. 33, 5544−5552.

99. Crandall J., Rodriguez-Lopez M., Pfeiffer M., Mortensen B., Buskirk A. 2010. Ribosomal RNA mutations that inhibit transfer-messenger RNA activity on stalled ribosomes. J. Bacteriol. 192, 553−559.

100. Holberger L. E, Hayes C.S. 2009. Ribosomal protein S12 and aminoglycoside antibiotics modulate A-site mRNA cleavage and transfer-messenger RNA activity in Escherichia coli. J. Biol. Chem. 284, 32 188−32 200.

101. Ogle J.M., Ramakrishnan V. 2005. Structural insights into translational fidelity. Annu. Rev. Biochem. 74, 129−177.

102. Garza-Sanchez F., Shoji S., Fredrick K., Hayes C.S. 2009. RNase II is important for A-site mRNA cleavage during ribosome pausing. Mol. Microbiol. 73, 882−897.

103. Ivanova N., Pavlov M.Y., Felden B., Ehrenberg M. 2004. Ribosome rescue by tmRNA requires truncated mRNAs. J. Mol. Biol. 338, 33−41.

104. Yusupova G.Z., Yusupov M.M., Cate J.H., Noller H.F. 2001. The path of messenger RNA through the ribosome. Cell. 106, 233−241.

105. Jenner L., Romby P., Rees B., Schulze-Briese C., Springer M., Ehresmann C., Ehresmann B., Moras D., Yusupova G., Yusupov M. 2005. Translational operator of mRNA on the ribosome: How repressor proteins exclude ribosome binding. Science. 308,120−123.

106. Ivanova N., Pavlov M.Y., Ehrenberg M. 2005. tmRNA-induced release of messenger RNA from stalled ribosomes. J. Mol. Biol. 350, 897−905.

107. Williams K.P., Martindale K.A., Bartel D.P. 1999. Resuming translation on tmRNA: a unique mode of determining a reading frame. EMBO J. 18, 54 235 433.

108. Lim V.I., Garber M.B. 2005. Analysis of recognition of transfer-messenger RNA by the ribosomal decoding center. J. Mol. Biol. 346, 395−398.

109. Miller M.R., Healey D.W., Robison S.G., Dewey J.D., Buskirk A.R. 2008. The role of upstream sequences in selecting the reading frame on tmRNA. BMC Biol. 6, 29.

110. Watts T., Cazier D., Healey D., Buskirk A. 2009. SmpB contributes to reading frame selection in the translation of transfer-messenger RNA. J. Mol. Biol. 391, 275−281.

111. O’Connor M. 2007. Minimal translation of the tmRNA tag-coding region is required for ribosome release. Biochem. Biophys. Res. Commim. 357, 216 281.

112. Weber-Ban E.U., Reid B.G., Miranker A.D., Horwich A.L. 1999. Global unfolding of a substrate protein by the HsplOO chaperone ClpA. Nature. 401, 90−93.

113. Kim Y.I., Burton R.E., Burton B.M., Sauer R.T., Baker T.A. 2000. Dynamics of substrate denaturation and translocation by the ClpXP degradation machine. Mol. Cell. 5, 639−648.

114. Wiegert T., Schumann W. 2001. SsrA-mediated tagging in Bacillus subtilis. J. Bacteriol. 183, 3885−3889.

115. Farrell C.M., Grossman A.D., Sauer R.T. 2005. Cytoplasmic degradation of ssrA-tagged proteins. Mol. Microbiol. 57, 1750−1761.

116. Bohn C., Binet E., Bouloc P. 2002. Screening for stabilization of proteins with a /ram-translation signature in Escherichia coli selects for inactivation of the ClpXP protease. Mol. Genet. Genomics. 266, 827−831.

117. Baker T.A., Sauer R.T. 2006. ATP-dependent proteases of bacteria: recognition logic and operating principles. Trends Biochem. Sci. 31, 647−653.

