ΠŸΠΎΠΌΠΎΡ‰ΡŒ Π² написании студСнчСских Ρ€Π°Π±ΠΎΡ‚
АнтистрСссовый сСрвис

ГСнСтичСский ΠΈ биохимичСский Π°Π½Π°Π»ΠΈΠ· сборки РНК-ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π°Π·Ρ‹

Π”ΠΈΡΡΠ΅Ρ€Ρ‚Π°Ρ†ΠΈΡΠŸΠΎΠΌΠΎΡ‰ΡŒ Π² Π½Π°ΠΏΠΈΡΠ°Π½ΠΈΠΈΠ£Π·Π½Π°Ρ‚ΡŒ ΡΡ‚ΠΎΠΈΠΌΠΎΡΡ‚ΡŒΠΌΠΎΠ΅ΠΉ Ρ€Π°Π±ΠΎΡ‚Ρ‹

УстановлСн ΡΠ²ΠΎΠ»ΡŽΡ†ΠΈΠΎΠ½Π½Ρ‹ΠΉ консСрватизм взаимодСйствия ΠΌΠ΅ΠΆΠ΄Ρƒ Π³ΠΎΠΌΠΎΠ»ΠΎΠ³Π°ΠΌΠΈ Π°ΠΈ ß—ΡΡƒΠ±ΡŠΠ΅Π΄ΠΈΠ½ΠΈΡ† эукариотичСских ΠΈ ΠΏΡ€ΠΎΠΊΠ°Ρ€ΠΈΠΎΡ‚ичСских РНК-ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π°Π·. Π’ Π΄Ρ€ΠΎΠΆΠΆΠ΅Π²ΠΎΠΉ РНК-ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π°Π·Π΅ I AI35 ΡΡƒΠ±ΡŠΠ΅Π΄ΠΈΠ½ΠΈΡ†Π° (Π°Π½Π°Π»ΠΎΠ³ ß—ΡΡƒΠ±ΡŠΠ΅Π΄ΠΈΠ½ΠΈΡ†Ρ‹ РНК-ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π°Π·Ρ‹ E. coli) взаимодСйствуСт с ΡΡƒΠ±ΡŠΠ΅Π΄ΠΈΠ½ΠΈΡ†Π΅ΠΉ АБ40 Π² ΡΠΎΡΡ‚Π°Π²Π΅ Π³Π΅Ρ‚Π΅Ρ€ΠΎΠ΄ΠΈΠΌΠ΅Ρ€Π° АБ40/АБ19 (Π°Π½Π°Π»ΠΎΠ³Π° Π΄ΠΈΠΌΠ΅Ρ€Π° Π°-ΡΡƒΠ±ΡŠΠ΅Π΄ΠΈΠ½ΠΈΡ†Ρ‹ РНК-ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π°Π·Ρ‹ E. coli). УстановлСно взаимодСйствиС ΠΌΠ΅ΠΆΠ΄Ρƒ… Π§ΠΈΡ‚Π°Ρ‚ΡŒ Π΅Ρ‰Ρ‘ >

ГСнСтичСский ΠΈ биохимичСский Π°Π½Π°Π»ΠΈΠ· сборки РНК-ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π°Π·Ρ‹ (Ρ€Π΅Ρ„Π΅Ρ€Π°Ρ‚, курсовая, Π΄ΠΈΠΏΠ»ΠΎΠΌ, ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½Π°Ρ)

Π‘ΠΎΠ΄Π΅Ρ€ΠΆΠ°Π½ΠΈΠ΅

  • БПИБОК Π‘ΠžΠšΠ ΠΠ©Π•ΠΠ˜Π™
  • 1. Π”ΠΠš-Π—ΠΠ’Π˜Π‘Π˜ΠœΠ«Π• РНК-ΠŸΠžΠ›Π˜ΠœΠ•Π ΠΠ—Π«: БВРУКВУРА И ΠœΠ•Π–Π‘Π£Π‘ΠͺΠ•Π”Π˜ΠΠ˜Π§ΠΠ«Π• Π’Π—ΠΠ˜ΠœΠžΠ”Π•Π™Π‘Π’Π’Π˜Π― (ΠžΠ‘Π—ΠžΠ  Π›Π˜Π’Π•Π ΠΠ’Π£Π Π«)
    • 1. 1. ΠžΠ±Ρ‰ΠΈΠ΅ свСдСния ΠΎ Ρ‚ранскрипционном Ρ†ΠΈΠΊΠ»Π΅
      • 1. 1. 1. Π˜Π½ΠΈΡ†ΠΈΠ°Ρ†ΠΈΡ транскрипции
      • 1. 1. 2. Элонгация транскрипции
      • 1. 1. 3. ВСрминация транскрипции
    • 1. 2. ΠšΡ€ΠΈΡΡ‚Π°Π»Π»ΠΈΡ‡Π΅ΡΠΊΠΈΠ΅ структуры ΠΌΠ½ΠΎΠ³ΠΎΡΡƒΠ±ΡŠΠ΅Π΄ΠΈΠ½ΠΈΡ‡Π½Ρ‹Ρ…
  • РНК-ΠΏΠΎΠ» ΠΈΠΌΠ΅Ρ€Π°Π·
    • 1. 2. 1. ΠšΡ€ΠΈΡΡ‚Π°Π»Π»ΠΈΡ‡Π΅ΡΠΊΠ°Ρ структура РНК-ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π°Π·Ρ‹ II Saccharomyces cerevisiae
    • 1. 2. 2. ΠšΡ€ΠΈΡΡ‚Π°Π»Π»ΠΈΡ‡Π΅ΡΠΊΠ°Ρ структура РНК-ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π°Π·Ρ‹ Thermus aquaticus
    • 1. 2. 3. ΠšΡ€ΠΈΡΡ‚Π°Π»Π»ΠΈΡ‡Π΅ΡΠΊΠ°Ρ структура РНК-ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π°Π·Ρ‹ E. col
    • 1. 3. Π‘Ρ€Π°Π²Π½Π΅Π½ΠΈΠ΅ кристалличСских структур ΠΌΠ½ΠΎΠ³ΠΎΡΡƒΠ±ΡŠΠ΅Π΄ΠΈΠ½ΠΈΡ‡Π½Ρ‹Ρ… РНК-ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π°Π·
    • 1. 4. ВзаимодСйствия ΠΌΠ΅ΠΆΠ΄Ρƒ Π°- ΠΈ ß--ΡΡƒΠ±ΡŠΠ΅Π΄ΠΈΠ½ΠΈΡ†Π°ΠΌΠΈ
  • РНК-ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π°Π·Ρ‹ E. col
    • 1. 4. 1. Π‘Ρ‚Ρ€ΡƒΠΊΡ‚ΡƒΡ€Π°, домСнная организация ΠΈ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π°-ΡΡƒΠ±ΡŠΠ΅Π΄ΠΈΠ½ΠΈΡ†Ρ‹ РНК-ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π°Π·Ρ‹ E. col
    • 1. 4. 2. Π‘Ρ‚Ρ€ΡƒΠΊΡ‚ΡƒΡ€Π°, домСнная организация ΠΈ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ß--ΡΡƒΠ±ΡŠΠ΅Π΄ΠΈΠ½ΠΈΡ†Ρ‹ РНК-ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π°Π·Ρ‹ E. col
    • 1. 5. ΠšΡ€Π°Ρ‚ΠΊΠΎΠ΅ описаниС ΠΌΠ΅Ρ‚ΠΎΠ΄Π° Π΄Π²ΡƒΡ…Π³ΠΈΠ±Ρ€ΠΈΠ΄Π½ΠΎΠ³ΠΎ Π°Π½Π°Π»ΠΈΠ·Π°
  • 2. Π“Π•ΠΠ•Π’Π˜Π§Π•Π‘ΠšΠ˜Π™ И Π‘Π˜ΠžΠ₯Π˜ΠœΠ˜Π§Π•Π‘ΠšΠ˜Π™ ΠΠΠΠ›Π˜Π— Π‘Π‘ΠžΠ ΠšΠ˜ РНК-ΠŸΠžΠ›Π˜ΠœΠ•Π ΠΠ—Π« (ΠžΠ‘Π‘Π£Π–Π”Π•ΠΠ˜Π• Π Π•Π—Π£Π›Π¬Π’ΠΠ’ΠžΠ’)
    • 2. 1. ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ взаимодСйствий ΠΌΠ΅ΠΆΠ΄Ρƒ Π°- ΠΈ ß--ΡΡƒΠ±ΡŠΠ΅Π΄ΠΈΠ½ΠΈΡ†Π°ΠΌΠΈ РНК-ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π°Π·Ρ‹ E. coli Π΄Π²ΡƒΡ…Π³ΠΈΠ±Ρ€ΠΈΠ΄Π½Ρ‹ΠΌ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ
    • 2. 2. ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ минимального Ρ„Ρ€Π°Π³ΠΌΠ΅Π½Ρ‚Π° ß--ΡΡƒΠ±ΡŠΠ΅Π΄ΠΈΠ½ΠΈΡ†Ρ‹ РНК-ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π°Π·Ρ‹ E. coli, Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡ‚Π²ΡƒΡŽΡ‰Π΅Π³ΠΎ с Π°-ΡΡƒΠ±ΡŠΠ΅Π΄ΠΈΠ½ΠΈΡ†Π΅ΠΉ
    • 2. 3. ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ консСрвативных Ρ€Π°ΠΉΠΎΠ½ΠΎΠ² ß--ΡΡƒΠ±ΡŠΠ΅Π΄ΠΈΠ½ΠΈΡ†Ρ‹ РНК-ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π°Π·Ρ‹ E. coli, Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΡ… Π΄Ρ€ΡƒΠ³ с Π΄Ρ€ΡƒΠ³ΠΎΠΌ, Π΄Π²ΡƒΡ…Π³ΠΈΠ±Ρ€ΠΈΠ΄Π½Ρ‹ΠΌ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ Π°Π½Π°Π»ΠΈΠ·Π°
    • 2. 4. Π‘Ρ‚Ρ€ΡƒΠΊΡ‚ΡƒΡ€Π½Ρ‹ΠΉ Π°Π½Π°Π»ΠΈΠ· Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠ² Π΄Π²ΡƒΡ…Π³ΠΈΠ±Ρ€ΠΈΠ΄Π½ΠΎΠ³ΠΎ ΠΌΠ΅Ρ‚ΠΎΠ΄Π° ΠΏΠΎ a-? ΠΈ ?-? взаимодСйствиям
    • 2. 5. Π’ΠΎΡ‡Π΅Ρ‡Π½Ρ‹Π΅ ΠΌΡƒΡ‚Π°Ρ†ΠΈΠΈ Π² ΠΊΠΎΠ½ΡΠ΅Ρ€Π²Π°Ρ‚ΠΈΠ²Π½Ρ‹Ρ… Ρ€Π°ΠΉΠΎΠ½Π°Ρ… Н ΠΈ I ß--ΡΡƒΠ±ΡŠΠ΅Π΄ΠΈΠ½ΠΈΡ†Ρ‹ РНК-ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π°Π·Ρ‹ E. coli, Π²Π»ΠΈΡΡŽΡ‰ΠΈΠ΅ Π½Π° ΡΠ²ΡΠ·Ρ‹Π²Π°Π½ΠΈΠ΅ с a-ΡΡƒΠ±ΡŠΠ΅Π΄ΠΈΠ½ΠΈΡ†Π΅ΠΉ in vivo ΠΈ in vitro
    • 2. 6. Π­Π²ΠΎΠ»ΡŽΡ†ΠΈΠΎΠ½Π½Ρ‹ΠΉ консСрватизм взаимодСйствия ΠΌΠ΅ΠΆΠ΄Ρƒ Π³ΠΎΠΌΠΎΠ»ΠΎΠ³Π°ΠΌΠΈ Π°- ΠΈ ß--ΡΡƒΠ±ΡŠΠ΅Π΄ΠΈΠ½ΠΈΡ† РНК-ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π°Π·
    • 2. 7. ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ минимального субкомплСкса РНК-ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π°Π·Ρ‹ E. coli, содСрТащСго Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎ Π°ΠΊΡ‚ΠΈΠ²Π½Ρ‹ΠΉ сайт связывания ΠΈΠ½ΠΈΡ†ΠΈΠΈΡ€ΡƒΡŽΡ‰Π΅Π³ΠΎ Π½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄Π°
  • ΠœΠΠ’Π•Π Π˜ΠΠ›Π« И ΠœΠ•Π’ΠžΠ”Π«
  • Π’Π«Π’ΠžΠ”Π«

ΠΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ Ρ‚Π΅ΠΌΡ‹

Одним ΠΈΠ· Π³Π»Π°Π²Π½Ρ‹Ρ… Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠΉ исслСдований Π² ΡΠΎΠ²Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ молСкулярной Π±ΠΈΠΎΠ»ΠΎΠ³ΠΈΠΈ являСтся ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΠ΅ ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠΎΠ² гСнСтичСской экспрСссии Π² ΠΊΠ»Π΅Ρ‚ΠΊΠ΅. Вранскрипция—синтСз РНК Π½Π° Π”ΠΠš-ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Π΅—ΠΏΠ΅Ρ€Π²Ρ‹ΠΉ ΠΈ ΡΠ°ΠΌΡ‹ΠΉ Π²Π°ΠΆΠ½Ρ‹ΠΉ этап гСнСтичСской экспрСссии. ИмСнно Π½Π° ΡΡ‚Π°ΠΏΠ΅ транскрипции происходит Π΄ΠΎ 80% всСх рСгуляторных событий, ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΠΈΡ€ΡƒΡŽΡ‰ΠΈΡ… ΡΠΊΡΠΏΡ€Π΅ΡΡΠΈΡŽ ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠ³ΠΎ Π³Π΅Π½ΠΎΠΌΠ°. Вранскрипция осущСствляСтся особым классом Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚ΠΎΠ²—Π”ΠΠš-зависимыми РНК-ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π°Π·Π°ΠΌΠΈ. УстановлСниС ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠΎΠ² дСйствия ΠΈ Ρ€Π΅Π³ΡƒΠ»ΡΡ†ΠΈΠΈ РНК-ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π°Π·Ρ‹ являСтся ΠΊΠ»ΡŽΡ‡Π΅Π²ΠΎΠΉ Π·Π°Π΄Π°Ρ‡Π΅ΠΉ молСкулярных Π±ΠΈΠΎΠ»ΠΎΠ³ΠΎΠ² с ΠΌΠΎΠΌΠ΅Π½Ρ‚Π° открытия Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π° Π‘. Вайсом Π² 1959 Π³ΠΎΠ΄Ρƒ.

РНК-ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π°Π·Ρ‹ всСх ΠΆΠΈΠ²Ρ‹Ρ… ΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌΠΎΠ²—ΠΎΡ‚ Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΉ Π΄ΠΎ Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ°— ΠΌΠ½ΠΎΠ³ΠΎΡΡƒΠ±ΡŠΠ΅Π΄ΠΈΠ½ΠΈΡ‡Π½Ρ‹Π΅ Π±Π΅Π»ΠΊΠΈ, ΠΈΠΌΠ΅ΡŽΡ‰ΠΈΠ΅ ΡΠ²ΠΎΠ»ΡŽΡ†ΠΈΠΎΠ½Π½ΠΎ ΠΊΠΎΠ½ΡΠ΅Ρ€Π²Π°Ρ‚ΠΈΠ²Π½ΡƒΡŽ Π°ΠΌΠΈΠ½ΠΎΠΊΠΈΡΠ»ΠΎΡ‚Π½ΡƒΡŽ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ ΠΈ Π³ΠΎΠΌΠΎΠ»ΠΎΠ³ΠΈΡ‡Π½ΡƒΡŽ ΠΏΡ€ΠΎΡΡ‚Ρ€Π°Π½ΡΡ‚Π²Π΅Π½Π½ΡƒΡŽ ΠΎΡ€Π³Π°Π½ΠΈΠ·Π°Ρ†ΠΈΡŽ [1−6]. ΠŸΡ€ΠΎΠΊΠ°Ρ€ΠΈΠΎΡ‚Ρ‹ ΠΈ Π°Ρ€Ρ…Π΅ΠΈ (Π°Ρ€Ρ…Π΅Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΈ) ΠΈΠΌΠ΅ΡŽΡ‚ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ ΠΎΠ΄ΠΈΠ½ Π²ΠΈΠ΄ РНК-ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π°Π·Ρ‹, Ρ‚ΠΎΠ³Π΄Π° ΠΊΠ°ΠΊ Π² ΡΡƒΠΊΠ°Ρ€ΠΈΠΎΡ‚ичСских ΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌΠ°Ρ… содСрТатся Ρ‚Ρ€ΠΈ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π°: РНК-ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π°Π·Ρ‹ I, II ΠΈ III. Π’ ΠΊΠ°ΠΆΠ΄ΠΎΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡΡƒΠ±ΡŠΠ΅Π΄ΠΈΠ½ΠΈΡ‡Π½ΠΎΠΉ РНК-ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π°Π·Π΅ ΠΌΠΎΠΆΠ½ΠΎ Π²Ρ‹Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΡƒΠ±ΡŒΠ΅Π΄ΠΈΠ½ΠΈΡ†Ρ‹, ΡΠΎΡΡ‚Π°Π²Π»ΡΡŽΡ‰ΠΈΠ΅ транскрипционно ΠΊΠΎΠΌΠΏΠ΅Ρ‚Π΅Π½Ρ‚Π½Ρ‹ΠΉ ΠΊΠΎΡ€-Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚, ΠΈ ΡΡƒΠ±ΡŒΠ΅Π΄ΠΈΠ½ΠΈΡ†Ρ‹, ΠΌΠΎΠ΄ΡƒΠ»ΠΈΡ€ΡƒΡŽΡ‰ΠΈΠ΅ дСйствиС ΠΊΠΎΡ€-Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π°. ΠšΠΎΡ€-Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚ прокариотичСских РНК-ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π°Π· содСрТит ΠΎΠ΄Π½Ρƒ ß-'-ΡΡƒΠ±ΡŒΠ΅Π΄ΠΈΠ½ΠΈΡ†Ρƒ, ΠΎΠ΄Π½Ρƒ ß—ΡΡƒΠ±ΡŒΠ΅Π΄ΠΈΠ½ΠΈΡ†Ρƒ, Π΄Π²Π΅ Π°-ΡΡƒΠ±ΡŒΠ΅Π΄ΠΈΠ½ΠΈΡ†Ρ‹ ΠΈ ΠΎΠ΄Π½Ρƒ со-ΡΡƒΠ±ΡŒΠ΅Π΄ΠΈΠ½ΠΈΡ†Ρƒ. ΠšΠΎΡ€ РНК-ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π°Π·Ρ‹ Π°Ρ€Ρ…Π΅ΠΉ ΠΈ ΡΡƒΠΊΠ°Ρ€ΠΈΠΎΡ‚ содСрТат ΡΡƒΠ±ΡŒΠ΅Π΄ΠΈΠ½ΠΈΡ†Ρ‹, Π³ΠΎΠΌΠΎΠ»ΠΎΠ³ΠΈΡ‡Π½Ρ‹Π΅ Π²Ρ‹ΡˆΠ΅ΠΏΠ΅Ρ€Π΅Ρ‡ΠΈΡΠ»Π΅Π½Π½Ρ‹ΠΌ, Π² Ρ‚Π°ΠΊΠΎΠΌ ΠΆΠ΅ ΡΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠΈ плюс Π΄ΠΎΠΏΠΎΠ»Π½ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ ΡΡƒΠ±ΡŒΠ΅Π΄ΠΈΠ½ΠΈΡ†Ρ‹.

ΠžΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½Π°Ρ простота ΠΎΡ€Π³Π°Π½ΠΈΠ·Π°Ρ†ΠΈΠΈ транскрипционного Π°ΠΏΠΏΠ°Ρ€Π°Ρ‚Π° ΠΈ Π»Ρ‘Π³ΠΊΠΎΡΡ‚ΡŒ выдСлСния прокариотичСских РНК-ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π°Π· ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΠ»ΠΈ ΠΈΡ… Ρ€ΠΎΠ»ΡŒ ΠΌΠΎΠ΄Π΅Π»ΡŒΠ½Ρ‹Ρ… систСм ΠΏΡ€ΠΈ ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΠΈ транскрипции. Π‘Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½Π°Ρ РНК-ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π°Π·Π° собираСтся ΠΈΠ· ΠΎΡ‚Π΄Π΅Π»ΡŒΠ½Ρ‹Ρ… ΡΡƒΠ±ΡŠΠ΅Π΄ΠΈΠ½ΠΈΡ† in vivo ΠΈ in vitro Π² ΡΠΎΠΎΡ‚вСтствии со ΡΠ»Π΅Π΄ΡƒΡŽΡ‰Π΅ΠΉ схСмой [7, 8]: ?> Π°+Π°-> Π°2 > a2? a2??'co ΠΊΠΎΡ€-Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚.

Π˜Π½Π΄ΠΈΠ²ΠΈΠ΄ΡƒΠ°Π»ΡŒΠ½Ρ‹Π΅ ΡΡƒΠ±ΡŠΠ΅Π΄ΠΈΠ½ΠΈΡ†Ρ‹ РНК-ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π°Π·Ρ‹ Π½Π΅ ΠΎΠ±Π»Π°Π΄Π°ΡŽΡ‚ ΠΏΠ°Ρ€Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹ΠΌΠΈ функциями Ρ†Π΅Π»ΠΎΠ³ΠΎ Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π° [9]. Π‘Π»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Π΅ сайты Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π° Ρ„ΠΎΡ€ΠΌΠΈΡ€ΡƒΡŽΡ‚ΡΡ Π»ΠΈΠ±ΠΎ аллостСричСски ΠΏΡ€ΠΈ сборкС Π±Π΅Π»ΠΊΠ°, Π»ΠΈΠ±ΠΎ Π² Ρ€Π°ΠΉΠΎΠ½Π°Ρ… ΠΊΠΎΠ½Ρ‚Π°ΠΊΡ‚ΠΎΠ² Π½Π΅ΡΠΊΠΎΠ»ΡŒΠΊΠΈΡ… ΡΡƒΠ±ΡŠΠ΅Π΄ΠΈΠ½ΠΈΡ†. По ΡΡ‚ΠΎΠΉ ΠΏΡ€ΠΈΡ‡ΠΈΠ½Π΅ установлСниС взаимодСйствий, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ происходят Π²Π½ΡƒΡ‚Ρ€ΠΈ самих ΡΡƒΠ±ΡŠΠ΅Π΄ΠΈΠ½ΠΈΡ†, Π½Π° ΡΠΊΡΠΏΠΎΠ½ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… повСрхностях ΠΎΡ‚Π΄Π΅Π»ΡŒΠ½Ρ‹Ρ… ΡΡƒΠ±ΡŠΠ΅Π΄ΠΈΠ½ΠΈΡ† ΠΈ Π² Ρ€Π°ΠΉΠΎΠ½Π°Ρ… ΠΊΠΎΠ½Ρ‚Π°ΠΊΡ‚Π° Π½Π΅ΡΠΊΠΎΠ»ΡŒΠΊΠΈΡ… ΡΡƒΠ±ΡŠΠ΅Π΄ΠΈΠ½ΠΈΡ†, Π²Π°ΠΆΠ½ΠΎ для познания ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠΎΠ² дСйствия ΠΈ Ρ€Π΅Π³ΡƒΠ»ΡΡ†ΠΈΠΈ РНК-ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π°Π·Ρ‹.

Настоящая Ρ€Π°Π±ΠΎΡ‚Π° посвящСна ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΡŽ взаимодСйствий ΠΌΠ΅ΠΆΠ΄Ρƒ Π°ΠΈ (3-ΡΡƒΠ±ΡŠΠ΅Π΄ΠΈΠ½ΠΈΡ†Π°ΠΌΠΈ РНК-ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π°Π·Ρ‹ Escherichia coli ΠΈ Π ΠΠš-ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π°Π· I ΠΈ III Π΄Ρ€ΠΎΠΆΠΆΠ΅ΠΉ Saccharomyces cerevisiae с ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ΠΌ молСкулярно-гСнСтичСских ΠΈ Π±ΠΈΠΎΡ…имичСских ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ².

ЦСль Ρ€Π°Π±ΠΎΡ‚Ρ‹ ΠΈ Π·Π°Π΄Π°Ρ‡ΠΈ исслСдования. ЦСлью Π΄Π°Π½Π½ΠΎΠΉ Ρ€Π°Π±ΠΎΡ‚Ρ‹ явилось установлСниС структурных Π΄Π΅Ρ‚Π΅Ρ€ΠΌΠΈΠ½Π°Π½Ρ‚ Π°ΠΈ (3-ΡΡƒΠ±ΡŠΠ΅Π΄ΠΈΠ½ΠΈΡ† РНК-ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π°Π·Ρ‹ Π•. coli, Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΡ… Π² ΠΏΡ€ΠΎΡ†Π΅ΡΡΠ΅ образования Π°Π³Π -комплСксаа Ρ‚Π°ΠΊΠΆΠ΅ установлСниС ΠΏΠ°Ρ€Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… биохимичСских Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ ΠΈΠ½Ρ‚Π΅Ρ€ΠΌΠ΅Π΄ΠΈΠ°Ρ‚Π° Π°Π³Ρ€. Π’ Ρ€Π°Π±ΠΎΡ‚Π΅ ΡΡ‚Π°Π²ΠΈΠ»ΠΈΡΡŒ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠ΅ Π·Π°Π΄Π°Ρ‡ΠΈ: (1) ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ наимСньшСго Ρ„Ρ€Π°Π³ΠΌΠ΅Π½Ρ‚Π° Π -ΡΡƒΠ±ΡŠΠ΅Π΄ΠΈΠ½ΠΈΡ†Ρ‹, Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡ‚Π²ΡƒΡŽΡ‰Π΅Π³ΠΎ с Π°-ΡΡƒΠ±ΡŠΠ΅Π΄ΠΈΠ½ΠΈΡ†Π΅ΠΉ Π² ΡΠΎΡΡ‚Π°Π²Π΅ Π°Π³Π -комплСкса- (2) ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡Π΅Ρ‡Π½Ρ‹Ρ… ΠΌΡƒΡ‚Π°Ρ†ΠΈΠΉ Π² Π°ΠΈ Π² Π -ΡΡƒΠ±ΡŠΠ΅Π΄ΠΈΠ½ΠΈΡ†Π°Ρ…, Π½Π°Ρ€ΡƒΡˆΠ°ΡŽΡ‰ΠΈΡ… Π°-Ρ€ взаимодСйствиС- (3) ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ участков Π²Π½ΡƒΡ‚Ρ€ΠΈ Π -ΡΡƒΠ±ΡŠΠ΅Π΄ΠΈΠ½ΠΈΡ†Ρ‹, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡ‚Π²ΡƒΡŽΡ‚ Π΄Ρ€ΡƒΠ³ с Π΄Ρ€ΡƒΠ³ΠΎΠΌ ΠΈ ΠΈΠΌΠ΅ΡŽΡ‚ Π²Π°ΠΆΠ½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΏΡ€ΠΈ сборкС ΠΈΠ½Ρ‚Π΅Ρ€ΠΌΠ΅Π΄ΠΈΠ°Ρ‚Π° Π°Π³Π - (4) установлСниС ΡΠ²ΠΎΠ»ΡŽΡ†ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ консСрватизма Π²ΠΎ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡ‚виях Π°ΠΈ Π -ΡΡƒΠ±ΡŠΠ΅Π΄ΠΈΠ½ΠΈΡ† прокариотичСских ΠΈ ΡΡƒΠΊΠ°Ρ€ΠΈΠΎΡ‚ичСских РНК-ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π°Π·- (5) ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΠ΅ взаимодСйствия ΠΈΠ½Π΄ΠΈΠ²ΠΈΠ΄ΡƒΠ°Π»ΡŒΠ½ΠΎΠΉ Π -ΡΡƒΠ±ΡŠΠ΅Π΄ΠΈΠ½ΠΈΡ†Ρ‹ ΠΈ Π°Π³Π -комплСкса РНК-ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π°Π·Ρ‹ E. coli с ΠΈΠ½ΠΈΡ†ΠΈΠΈΡ€ΡƒΡŽΡ‰ΠΈΠΌ ΠΏΡƒΡ€ΠΈΠ½ΠΎΠ²Ρ‹ΠΌ Π½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄ΠΎΠΌ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ Π°Ρ„Ρ„ΠΈΠ½Π½ΠΎΠ³ΠΎ мСчСния. Научная Π½ΠΎΠ²ΠΈΠ·Π½Π° ΠΈ ΠΏΡ€Π°ΠΊΡ‚ичСская Ρ†Π΅Π½Π½ΠΎΡΡ‚ΡŒ Ρ€Π°Π±ΠΎΡ‚Ρ‹. Π’ΠΏΠ΅Ρ€Π²Ρ‹Π΅ ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ, Ρ‡Ρ‚ΠΎ наимСньшим Ρ„Ρ€Π°Π³ΠΌΠ΅Π½Ρ‚ΠΎΠΌ Π -ΡΡƒΠ±ΡŠΠ΅Π΄ΠΈΠ½ΠΈΡ†Ρ‹ РНК-ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π°Π·Ρ‹ E. coli, Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΠΌ с Π°-ΡΡƒΠ±ΡŠΠ΅Π΄ΠΈΠ½ΠΈΡ†Π΅ΠΉ Π² ΠΏΡ€ΠΎΡ†Π΅ΡΡΠ΅ образования ΠΈΠ½Ρ‚Π΅Ρ€ΠΌΠ΅Π΄ΠΈΠ°Ρ‚Π° Π°Π³Π , являСтся Ρ„Ρ€Π°Π³ΠΌΠ΅Π½Ρ‚, содСрТащий аминокислотныС остатки с ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΡ 800 ΠΏΠΎ 1231. УстановлСно, Ρ‡Ρ‚ΠΎ сущСствуСт Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎΠ΅ для связывания с Π°-ΡΡƒΠ±ΡŠΠ΅Π΄ΠΈΠ½ΠΈΡ†Π΅ΠΉ взаимодСйствиС ΠΌΠ΅ΠΆΠ΄Ρƒ консСрвативными Ρ€Π°ΠΉΠΎΠ½Π°ΠΌΠΈ F ΠΈ I Π -ΡΡƒΠ±ΡŠΠ΅Π΄ΠΈΠ½ΠΈΡ†Ρ‹ РНК-ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π°Π·Ρ‹ E.coli. ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Ρ‹ Π΄Π΅Ρ‚Π΅Ρ€ΠΌΠΈΠ½Π°Π½Ρ‚Ρ‹ Π² Π -ΡΡƒΠ±ΡŠΠ΅Π΄ΠΈΠ½ΠΈΡ†Π΅ РНК-ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π°Π·Ρ‹ E. coli, отвСтствСнныС Π·Π° ΡΠ²ΡΠ·Ρ‹Π²Π°Π½ΠΈΠ΅ с Π°-ΡΡƒΠ±ΡŠΠ΅Π΄ΠΈΠ½ΠΈΡ†Π΅ΠΉ ΠΏΡ€ΠΈ ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠΈ Π°Π³Π -комплСкса. Π’ΠΏΠ΅Ρ€Π²Ρ‹Π΅ ΠΏΠΎΠΊΠ°Π·Π°Π½ ΡΠ²ΠΎΠ»ΡŽΡ†ΠΈΠΎΠ½Π½Ρ‹ΠΉ консСрватизм взаимодСйствия ΠΌΠ΅ΠΆΠ΄Ρƒ Π³ΠΎΠΌΠΎΠ»ΠΎΠ³Π°ΠΌΠΈ, Π° ΠΈ Π -ΡΡƒΠ±ΡŠΠ΅Π΄ΠΈΠ½ΠΈΡ† эукариотичСских ΠΈ ΠΏΡ€ΠΎΠΊΠ°Ρ€ΠΈΠΎΡ‚ичСских РНК-ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π°Π·. УстановлСно, Ρ‡Ρ‚ΠΎ ΠΏΡƒΡ€ΠΈΠ½-спСцифичный ΠΈΠ½ΠΈΡ†ΠΈΠ°Ρ‚ΠΎΡ€Π½Ρ‹ΠΉ сайт Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π° (сайт ΠΈΠ½ΠΈΡ†ΠΈΠ°Ρ†ΠΈΠΈ транскрипции) ΠΏΠΎΠ»Π½ΠΎΡΡ‚ΡŒΡŽ сформирован Π² ΠΈΠ½Π΄ΠΈΠ²ΠΈΠ΄ΡƒΠ°Π»ΡŒΠ½ΠΎΠΉ Ρ€-ΡΡƒΠ±ΡŠΠ΅Π΄ΠΈΠ½ΠΈΡ†Π΅ ΠΈ Π² Π°Π³Π -комплСксС РНК-ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π°Π·Ρ‹ E.coli.