118. Flynn J.M., Levchenko I., Seidel M., Wickner S.H., Sauer R.T., Baker T.A. 2001. Overlapping recognition determinants within the ssrA degradation tag allow modulation of proteolysis. Proc. Natl. Acad. Sci. USA. 98, 1 058 410 589.

119. Levchenko I., Grant R.A., Wah D.A., Sauer R.T., Baker T.A. 2003. Structure of a delivery protein for an AAA+ protease in complex with a peptide degradation tag. Mol. Cell. 12, 365−372.

120. Flynn J.M., Levchenko I., Sauer R.T., Baker T.A. 2004. Modulating substrate choice: the SspB adaptor delivers a regulator of the extracytoplasmic-stress response to the AAA+ protease ClpXP for degradation. Genes Dev. 18, 22 922 301.

121. Levchenko I., Seidel M., Sauer R.T., Baker T.A. 2000. A specificity-enhancing factor for the ClpXP degradation maphine. Science. 289, 23 542 356.

122. Wah D.A., Levchenko I., Rieckhof G.E., Bolon D.N., Baker T.A., Sauer R.T. 2003. Flexible linkers leash the substrate binding domain of SspB to a peptide module that stabilizes delivery complexes with the AAA+ ClpXP protease. Mol. Cell. 12, 355−363.

123. Lessner F.H., Venters B.J., Keiler K.C. 2007. Proteolytic adaptor for transfermessenger RNA-tagged proteins from alpha-proteobacteria. J. Bacteriol. 189, 272−275.

124. Dougan D.A., Reid B.G., Horwich A.L., Bukau B. 2002. ClpS, a substrate modulator of the ClpAP machine. Mol. Cell. 9, 673−683.

125. Ito K., Akiyama Y. 2005. Cellular functions, mechanism of action, and regulation of FtsH protease. Annu. Rev. Microbiol. 59, 211−231.

126. Herman C., Prakash S., Lu C.Z., Matouschek A., Gross C.A. 2003 Lack of a robust unfoldase activity confers a unique level of substrate specificity to the universal AAA protease FtsH. Mol. Cell. 11, 659−669.

127. Choy J.S., Aung L.L., Karzai A.W. 2007. Lon protease degrades transfermessenger RNA-tagged proteins. J. Bacteriol. 189, 6564−6571.

128. Mehta P., Richards J., Karzai A.W. 2006. tmRNA determinants required for facilitating nonstop mRNA decay. RNA. 12, 2187−2198.

129. Richards J., Mehta P., Karzai A.W. 2006. RNase R degrades non-stop mRNAs selectively in an SmpB-tmRNA-dependent manner. Mol. Microbiol. 62, 1700−1712.

130. Karzai A.W., Sauer R.T. 2001. Protein factors associated with the SsrA. SmpB tagging and ribosome rescue complex. Proc. Natl. Acad. Sci. USA. 98, 30 403 044.

131. Baumler A.J., Kusters J.G., Stojiljkovic I., Heffron F. 1994. Salmonella fyphimnrium loci involved in survival within macrophages. Infect. Immim. 62, 1623−1630.

132. Wiegert T., Schumann W. 2001. SsrA-mediated tagging in Bacillus subtilis. J. Bacteriol 183, 3885−3889.

133. Olcan N.A., Bliska J.B., Karzai A.W. 2006. A Role for the SmpB-SsrA system in Yersinia pseudotuberculosis pathogenesis. PLoS Pathog. 2, e6.

134. Muto A., Fujihara A., Ito K.I., Matsuno J., Ushida C., Himeno H. 2000. Requirement of transfer-messenger RNA for the growth of Bacillus subtilis under stresses. Genes Cells. 5, 627−635.

135. Julio S.M., Heithoff D.M., Mahan M.J. 2000. ssrA (tmRNA) plays a role in Salmonella enterica serovar Typhimurium pathogenesis. J. Bacteriol. 182, 1558−1563.