ΠŸΡ€Π°ΠΊΡ‚ΠΈΡ‡Π΅ΡΠΊΠ°Ρ Ρ†Π΅Π½Π½ΠΎΡΡ‚ΡŒ настоящСй Ρ€Π°Π±ΠΎΡ‚Ρ‹ Π·Π°ΠΊΠ»ΡŽΡ‡Π°Π΅Ρ‚ΡΡ Π² Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠ΅ ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½ΠΎΠΉ систСмы для изучСния взаимодСйствий ΠΌΠ΅ΠΆΠ΄Ρƒ ΡΡƒΠ±ΡŠΠ΅Π΄ΠΈΠ½ΠΈΡ†Π°ΠΌΠΈ.

РНК-ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π°Π· с ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ ΠΌΠ΅Ρ‚ΠΎΠ΄Π° Π΄Π²ΡƒΡ…Π³ΠΈΠ±Ρ€ΠΈΠ΄Π½ΠΎΠ³ΠΎ Π°Π½Π°Π»ΠΈΠ·Π°. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Π² Ρ€Π°Π±ΠΎΡ‚Π΅ Π΄Π°Π½Π½Ρ‹Π΅ Π²Π°ΠΆΠ½Ρ‹ для понимания структурного ΠΈ ΡΠ²ΠΎΠ»ΡŽΡ†ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ аспСктов Π±Π΅Π»ΠΎΠΊ-Π±Π΅Π»ΠΊΠΎΠ²Ρ‹Ρ… взаимодСйствий Π² ΡΠΎΡΡ‚Π°Π²Π΅ ΠΌΠ½ΠΎΠ³ΠΎΡΡƒΠ±ΡŠΠ΅Π΄ΠΈΠ½ΠΈΡ‡Π½Ρ‹Ρ… Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚ΠΎΠ². Π‘Ρ‚Ρ€ΡƒΠΊΡ‚ΡƒΡ€Π° ΠΈ ΠΎΠ±ΡŠΡ‘ΠΌ Ρ€Π°Π±ΠΎΡ‚Ρ‹. ДиссСртация состоит ΠΈΠ· Π²Π²Π΅Π΄Π΅Π½ΠΈΡ, ΠΎΠ±Π·ΠΎΡ€Π° Π»ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹, излоТСния ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠ² ΠΈ ΠΈΡ… ΠΎΠ±ΡΡƒΠΆΠ΄Π΅Π½ΠΈΡ, ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΠΎΠ² ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ², Π²Ρ‹Π²ΠΎΠ΄ΠΎΠ² ΠΈ ΡΠΏΠΈΡΠΊΠ° Ρ†ΠΈΡ‚ΠΈΡ€ΡƒΠ΅ΠΌΠΎΠΉ Π»ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹. Π Π°Π±ΠΎΡ‚Π° ΠΈΠ·Π»ΠΎΠΆΠ΅Π½Π° Π½Π° 104 страницах машинописного тСкста ΠΈ ΡΠΎΠ΄Π΅Ρ€ΠΆΠΈΡ‚ 37 рисунков ΠΈ 6 Ρ‚Π°Π±Π»ΠΈΡ†. Библиография содСрТит 195 ΠΏΡƒΠ±Π»ΠΈΠΊΠ°Ρ†ΠΈΠΉ.

Π²Ρ‹Π²ΠΎΠ΄Ρ‹.

1. Показано, Ρ‡Ρ‚ΠΎ наимСньшим Ρ„Ρ€Π°Π³ΠΌΠ΅Π½Ρ‚ΠΎΠΌ ß—ΡΡƒΠ±ΡŠΠ΅Π΄ΠΈΠ½ΠΈΡ†Ρ‹ РНК-ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π°Π·Ρ‹ E. coli, Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΠΌ с ΠΎΡ-ΡΡƒΠ±ΡŠΠ΅Π΄ΠΈΠ½ΠΈΡ†Π΅ΠΉ, являСтся Ρ„Ρ€Π°Π³ΠΌΠ΅Π½Ρ‚, содСрТащий аминокислотныС остатки с ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΡ 800 ΠΏΠΎ 1231.

2. УстановлСно взаимодСйствиС ΠΌΠ΅ΠΆΠ΄Ρƒ консСрвативными Ρ€Π°ΠΉΠΎΠ½Π°ΠΌΠΈ F ΠΈ I ß—ΡΡƒΠ±ΡŠΠ΅Π΄ΠΈΠ½ΠΈΡ†Ρ‹ РНК-ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π°Π·Ρ‹ E. coli, ΡΠ²Π»ΡΡŽΡ‰Π΅Π΅ΡΡ Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΡ‹ΠΌ для связывания с Π°-ΡΡƒΠ±ΡŠΠ΅Π΄ΠΈΠ½ΠΈΡ†Π΅ΠΉ Π² ΠΏΡ€ΠΎΡ†Π΅ΡΡΠ΅ образования с^-комплСкса. ВзаимодСйствиС ΠΌΠ΅ΠΆΠ΄Ρƒ консСрвативными Ρ€Π°ΠΉΠΎΠ½Π°ΠΌΠΈ F ΠΈ I ß—ΡΡƒΠ±ΡŠΠ΅Π΄ΠΈΠ½ΠΈΡ†Ρ‹ ΠΌΠΎΠΆΠ΅Ρ‚ Π²Π½ΠΎΡΠΈΡ‚ΡŒ стабилизационный Π²ΠΊΠ»Π°Π΄ Π² ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ ß—ΡΡ‚Ρ€ΡƒΠΊΡ‚ΡƒΡ€Ρ‹.

3. ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Ρ‹ ΠΎΠ΄ΠΈΠ½ΠΎΡ‡Π½Ρ‹Π΅ аминокислотныС Π·Π°ΠΌΠ΅Π½Ρ‹ Π² ΠΏΠ΅Ρ€Π²ΠΈΡ‡Π½ΠΎΠΉ структурС Ρ„Ρ€Π°Π³ΠΌΠ΅Π½Ρ‚Π° 800−1231 ß—ΡΡƒΠ±ΡŠΠ΅Π΄ΠΈΠ½ΠΈΡ†Ρ‹, приводящиС ΠΊ Π½Π°Ρ€ΡƒΡˆΠ΅Π½ΠΈΡŽ взаимодСйствия ΠΌΠ΅ΠΆΠ΄Ρƒ Π°ΠΈ ß—ΡΡƒΠ±ΡŠΠ΅Π΄ΠΈΠ½ΠΈΡ†Π°ΠΌΠΈ РНК-ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π°Π·Ρ‹ E.coli. Π’Π°ΠΊΠΈΠΌΠΈ аминокислотными остатками ΡΠ²Π»ΡΡŽΡ‚ΡΡ Aspl084 ΠΈ Glyl215.