136. Braud S., Lavire C., Bellier A., Mazodier P. 2006. Effect of SsrA (tmRNA) tagging system on translational regulation in Streptomyces. Arch. Microbiol. 184, 343−352.

137. Shin J.H., Price C.W. 2007. The SsrA-SmpB ribosome rescue system is important for growth of Bacillus subtilis at low and high temperatures. J Bacteriol. 189, 3729−3737.

138. Singh N.S., Varshney U. 2004. A physiological connection between tmRNA and peptidyl-tRNA hydrolase functions in Escherichia coli. Nucleic Acids Res. 32, 6028−6037.

139. Szaflarski W., Vesper O., Teraoka Y., Plitta B., Wilson D.N., Nierhaus K.H. 2008. New features of the ribosome and ribosomal inhibitors: non-enzymatic recycling, misreading and back-translocation. J. Mol. Biol. 380, 193−205.

140. Kuroha K., Horiguchi N., Aiba H., Inada T. 2009. Analysis of nonstop mRNA translation in the absence of tmRNA in Escherichia coli. Genes Cells. 14, 739−749.

141. Janssen B.D., Hayes C.S. 2009. Kinetics of paused ribosome recycling in Escherichia coli. J. Mol. Biol. 394, 51−67.

142. Christensen S.K., Gerdes K. 2003. RelE toxins from Bacteria and Archaea cleave mRNAs on translating ribosomes, which are rescued by tmRNA. Mol. Microbiol. 48, 1389−1400.

143. Christensen S.K., Pedersen K., Hansen F.G., Gerdes K. 2003. Toxin-antitoxin loci as stress-response element: ChpAK/MazF and ChpBK cleave translated mRNA and are counteracted by tmRNA. J. Mol. Biol. 332, 809−819.

144. Pedersen K., Zavialov A.V., Pavlov M.Y., Elf J., Gerdes K., Ehrenberg M. 2003. The bacterial toxin RelE displays codon-speciflc cleavage of mRNAs in the ribosomal A site. Cell. 112, 131−140.

145. Munavar H., Zhou Y., Gottesman S. 2005. Analysis of the Escherichia coli Alp phenotype: heat shock induction in ssrA mutants. J. Bacterial. 187, 47 394 751.

146. Ranquet C., Geiselmann J., Toussaint A. 2001. The tRNA function of SsrA contributes to controlling repression of bacteriophage Mu prophage. Proc. Natl. Acad. Sci. USA. 98, 10 220−10 225.

147. Billington S.J., Johnston J.L., Rood J.I. 1996. Virulence regions and virulence factors of the ovine footrot pathogen, Dichelobacter nodosus. FEMS Microbiol Lett. 145, 147−156.

148. Ebeling S., Kundig C., Hennecke H. 1991. Discovery of a rhizobial RNA that is essential for symbiotic root nodule development. J. Bacteriol. 112>, 63 736 382.

149. Keiler K.C., Shapiro L. 2003. tmRNA in Caulobacter crescentus is cell cycle regulated by temporally controlled transcription and RNA degradation. J. Bacteriol. 185, 1825−1830.

150. Hong S.J., Lessner F.H., Mahen E.M., Keiler K.C. 2007. Proteomic identification of tmRNA substrates. Proc. Natl. Acad. Sci. USA. 104, 1 712 817 133.

151. Hayes C.S., Keiler K.C. 2010. Beyond ribosome rescue: tmRNA and co-translational processes. FEBSLett. 584, 413−419.

152. Campo N., Tjalsma H., Buist G., Stepniak D., Meijer M., Veenhuis M., Westennann M., Miiller J.P., Bron S., Kok J., Kuipers O.P., Jongbloed J.D. 2004. Subcellular sites for bacterial protein export. Mo I. Microbiol. 53, 15 831 599.