4. УстановлСно, Ρ‡Ρ‚ΠΎ ΠΌΡƒΡ‚Π°Ρ†ΠΈΠΈ Π² ß—ΡΡƒΠ±ΡŠΠ΅Π΄ΠΈΠ½ΠΈΡ†Π΅ РНК-ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π°Π·Ρ‹ E. coli (Aspl084Ala ΠΈ Glyl215Asp), Π½Π°Ρ€ΡƒΡˆΠ°ΡŽΡ‰ΠΈΠ΅ взаимодСйствиС с Π°-ΡΡƒΠ±ΡŠΠ΅Π΄ΠΈΠ½ΠΈΡ†Π΅ΠΉ, ΡΠ²Π»ΡΡŽΡ‚ΡΡ Π»Π΅Ρ‚Π°Π»ΡŒΠ½Ρ‹ΠΌΠΈ. Π‘Ρ‚Ρ€ΡƒΠΊΡ‚ΡƒΡ€Π½ΠΎ-гомологичная мутация Π²ΠΎ Π²Ρ‚ΠΎΡ€ΠΎΠΉ большой ΡΡƒΠ±ΡŠΠ΅Π΄ΠΈΠ½ΠΈΡ†Π΅ Π΄Ρ€ΠΎΠΆΠΆΠ΅ΠΉ (Asp935Arg Π² AI35 ΡΡƒΠ±ΡŠΠ΅Π΄ΠΈΠ½ΠΈΡ†Π΅) Π½Π΅ Π½Π°Ρ€ΡƒΡˆΠ°Π΅Ρ‚ Π²Π°ΠΆΠ½Ρ‹Ρ… Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ Π΄Ρ€ΠΎΠΆΠΆΠ΅Π²ΠΎΠΉ РНК-ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π°Π·Ρ‹ I.

5. УстановлСн ΡΠ²ΠΎΠ»ΡŽΡ†ΠΈΠΎΠ½Π½Ρ‹ΠΉ консСрватизм взаимодСйствия ΠΌΠ΅ΠΆΠ΄Ρƒ Π³ΠΎΠΌΠΎΠ»ΠΎΠ³Π°ΠΌΠΈ Π°ΠΈ ß—ΡΡƒΠ±ΡŠΠ΅Π΄ΠΈΠ½ΠΈΡ† эукариотичСских ΠΈ ΠΏΡ€ΠΎΠΊΠ°Ρ€ΠΈΠΎΡ‚ичСских РНК-ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π°Π·. Π’ Π΄Ρ€ΠΎΠΆΠΆΠ΅Π²ΠΎΠΉ РНК-ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π°Π·Π΅ I AI35 ΡΡƒΠ±ΡŠΠ΅Π΄ΠΈΠ½ΠΈΡ†Π° (Π°Π½Π°Π»ΠΎΠ³ ß—ΡΡƒΠ±ΡŠΠ΅Π΄ΠΈΠ½ΠΈΡ†Ρ‹ РНК-ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π°Π·Ρ‹ E. coli) взаимодСйствуСт с ΡΡƒΠ±ΡŠΠ΅Π΄ΠΈΠ½ΠΈΡ†Π΅ΠΉ АБ40 Π² ΡΠΎΡΡ‚Π°Π²Π΅ Π³Π΅Ρ‚Π΅Ρ€ΠΎΠ΄ΠΈΠΌΠ΅Ρ€Π° АБ40/АБ19 (Π°Π½Π°Π»ΠΎΠ³Π° Π΄ΠΈΠΌΠ΅Ρ€Π° Π°-ΡΡƒΠ±ΡŠΠ΅Π΄ΠΈΠ½ΠΈΡ†Ρ‹ РНК-ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π°Π·Ρ‹ E. coli).

6. Показано, Ρ‡Ρ‚ΠΎ Asp935 А135 ΡΡƒΠ±ΡŠΠ΅Π΄ΠΈΠ½ΠΈΡ†Ρ‹ Π΄Ρ€ΠΎΠΆΠΆΠ΅Π²ΠΎΠΉ РНК-ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π°Π·Ρ‹ I, ΡΠ²Π»ΡΡŽΡ‰ΠΈΠΉΡΡ Π³ΠΎΠΌΠΎΠ»ΠΎΠ³ΠΎΠΌ Aspl084 ß—ΡΡƒΠ±ΡŠΠ΅Π΄ΠΈΠ½ΠΈΡ†Ρ‹ РНК-ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π°Π·Ρ‹ E. coli, Π½Π°ΠΏΡ€ΡΠΌΡƒΡŽ участвуСт Π² ΡΠ²ΡΠ·Ρ‹Π²Π°Π½ΠΈΠΈ с Π³Π΅Ρ‚Π΅Ρ€ΠΎΠ΄ΠΈΠΌΠ΅Ρ€ΠΎΠΌ АБ40/АБ19.

7. Показано, Ρ‡Ρ‚ΠΎ сайт связывания ΠΈΠ½ΠΈΡ†ΠΈΠΈΡ€ΡƒΡŽΡ‰Π΅Π³ΠΎ ΠΏΡƒΡ€ΠΈΠ½ΠΎΠ²ΠΎΠ³ΠΎ Π½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄Π° сформирован ΠΈ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»Π΅Π½ Π² ΡΠΎΡΡ‚Π°Π²Π΅ ΠΊΠ°ΠΊ ΠΈΠ½Π΄ΠΈΠ²ΠΈΠ΄ΡƒΠ°Π»ΡŒΠ½ΠΎΠΉ (3-ΡΡƒΠ±ΡŠΠ΅Π΄ΠΈΠ½ΠΈΡ†Ρ‹, Ρ‚Π°ΠΊ ΠΈ Π² Π°Π³|3-комплСксС РНК-ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π°Π·Ρ‹ Π•.соН.

ΠŸΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ вСсь тСкст

Бписок Π»ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹

  1. Archambault, J. and Friesen, J.D. Genetics of eukaryotic RNA polymerases I, II, and III. (1993) Microbiol Rev, 57, pp. 703−724.
  2. Allison, L.A., Moyle, M., Shales, M., and Ingles, C, J. Extensive homology among the largest subunits of eukaryotic and prokaryotic RNA polymerases. (1985) Cell, 42, pp. 599−610.
  3. Biggs, J., Searles, L.L., and Greenleaf, A.L. Structure of the eukaryotic transcription apparatus: features of the gene for the largest subunit of Drosophila RNA polymerase II. (1985) Cell, 42, pp. 611−621.
  4. Sweetser, D., Nonet, M., and Young, R.A. Prokaryotic and eukaryotic RNA polymerases have homologous core subunits. (1987) Proc Natl Acad Sci USA, 84, pp. 1192−1196.
  5. Zillig, W., Mailhammer, R., Skorko, R., and Rohrer, H. Covalent structural modification of DNA-dependent RNA polymerase as a means for transcriptional control. (1977) Curr Top Cell Regul, 12, pp. 263−271.
  6. Kumar, S.A. and Krakow, J.S. Studies on the product binding sites of the Azotobacter vinelandii ribonucleic acid polymerase. (1975) J Biol Chem, 250, pp. 2878−2884.
  7. McClure, W.R. Rate-limiting steps in RNA chain initiation. (1980) Proc Natl Acad Sci USA, 77, pp. 5634−5638.
  8. Metzger, W., Schickor, P., and Heumann, H. A cinematographic view of Escherichia coli RNA polymerase translocation. (1989) Embo J, 8, pp. 2745−2754.
  9. Steitz, T.A. Structural studies of protein-nucleic acid interaction: the sources of sequence-specific binding. (1990) QRev Biophys, 23, pp. 205−280.
  10. Uptain, S., M., Kane, C., M. and Chamberlin, M., J. Basic mechanisms of transcript elongation and its regulation. (1997) Annu. Rev. Biochem., 66, pp. 117−172.
  11. Steitz, T.A. A mechanism for all polymerases news- comment., (1998) Nature, 391, pp. 231−232.
  12. Nudler, E. Transcription elongation: structural basis and mechanisms. (1999)JMol Biol, 288, pp. 1−12.
  13. Schickor, P., Metzger, W., Werel, W., Lederer, H., and Heumann, H. Topography of intermediates in transcription initiation of E.coli. (1990) Embo J, 9, pp. 22 152 220.
  14. Mecsas, J., Cowing, D.W., and Gross, C.A. Development of RNA polymerase-promoter contacts during open complex formation. (1991) J Mol Biol, 220, pp. 585 597.
  15. Zaychikov, E., Denissova, L., Meier, T., Gotte, M., and Heumann, H. Influence of Mg2+ and temperature on formation of the transcription bubble. (1997) J Biol Chem, 272, pp. 2259−2267.
  16. Suh, W.C., Ross, W., and Record, M.T., Jr. Two open complexes and a requirement for Mg2+ to open the lambda PR transcription start site. (1993) Science, 259, pp. 358−361.
  17. Keene, R.G. and Luse, D.S. Initially transcribed sequences strongly affect the extent of abortive initiation by RNA polymerase II. (1999) J Biol Chem, 274, pp. 11 526−11 534.
  18. Holstege, F.C., Fiedler, U., and Timmers, H.T. Three transitions in the RNA polymerase II transcription complex during initiation. (1997) Embo J, 16, pp. 74 687 480.
  19. Hansen, U.M. and McClure, W.R. Role of the sigma subunit of Escherichia coli RNA polymerase in initiation. II. Release of sigma from ternary complexes. (1980) J Biol Chem, 255, pp. 9564−9570.
  20. Krummel, B. and Chamberlin, M.J. RNA chain initiation by Escherichia col RNA polymerase. Structural transitions of the enzyme in early ternary complexes. (1989) Biochemistry, 28, pp. 7829−7842.
  21. Gelles, J. and Landick, R. RNA polymerase as a molecular motor. (1998)Ce//, 93, pp.13−16.
  22. Rhodes, G. and Chamberlin, M.J. Ribonucleic acid chain elongation by Escherichia coli ribonucleic acid polymerase. I. Isolation of ternary complexes and the kinetics of elongation. (1974) J Biol Chem, 249, pp. 6675−6683.
  23. Mooney, R.A., Artsimovitch, I., and Landick, R. Information processing by RNA polymerase: recognition of regulatory signals during RNA chain elongation. (1998) JBacteriol, 180, pp. 3265−3275.
  24. Nudler, E., Avetissova, E., Markovtsov, V., and Goldfarb, A. Transcription processivity: protein-DNA interactions holding together the elongation complex see comments. (1996) Science, 273, pp. 211−217.
  25. Nudler, E., Mustaev, A., Lukhtanov, E., and Goldfarb, A. The RNADNA hybrid maintains the register of transcription by preventing backtracking of RNA polymerase. (1997) Cell, 89, pp. 33−41.
  26. Komissarova, N. and Kashlev, M. RNA polymerase switches between inactivated and activated states By translocating back and forth along the DNA and the RNA. (1997) J Biol Chem, 272, pp. 15 329−15 338.
  27. Komissarova, N. and Kashlev, M. Functional topography of nascent RNA in elongation intermediates of RNA polymerase. (1998) Proc Natl Acad Sci USA, 95, pp. 14 699−14 704.
  28. Sidorenkov, I., Komissarova, N., and Kashlev, M. Crucial role of the RNA: DNA hybrid in the processivity of transcription. (1998) Mol Cell, 2, pp. 55−64.
  29. Nudler, E., Gusarov, I., Avetissova, E., Kozlov, M., and Goldfarb, A. Spatial organization of transcription elongation complex in Escherichia coli. (1998) Science, 281, pp. 424−428.
  30. Kainz, M. and Roberts, J. Structure of transcription elongation complexes in vivo. (1992) Science, 255, pp. 838−841.
  31. Lee, D.N. and Landick, R. Structure of RNA and DNA chains in paused transcription complexes containing Escherichia coli RNA polymerase. (1992) J Mol Biol, 228, pp. 759−777.
  32. Yager, T.D.a.v.H., P. H., Transcript elongation and termination in Escherichia coli. In Escherichia coli and Salmonella typhimurium. 1987, Washington, DC: American Society for Microbiology. 1241−1275.
  33. Heumann, H., Zaychikov, E., Denissova, L. and Hermann, T. Translocation of DNA-dependent E. coli RNA polymerase during RNA synthesis. (1997) Nucleic Asid and Molecular Biology, 11.
  34. Nudler, E., Kashlev, M., Nikiforov, V., and Goldfarb, A. Coupling between transcription termination and RNA polymerase inchworming. (1995) Cell, 81, pp. 351−357.
  35. Wang, D., Meier, T.I., Chan, C.L., Feng, G., Lee, D.N., and Landick, R. Discontinuous movements of DNA and RNA in RNA polymerase accompany formation of a paused transcription complex. (1995) Cell, 81, pp. 341−350.
  36. Richardson, L.V. and Richardson, J.P. Rho-dependent termination of transcription is governed primarily by the upstream Rho utilization (rut) sequences of a terminator. (1996) J Biol Chem, 271, pp. 21 597−21 603.
  37. Kashlev, M., Nudler, E., Goldfarb, A., White, T., and Kutter, E. Bacteriophage T4 Ale protein: a transcription termination factor sensing local modification of DNA. (1993) Cell, 75, pp. 147−154.
  38. Xie, Z. and Price, D.H. Purification of an RNA polymerase II transcript release factor from Drosophila. (1996) J Biol Chem, 271, pp. 11 043−11 046.
  39. Lang, W.H., Morrow, B.E., Ju, Q., Warner, J.R., and Reeder, R.H. A model for transcription termination by RNA polymerase I. (1994) Cell, 79, pp. 527−534.
  40. Maraia, R.J. Transcription termination factor La is also an initiation factor for RNA polymerase III. (1996) Proc Natl Acad Sci USA, 93, pp. 3383−3387.
  41. Zhang, G., Campbell, E.A., Minakhin, L., Richter, C., Severinov, K., and Darst, S.A. Crystal structure of Thermus aquaticus core RNA polymerase at 3.3 A resolution see comments. (1999) Cell, 98, pp. 811−824.
  42. Fu, J., Gnatt, A.L., Bushnell, D.A., Jensen, G.J., Thompson, N.E., Burgess, R.R., David, P.R., and Romberg, R.D. Yeast RNA polymerase II at 5 A resolution see comments., (1999) Cell, 98, pp. 799−810.
  43. Mooney, R.A. and Landick, R. RNA polymerase unveiled comment. (1999)Ce//, 98, pp. 687−690.
  44. Young, R., A. RNA polymerase II. (99l)Annu. Rev. Biochem., 60, pp. 689−715.
  45. Lalo, D., Carles, C., Sentenac, A., and Thuriaux, P. Interactions between three common subunits of yeast RNA polymerases I and III. (1993) Proc Natl Acad Sci USA, 90, pp. 5524−5528.
  46. Svetlov, V., Nolan, K., and Burgess, R.R. Rpb3, stoichiometry and sequence determinants of the assembly into yeast RNA polymerase II in vivo. (1998) J Biol Chem, 273, pp. 10 827−10 830.
  47. Miyao, T., Yasui, K., Sakurai, H., Yamagishi, M., and Ishihama, A. Molecular assembly of RNA polymerase II from the fission yeast Schizosaccharomyces pombe: subunit-subunit contact network involving Rpb5. (1996) Genes Cells, 1, pp. 843−854.
  48. Acker, J., de Graaff, M., Cheynel, I., Khazak, V., Kedinger, C., and Vigneron, M. Interactions between the human RNA polymerase II subunits. (1997)/Biol Chem, 272, pp.16 815−16 821.
  49. Ishiguro, A., Kimura, M., Yasui, K., Iwata, A., Ueda, S., and Ishihama, A. Two large subunits of the fission yeast RNA polymerase II provide platforms for the assembly of small subunits. (1998) JMolBiol, 279, pp. 703−712.
  50. Yasui, K., Ishiguro, A., and Ishihama, A. Location of subunit-subunit contact sites on RNA polymerase II subunit 3 from the fission yeast Schizosaccharomyces pombe. (1998) Biochemistry, 37, pp. 5542−5548.
  51. Kimura, M., Ishiguro, A., and Ishihama, A. RNA polymerase II subunits 2, 3, and 11 form a core subassembly with DNA binding activity. (1997) J Biol Chem, 272, pp. 25 851−25 855.
  52. Miyao, T., Honda, A., Qu, Z., and Ishihama, A. Mapping of Rpb3 and Rpb5 contact sites on two large subunits, Rpbl and Rpb2, of the RNA polymerase II from fission yeast. (1998) Mol Gen Genet, 259, pp. 123−129.
  53. Edwards, A.M., Darst, S.A., Feaver, W.J., Thompson, N.E., Burgess, R.R., and Kornberg, R.D. Purification and lipid-layer crystallization of yeast RNA polymerase II. (1990) Proc Natl Acad Sci US A, SI, pp. 2122−2126.
  54. McKune, K., Richards, K.L., Edwards, A.M., Young, R.A., and Woychik, N.A. RPB7, one of two dissociable subunits of yeast RNA polymerase II, is essential for cell viability. (1993) Yeast, 9, pp. 295−299.
  55. Woychik, N.A. and Young, R.A. RNA polymerase II subunit RPB4 is essential for high- and low- temperature yeast cell growth. (1989) Mol Cell Biol, 9, pp. 28 542 859.