153. Russell J.H., Keiler K.C. 2009. Subcellular localization of a bacterial regulatory RNA. Proc. Natl. Acad. Sci. USA. 106, 16 405−16 409.

154. Shiomi D., Yoshimoto M., Homma M., Kawagishi I. 2006. Helical distribution of the bacterial chemoreceptor via colocalization with the Sec protein translocation machinery. Mol. Microbiol. 60, 894−906.

155. Sprinzl M., Kucharzewski M., Hobbs J.B., Cramer F. 1977. Specificity of elongation factor Tu from Escherichia coli with respect to attachment to the amino acid to the 2' or 3' hydroxyl group of the terminal adenosine of tRNA. Biochemistry. 78, 55−61.

156. Homung V., Hoffman H.P., Sprinzl M. 1998. In vitro selected RNA molecules that bind to elongation factor Tu. Biochemistry. 37, 7260−7267.

157. Moazed D., Robertson J.M., Noller H.F. 1988. Interaction of elongation factors EF-G and EF-Tu with a conserved loop in 23S RNA. Nature. 334, 362−364.

158. Munishkin A., Wool I.G. 1997. The ribosome-in-pieces: binding of elongation factor EF-G to oligoribonucleotides that mimic the sarcin/ricin and thiostrepton domains of 23S ribosomal RNA. Proc. Natl. Acad. Set USA. 94, 12 280−12 284.

159. Stark H., Rodnina M.V., Rinke-Appel J., Brimacombe R., Wintermeyer W., van Heel M. 1997. Visualization of elongation factor Tu on the Escherichia coli ribosome. Nature. 389,403−406.

160. Stepanov V.G., Nyborg J. 2003. tmRNA from Thermus thermophilus. Interaction with alanyl-tRNA synthetase and elongation factor Tu. Eur. J. Biochem. 270, 463−475.

161. Π‘Π΅Ρ€Π³ΠΈΠ΅Π² П. Π’., Π”ΠΎΠ½Ρ†ΠΎΠ²Π° О. А., Π‘ΠΎΠ³Π΄Π°Π½ΠΎΠ² A.A. 2001. Π˜Π·ΡƒΡ‡Π΅Π½ΠΈΠ΅ структуры прокариотичСской рибосомы биохимичСскими ΠΌΠ΅Ρ‚ΠΎΠ΄Π°ΠΌΠΈ: Π‘ΡƒΠ΄Π½Ρ‹ΠΉ дСнь. ΠœΠΎΠ»Π΅ΠΊΡƒΠ»ΡΡ€Π½Π°Ρ биология. 35, 559−583.

162. Karzai A.W., Roche E.D., Sauer R.T. 2000. The SsrA-SmpB system for protein tagging, directed degradation and ribosome rescue. Nat. Struct. Biol. 7, 449−455.

163. Wower I., Zwieb C., Guven S., Wower J. 2000. Binding and cross-linking of tmRNA to ribosomal protein SI, on and off the Escherichia coli ribosome. EMBOJ. 19, 6612−6621.

164. Nissen P., Thirup S., Kjeldgaard M., Nyborg J. 1999. The crystal structure of Cys-tRNACys-EF-Tu-GDPNP reveals general and specific features in the ternary complex and in tRNA. Structure Fold Des. 7, 143−156.

165. Nissen P., Kjeldgaard M., Thirup S., Clark B.F.C., Nyborg J. 1996. The ternary complex of aminoacylated tRNA and EF-Tu-GTP. Recognition of a bond and a fold. Biochimie. 78, 921−933.

166. Nierhaus K.H. 1990. The allosteric three-site model for the ribosomal elongation cycle: features and future. Biochemistry. 29, 4997−5008.

167. Ogle J.M., Brodersen D.E., Clemons W.M. Jr., Tarry M.J., Carter A.P., Ramakrishnan V. 2001. Recognition of cognate transfer RNA by the 30S ribosomal subunit. Science. 292, 897−902.