  56. Darst, S.A., Kubalek, E.W., Edwards, A.M., and Kornberg, R.D. Two-dimensional and epitaxial crystallization of a mutant form of yeast RNA polymerase II. (1991)"/ Mol Biol, 221, pp. 347−357.
  57. Darst, S.A., Edwards, A.M., Kubalek, E.W., and Kornberg, R.D. Three dimensional structure of yeast RNA polymerase II at 16 A resolution. (1991) Cell, 66, pp. 121−128.
  58. Polyakov, A., Severinova, E., and Darst, S.A. Three-dimensional structure of E. coli core RNA polymerase: promoter binding and elongation conformations of the enzyme. (1995) Cell, 83, pp. 365−373.
  59. Asturias, F.J., Meredith, G.D., Poglitsch, C.L., and Kornberg, R.D. Two conformations of RNA polymerase II revealed by electron crystallography. (1997) J Mol Biol, 272, pp. 536−540.
  60. Meredith, G.D., Chang, W.H., Li, Y., Bushnell, D.A., Darst, S.A., and Romberg, R.D. The C-terminal domain revealed in the structure of RNA polymerase II.1996) JMolBiol, 258, pp. 413−419.
  61. Poglitsch, C.L., Meredith, G.D., Gnatt, A.L., Jensen, G.J., Chang, W.H., Fu, J., and Kornberg, R.D. Electron crystal structure of an RNA polymerase II transcription elongation complex see comments. (1999) Cell, 98, pp. 791−798.
  62. Leuther, K.K., Bushnell, D.A., and Kornberg, R.D. Two-dimensional crystallography of TFIIB- and IIE-RNA polymerase II complexes: implications for start site selection and initiation complex formation. (1996) Cell, 85, pp. 773−779.
  63. Asturias, F.J. and Kornberg, R.D. Protein crystallization on lipid layers and structure determination of the RNA polymerase II transcription initiation complex. (1999) J Biol Chem, 274, pp. 6813−6816.
  64. Rice, G.A., Chamberlin, M.J., and Kane, C.M. Contacts between mammalian RNA polymerase II and the template DNA in a ternary elongation complex. (1993) Nucleic Acids Res, 21, pp. 113−118.
  65. Fu, J., Gerstein, M., David, P.R., Gnatt, A.L., Bushnell, D.A., Edwards, A.M., and Kornberg, R.D. Repeated tertiary fold of RNA polymerase II and implications for DNA binding. (1998) JMolBiol, 280, pp. 317−322.
  66. Reeder, T.C. and Hawley, D.K. Promoter proximal sequences modulate RNA polymerase II elongation by a novel mechanism. (1996) Cell, 87, pp. 767−777.
  67. Zaychikov, E., Martin, E., Denissova, L., Kozlov, M., Markovtsov, V., Kashlev, M., Heumann, H., Nikiforov, V., Goldfarb, A., and Mustaev, A. Mapping of catalytic residues in the RNA polymerase active center. (1996) Science, 273, pp. 107−109.
  68. Mustaev, A., Kozlov, M., Markovtsov, V., Zaychikov, E., Denissova, L., and Goldfarb, A. Modular organization of the catalytic center of RNA polymerase.1997) Proc Natl Acad Sci USA, 94, pp. 6641−6645.
  69. Rees, W.A., Keller, R.W., Vesenka, J.P., Yang, G., and Bustamante, C. Evidence of DNA bending in transcription complexes imaged by scanning force microscopy. (1993) Science, 260, pp. 1646−1649.
  70. Darst, S.A., Polyakov, A., Richter, C., and Zhang, G. Insights into Escherichia coli RNA polymerase structure from a combination of x-ray and electron crystallography. (1998) J Struct Biol, 124, pp. 115−122.
  71. Naryshkin, N., Revyakin, A., Kim, Y., Mekler, V., and Ebright, R.H. Structural organization of the RNA polymerase-promoter open complex. (2000) Cell, 101, pp. 601−611.
  72. Wang, Y., Severinov, K., Loizos, N., Fenyo, D., Heyduk, E., Heyduk, T., Chait, B.T., and Darst, S.A. Determinants for Escherichia coli RNA polymerase assembly within the beta subunit. (1997) J Mol Biol, 270, pp. 648−662.
  73. Igarashi, K. and Ishihama, A. Bipartite functional map of the E. coli RNA polymerase alpha subunit: involvement of the C-terminal region in transcription activation by cAMP-CRP. (1991) Cell, 65, pp. 1015−1022.
  74. Blatter, E.E., Ross, W., Tang, H., Gourse, R.L., and Ebright, R.H. Domain organization of RNA polymerase alpha subunit: C-terminal 85 amino acids constitute a domain capable of dimerization and DNA binding. (1994) Cell, 78, pp. 889−896.
  75. Jeon, Y.H., Yamazaki, T., Otomo, T., Ishihama, A., and Kyogoku, Y. Flexible linker in the RNA polymerase alpha subunit facilitates the independent motion of the C-terminal activator contact domain. (1997) J Mol Biol, 267, pp. 953−962.
  76. Zhang, G. and Darst, S.A. Structure of the Escherichia coli RNA polymerase alpha subunit amino- terminal domain. (1998) Science, 281, pp. 262−266.
  77. Markov, D., Naryshkina, T., Mustaev, A., and Severinov, K. A zinc-binding site in the largest subunit of DNA-dependent RNA polymerase is involved in enzyme assembly. (1999) Genes Dev, 13, pp. 2439−2448.
  78. Darst, S.A., Ribi, H.O., Pierce, D.W., and Kornberg, R.D. Twodimensional crystals of Escherichia coli RNA polymerase holoenzyme on positively charged lipid layers. (1988)JMol Biol, 203, pp. 269−273.
  79. Darst, S.A., Kubalek, E.W., and Kornberg, R.D. Three-dimensional structure of Escherichia coli RNA polymerase holoenzyme determined by electron crystallography. (1989) Nature, 340, pp. 730−732.
  80. Darst, S.A., Polyakov, A., Richter, C., and Zhang, G. Structural studies of Escherichia coli RNA polymerase. (1998) Cold Spring Harb Symp Quant Biol, 63, pp. 269−276.
  81. Opalka, N., Mooney, R.A., Richter, C., Severinov, K., Landick, R., and Darst, S.A. Direct localization of a beta-subunit domain on the three-dimensional structure of Escherichia coli RNA polymerase. (2000) Proc Natl Acad Sei USA, 97, pp. 617 622.
  82. Schultz, P., Celia, H., Riva, M., Sentenac, A., and Oudet, P. Three-dimensional model of yeast RNA polymerase I determined by electron microscopy of two-dimensional crystals. (1993) Embo J, 12, pp. 2601−2607.
  83. Negishi, T., Fujita, N., and Ishihama, A. Structural map of the alpha subunit of Escherichia coli RNA polymerase: structural domains identified by proteolytic cleavage. (1995) J Mol Biol, 248, pp. 723−728.
  84. Gaal, T., Ross, W., Blatter, E.E., Tang, H., Jia, X., Krishnan, V.V., AssaMunt, N. Ebright, R.H., and Gourse, R.L. DNA-binding determinants of the alpha subunit of RNA polymerase: novel DNA-binding domain architecture. (1996) Genes Dev, 10, pp.16−26.
  85. Jeon, Y.H., Negishi, T., Shirakawa, M., Yamazaki, T., Fujita, N., Ishihama, A., and Kyogoku, Y. Solution structure of the activator contact domain of the RNA polymerase alpha subunit. (1995) Science, 270, pp. 1495−1497.
  86. Ross, W., Gosink, K.K., Salomon, J., Igarashi, K., Zou, C., Ishihama, A., Severinov, K., and Gourse, R.L. A third recognition element in bacterial promoters: DNA binding by the alpha subunit of RNA polymerase. (1993) Science, 262, pp. 1407−1413.
  87. Zhou, Y., Merkel, T.J., and Ebright, R.H. Characterization of the activating region of Escherichia coli catabolite gene activator protein (CAP). II. Role at Class I and class II CAP-dependent promoters. (1994) J Mol Biol, 243, pp. 603−610.
  88. Zhou, Y., Pendergrast, P. S., Bell, A., Williams, R., Busby, S., and Ebright, R.H. The functional subunit of a dimeric transcription activator protein depends on promoter architecture. (1994) Embo J, 13, pp. 4549−4557.
  89. Ishihama, A. Protein-protein communication within the transcription apparatus. (1993) JBacteriol, 175, pp. 2483−2489.
  90. Russo, F.D. and Silhavy, T.J. Alpha: the Cinderella subunit of RNA polymerase.1992) J Biol Chem, 267, pp. 14 515−14 518.
  91. Chen, Y., Ebright, Y.W., and Ebright, R.H. Identification of the target of a transcription activator protein by protein-protein photocrosslinking. (1994) Science, 265, pp. 90−92.
  92. Zou, C., Fujita, N., Igarashi, K., and Ishihama, A. Mapping the cAMP receptor protein contact site on the alpha subunit of Escherichia coli RNA polymerase. (1992) Mol Microbiol, 6, pp. 2599−2605.
  93. Tang, H., Severinov, K., Goldfarb, A., Fenyo, D., Chait, B., and Ebright, R.H. Location, structure, and function of the target of a transcriptional activator protein.1994) Genes Dev, 8, pp. 3058−3067.
  94. Ebright, R.H. and Busby, S. The Escherichia coli RNA polymerase alpha subunit: structure and function. (1995) Curr Opin Genet Dev, 5, pp. 197−203.
  95. Igarashi, K., Fujita, N., and Ishihama, A. Identification of a subunit assembly domain in the alpha subunit of Escherichia coli RNA polymerase. (1991) J Mol Biol, 218, pp. 1−6.
  96. Hayward, R.S., Igarashi, K., and Ishihama, A. Functional specializaion within the alpha-subunit of Escherichia coli RNA polymerase. (1991) J Mol Biol, 221, pp. 2329.
  97. Kimura, M., Fujita, N., and Ishihama, A. Functional map of the alpha subunit of Escherichia coli RNA polymerase. Deletion analysis of the amino-terminal assembly domain. (1994) J Mol Biol, 242, pp. 107−115.
  98. Kawakami, K. and Ishihama, A. Defective assembly of ribonucleic acid polymerase subunits in a temperature-sensitive alpha-subunit mutant of Escherichia coli. (1980) Biochemistry, 19, pp. 3491−3495.
  99. Igarashi, K., Fujita, N., and Ishihama, A. Sequence analysis of two temperature-sensitive mutations in the alpha subunit gene (rpoA) of Escherichia coli RNA polymerase. (1990) Nucleic Acids Res, 18, pp. 5945−5948.
  100. Kimura, M. and Ishihama, A. Functional map of the alpha subunit of Escherichia coli RNA polymerase: amino acid substitution within the amino-terminal assembly domain. (1995) J Mol Biol, 254, pp. 342−349.
  101. Kimura, M. and Ishihama, A. Functional map of the alpha subunit of Escherichia coli RNA polymerase: insertion analysis of the amino-terminal assembly domain. (1995) J Mol Biol, 248, pp. 756−767.
  102. Kimura, M. and Ishihama, A. Subunit assembly in vivo of Escherichia coli RNA polymerase: role of the amino-terminal assembly domain of alpha subunit. (1996) Genes Cells, 1, pp. 517−528.
  103. Niu, W., Kim, Y., Tau, G., Heyduk, T., and Ebright, R.H. Transcription activation at class II CAP-dependent promoters: two interactions between CAP and RNA polymerase. (1996) Cell, 87, pp. 1123−1134.
  104. Busby, S. and Ebright, R.H. Transcription activation at class II CAP-dependent promoters. (1997) Mol Microbiol, 23, pp. 853−859.