168. Steitz J.A., Jakes K. 1975. How ribosomes select initiator regions in mRNA: Base pair formation between the 3' terminus of 16S rRNA and the mRNA during initiation of protein synthesis in E. coli. Proc. Natl. Acad. Sei. USA. 72, 4734−4738.

169. Lim V.I., Curran J.F. 2001. Analysis of codon: anticodon interactions within the ribosome provides new insights into codon reading and the genetic code structure. RNA. 7, 942−957.

170. Retallack D.M., Johnson L.L., Friedman D.I. 1994. Role for lOSa RNA in the growth of lambda-P22 hybrid phage. J. Bacteriol. 176, 2082;2089.

171. Retallack D.M., Friedman D.I. 1995. A role for a small stable RNA in modulating the activity of DNA-binding proteins. Cell. 83, 227−235.

172. Bjomsson A., Isaksson L.A. 1996. Accumulation of a mRNA decay intermediate by ribosomal pausing at a stop codon. Nucleic Acids Res. 24, 1753−1757.

173. Hanawa-Suetsugu K., Bordeau V., Himeno H., Muto A., Felden B. 2001. Importance of the conserved nucleotides around the tRNA-like structure of Escherichia coli transfer-messenger RNA for protein tagging. Nucleic Acids Res. 29, 4663−4673.

174. Gaudin C., Nonin-Lecomte S., Tisne C., Corvaisier S., Bordeau V., Dardel F., Felden B. 2003. The tRNA-like domains of E. coli and A. aeolicus transfermessenger RNA: structural and functional studies. J. Mol. Biol. 331, 457−471.

175. Srisawat C., Engelke D.R. 2001. Streptavidin aptamers: affinity tags for the study of RNAs and ribonucleoproteins. RNA. 7, 632−641.

176. Jurica M.S., Licklider L.J., Gygi S.R., Grigorieff N., Moore M.J. 2002. Purification and characterization of native spliceosomes suitable for three-dimensional structural analysis. RNA. 8, 426−439.

177. Leonov A.A., Sergiev P.V., Bogdanov A.A., Brimacombe R., Dontsova O.A. 2003. Affinity purification of ribosomes with a lethal G2655C mutation in 23 S rRNA that affects the translocation. J. Biol. Chem. 278, 25 664−25 670.

178. Green N.M. 1990. Avidin and streptavidin. Methods Enzymol. 184, 51−67.

179. Nameki N., Tadaki T., Himeno H., Muto A. 2000. Three of four pseudoknots in tmRNA are interchangeable and are substitutable with single-stranded RNAs. FEBSLett. 470, 345−349.

180. Roche E.D., Sauer R.T. 2001. Identification of endogenous SsrA-tagged proteins reveals tagging at positions corresponding to stop codons. J. Biol. Chem. 276, 28 509−28 515.

181. Mukherjee S., Shukla A., Guptasarma P. 2003. Single-step purification of a protein-folding catalyst, the SlyD peptidyl prolyl isomerase (PPI), from cytoplasmic extracts of Escherichia coli. Biotechnol. Appl. Biochem. 37, 183 186.

182. Pedersen K., Zavialov A.V., Pavlov M.Y., Elf J, Gerdes K., Ehrenberg M. 2003. The bacterial toxin RelE displays codon-specific cleavage of mRNA in the ribosomal A site. Cell. 112, 131−140.

183. Kalkum M., Lyon G.J., Chait B.T. 2003. Detection of secreted peptides by using hypothesis-driven multistage mass spectrometry. Proc. Natl. Acad. Sci. USA. 100, 2795−2800.

184. Rohl R., Nierhaus K.H. 1982. Assembly map of the large subunit (50S) of Escherichia coli ribosomes. Proc. Natl. Acad. Sci. USA. 79, 729−733.