  105. Severinov, K., Mustaev, A., Severinova, E., Kozlov, M., Darst, S.A., and Goldfarb, A. The beta subunit Rif-cluster I is only angstroms away from the active center of Escherichia coli RNA polymerase. (1995) J Biol Chem, 270, pp. 29 428−29 432.
  106. Severinov, K., Mooney, R., Darst, S.A., and Landick, R. Tethering of the large subunits of Escherichia coli RNA polymerase. (1997) J Biol Chem, 272, pp. 2 413 724 140.
  107. Falkenburg, D., Dworniczak, B., Faust, D.M., and Bautz, E.K. RNA polymerase II of Drosophila. Relation of its 140,000 Mr subunit to the beta subunit of Escherichia coli RNA polymerase. (1987) J Mol Biol, 195, pp. 929−937.
  108. Berghofer, B., Krockel, L., Kortner, C., Truss, M., Schallenberg, J., and Klein, A. Relatedness of archaebacterial RNA polymerase core subunits to their eubacterial and eukaryotic equivalents. (1988) Nucleic Acids Res, 16, pp. 8113−8128.
  109. Severinov, K., Mustaev, A., Kashlev, M., Borukhov, S., Nikiforov, V., and Goldfarb, A. Dissection of the beta subunit in the Escherichia coli RNA polymerase into domains by proteolytic cleavage. (1992) J Biol Chem, 267, pp. 12 813−12 819.
  110. Landick, R., Colwell, A., and Stewart, J. Insertional mutagenesis of a plasmid borne Escherichia coli rpoB gene reveals alterations that inhibit beta-subunit assembly into RNA polymerase. (1990) JBacteriol, 111, pp. 2844−2854.
  111. Polyakov, A., Nikiforov, V., and Goldfarb, A. Disruption of substrate binding site in E. coli RNA polymerase by lethal alanine substitutions in carboxy terminal domain ofthe beta subunit. (1999) FEBS Lett, 444, pp. 189−194.
  112. Glass, R.E., Jones, S.T., and Ishihama, A. Genetic studies on the beta subunit of Escherichia coli RNA polymerase. VII. RNA polymerase is a target for ppGpp. (1986) Mol Gen Genet, 203, pp. 265−268.
  113. Glass, R.E., Honda, A., and Ishihama, A. Genetic studies on the beta subunit of Escherichia coli RNA polymerase. IX. The role of the carboxy-terminus in enzyme assembly. (1986) Mol Gen Genet, 203, pp. 492−495.
  114. Glass, R.E., Ralphs, N.T., Fujita, N., and Ishihama, A. Assembly of amber fragments of the beta subunit of Escherichia coli RNA polymerase (1988) Eur J Biochem, 176, pp. 403−407.
  115. Coggins, J.R., Lumsden, J., and Malcolm, A.D. A study of the quaternary structure of Escherichia coli RNA polymerase using bis (imido esters). (1977) Biochemistry, 16, pp.1111−1116.
  116. Korzheva, N., Mustaev, A., Kozlov, M., Malhotra, A., Nikiforov, V., Goldfarb, A., and Darst, S.A. A structural model of transcription elongation. (2000) Science, 289, pp. 619−625.
  117. McClure, W.R. and Cech, C.L. On the mechanism of rifampicin inhibition of RNA synthesis. (1978) J Biol Chem, 253, pp. 8949−8956.
  118. Wehrli, W. Kinetic studies of the interaction between rifampicin and DNA-dependent RNA polymerase of Escherichia coli. (1977) Eur J Biochem, 80, pp. 325−330.
  119. Jin, D.J., Walter, W.A., and Gross, C.A. Characterisation of the termination phenotypes of rifampicin-resistant mutants. (1988)JMol Biol, 202, pp. 245−253.
  120. Jin, D.J. and Gross, C.A. Mapping and sequencing of mutations in the Escherichia coli rpoB gene that lead to rifampicin resistance. (1988) J Mol Biol, 202, pp. 45−58.
  121. Jin, D.J. and Gross, C.A. RpoB8, a rifampicin-resistant termination-proficient RNA polymerase, has an increased Km for purine nucleotides during transcription elongation. (1991) J Biol Chem, 266, pp. 14 478−14 485.
  122. Landick, R., Stewart, J., and Lee, D.N. Amino acid changes in conserved regions of the beta-subunit of Escherichia coli RNA polymerase alter transcription pausing and termination. (1990) Genes Dev, 4, pp. 1623−1636.
  123. Simpson, R.B. The molecular topography of RNA polymerase-promoter interaction. (1979) Cell, 18, pp. 277−285.
  124. Nakamura, Y., Kurihara, T., Saito, H., and Uchida, H. Sigma subunit of Escherichia coli RNA polymerase affects the function of lambda N gene. (1979) Proc Natl Acad Sei USA, 76, pp. 4593−4597.
  125. Severinov, K. and Darst, S.A. A mutant RNA polymerase that forms unusual open promoter complexes. (1997) Proc Natl Acad Sei USA, 94, pp. 13 481−13 486.
  126. Tavormina, P.L., Reznikoff, W.S., and Gross, C.A. Identifying interacting regions in the beta subunit of Escherichia coli RNA polymerase. (1996) J Mol Biol, 258, pp. 213−223.
  127. Lee, J., Kashlev, M., Borukhov, S., and Goldfarb, A. A beta subunit mutation disrupting the catalytic function of Escherichia coli RNA polymerase. (1991) Proc Natl Acad Sei USA, 88, pp. 6018−6022.
  128. Nomura, T., Fujita, N., and Ishihama, A. Mapping of subunitsubunit contact surfaces on the beta subunit of Escherichia coli RNA polymerase. (1999) Biochemistry, 38, pp. 1346−1355.
  129. Li, B. and Fields, S. Identification of mutations in p53 that affect its binding to SV40 large T antigen by using the yeast two-hybrid system. (1993) Faseb J, 7, pp. 957−963.
  130. Van Aelst, L., Barr, M., Marcus, S., Polverino, A., and Wigler, M. Complex formation between RAS and RAF and other protein kinases. (1993) Proc Natl Acad Sei USA, 90, pp. 6213−6217.
  131. Gross, C.A., Chan, C., Dombroski, A., Gruber, T., Sharp, M., Tupy J., and Young, B. The functional and regulatory roles of sigma factors in transcription. (1998) Cold Spring Harb Symp Quant Biol, 63, pp. 141−155.
  132. Dove, S.L. and Hochschild, A. Use of artificial activators to define a role for protein-protein and protein-DNA contacts in transcriptional activation. (1998) Cold Spring Harb Symp Quant Biol, 63, pp. 173−180.
  133. Hu, J.C., Kornacker, M.G., and Hochschild, A. Escherichia coli on© and two-hybrid systems for the analysis and identification of protein-protein interactions. (2000) Methods, 20, pp. 80−94.
  134. Ma, J. and Ptashne, M. A new class of yeast transcriptional activators. (1987)CW/, 51, pp. 113−119.
  135. Chien, C.T., Bartel, P.L., Sternglanz, R., and Fields, S. The two-hybrid system: a method to identify and clone genes for proteins that interact with a protein of interest. (1991) Proc Natl Acad Sci USA, 88, pp. 9578−9582.
  136. Fields, S. and Song, O. A novel genetic system to detect protein-protein interactions. (1989) Nature, 340, pp. 245−246.
  137. Fields, S. and Sternglanz, R. The two-hybrid system: an assay for protein-protein interactions. (1994) Trends Genet, 10, pp. 286−292.
  138. Brent, R. and Ptashne, M. A eukaryotic transcriptional activator bearing the DNA specificity of a prokaryotic repressor. (1985) Cell, 43, pp. 729−736.
  139. Hope, I.A. and Struhl, K. Functional dissection of a eukaryotic transcriptional activator protein, GCN4 of yeast. (1986) Cell, 46, pp. 885−894.
  140. Keegan, L., Gill, G., and Ptashne, M. Separation of DNA binding fom the transcription-activating function of a eukaryotic regulatory protein. (1986) Science, 231, pp. 699−704.
  141. Dang, C.V., Barrett, J., Villa-Garcia, M., Resar, L.M., Kato, G.J., and Fearon, E.R. Intracellular leucine zipper interactions suggest c-Myc hetero- oligomerization. (1991) Mol Cell Biol, 11, pp. 954−962.
  142. Durfee, T., Becherer, K., Chen, P.L., Yeh, S.H., Yang, Y., Kilburn, A.E., Lee, W.H., and Elledge, S.J. The retinoblastoma protein associates with the protein phosphatase type 1 catalytic subunit. (1993) Genes Dev, 7, pp. 555−569.
  143. Vojtek, A.B., Hollenberg, S.M., and Cooper, J.A. Mammalian Ras interacts directly with the serine/threonine kinase Raf. (1993) Cell, 74, pp. 205−214.
  144. Dalton, S. and Treisman, R. Characterization of SAP-1, a protein recruited by serum response factor to the c-fos serum response element. (1992) Cell, 68, pp. 597−612.
  145. Zervos, A.S., Gyuris, J., and Brent, R. Mxil, a protein that specifically interacts with Max to bind Myc-Max recognition sites published erratum appears in Cell 1994 Oct 21 -79(2):following 388. (1993) Cell, 72, pp. 223−232.
  146. Chevray, P.M. and Nathans, D. Protein interaction cloning in yeast: identification of mammalian proteins that react with the leucine zipper of Jun. (1992) Proc Natl AcadSci USA, 89, pp. 5789−5793.
  147. Sagitov, V., Nikiforov, V., and Goldfarb, A. Dominant lethal mutations near the 5' substrate binding site affect RNA polymerase propagation. (1993) J Biol Chem, 268, pp. 2195−2202.
  148. Nedea, E.C., Markov, D., Naryshkina, T., and Severinov, K. Localization of Escherichia coli rpoC mutations that affect RNA polymerase assembly and activity at high temperature. (1999)JBacteriol, 181, pp. 2663−2665.
  149. Severinov, K., Soushko, M., Goldfarb, A., and Nikiforov, V. Rifampicin region revisited. New rifampicin-resistant and streptolydigin-resistant mutants in the beta subunit of Escherichia coli RNA polymerase. (1993) J Biol Chem, 268, pp. 1 482 014 825.
  150. Ulmasov, T., Larkin, R.M., and Guilfoyle, T.J. Association between 36- and 13.6-kDa alpha-like subunits of Arabidopsis thaliana RNA polymerase II. (1996) J Biol Chem, 271, pp. 5085−5094.
  151. Nogi, Y., Yano, R., and Nomura, M. Synthesis of large rRNAs by RNA polymerase II in mutants of Saccharomyces cerevisiae defective in RNA polymerase I. (1991) Proc Natl AcadSci USA, 88, pp. 3962−3966.
  152. Wu, C.W. and Goldthwait, D.A. Studies of nucleotide binding to the ribonucleic acid polymerase by equilibrium dialysis. (1969)Biochemistry, 8, pp. 4458−4464.
  153. Wu, C.W. and Goldthwait, D.A. Studies of nucleotide binding to the ribonucleic acid polymerase by a fluoresence technique. (1969) Biochemistry, 8, pp. 44 504 458.
  154. Borukhov, S. and Goldfarb, A. Recombinant Escherichia coli RNA polymerase: purification of individually overexpressed subunits and in vitro assembly. (1993) Protein Expr Purif, 4, pp. 503−511.
  155. Maniatis T., Fritch E.F., and R.S., H., Molecular cloning: a laboratory manual. 1984, Cold Spring Harbor, N.Y.: Cold Spring Harbor Press.
  156. Zhou, Y.H., Zhang, X.P., and Ebright, R.H. Random mutagenesis of gene-sized DNA molecules by use of PCR with Taq DNA polymerase. (1991) Nucleic Acids Res, 19, pp. 6052.
Π—Π°ΠΏΠΎΠ»Π½ΠΈΡ‚ΡŒ Ρ„ΠΎΡ€ΠΌΡƒ Ρ‚Π΅ΠΊΡƒΡ‰Π΅ΠΉ Ρ€Π°Π±ΠΎΡ‚ΠΎΠΉ