185. Moazed D., Stern S., Noller H. 1986. Rapid chemical probing of conformation in 16S ribosomal rRNA and 30S subunits using primer extension. J. Mol. Biol. 187, 399−416.

186. Tate W., Greuer B., Brimacombe R. 1990. Codon recognition in polypeptide chain termination: site directed crosslinking of termination codon to Escherichia coli release factor-2. Nucleic Acids Res. 18, 6537−6544.

187. Frank J. 2006. Electron tomography: methods for three-dimensional visualization of structures in the cell. New York: Springer Science.

188. Yusupova G., Jenner L., Rees B., Moras D., Yusupov M. 2006. Structural basis for messenger RNA movement on the ribosome. Nature. 444, 391−394.

189. Valle M., Zavialov A., Sengupta J., Rawat U., Ehrenberg M., Frank, J. 2003. Locking and unlocking of ribosomal motions. Cell. 114, 123−134.

190. Harms J., Schluenzen F., Zarivach R., Bashan A., Gat S., Agmon I., Baitels H., Franceschi F., Yonath A. 2001. High resolution structure of the large ribosomal subunit from a mesophilic eubacterium. Cell. 107, 679−688.

191. Wower I.K., Zwieb C., Wower J. 2009. Escherichia coli tmRNA lacking pseudoknot 1 tags truncated proteins in vivo and in vitro. RNA. 15, 128−137.

192. Tanner D.R., Dewey J.D., Miller M.R., Buskirk A.R. 2006. Genetic analysis of the structure and function of transfer messenger RNA pseudoknot 1. J. Biol. Chem. 281, 10 561−10 566.

193. Krutchinsky A.N., Kalkum M., Chait B.T. 2001. Automatic identification of proteins with a MALDI-quadrupole ion trap mass spectrometer. Anal. Chem. 73, 5066−5077.

194. Inoue H., Nojima H., Okayama H. 1990. High efficiency transformation of Escherichia coli with plasmids. Gene. 96, 23−28.

195. Mullis K.B., Faloona F.A. 1987. Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. Methods Enzymol. 155, 335−350.

196. Sambrook J., Russell D.W. 2001. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor, NY.: Cold Spring Harbor Laboratory Press.

197. Piatt Π’., Mueller-Hill Π’., Miller J. H. 1972. In: Experiments in Molecular Genetics. Ed Miller J. H. Cold Spring Harbor, NY.: Cold Spring Harbor Laboratory Press, pp. 352—355.

198. Laemmli U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 227, 680−685.

199. Schagger H., von Jagow G. 1987. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem, 166, 368−379.

200. Bradford M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248−254.

201. Moazed D., Noller H.F. 1986. Transfer RNA shields specific nucleotides in 16S ribosomal RNA from attack by chemical probes. Cell. 47, 985−994.

202. Adrian M., Dubochet J., Lepault J., McDowall A.W. 1984. Cryo-electron microscopy of viruses. Nature. 308, 32−36.

203. Skoglund U., Ofverstedt L.G., Burnett R.M., Bricogne G. 1996. Maximum-entropy three-dimensional reconstruction with deconvolution of the contrasttransfer function: a test application with adenovirus. J. Struct. Biol. 117, 173 188.

204. Rullgard H., Oktem O., Skoglund U. 2007. A component-vise iterated relative entropy regularization method with updated prior and regularization parameter. Inverse Problems. 23, 2121−2139.

205. DeLano, W.L. 2002. The PyMOL Molecular Graphics System on World Wide Web http://www.pymol.org226. http://www.vim.org.

ΠŸΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ вСсь тСкст
Π—Π°ΠΏΠΎΠ»Π½ΠΈΡ‚ΡŒ Ρ„ΠΎΡ€ΠΌΡƒ Ρ‚Π΅ΠΊΡƒΡ‰Π΅ΠΉ Ρ€Π°Π±ΠΎΡ‚ΠΎΠΉ