Помощь в написании студенческих работ
Антистрессовый сервис

Изучение ядерных протеогликанов клеток печени мышей

ДиссертацияПомощь в написанииУзнать стоимостьмоей работы

В последнее время было выдвинуто предположение, что один из таких механизмов может быть связан со способностью функционально активных углеводных цепей протеогликанов (гликозаминогликанов — ГАГ) транслоциро-ваться в ядро клетки. Такая транслокация показана для экзогенных гепаран-сульфатов (ГС) (Ishihara et al., 1986), мембранных гепарансульфатов и дерма-тансульфатов (ДС) (Hiscock et al., 1994… Читать ещё >

Изучение ядерных протеогликанов клеток печени мышей (реферат, курсовая, диплом, контрольная)

Содержание

  • 1. ВВЕДЕНИЕ
  • 2. ОБЗОР ЛИТЕРАТУРЫ
    • 2. 1. Общие сведения о протеогликанах
    • 2. 2. Структура и классификация гликозаминогликанов
      • 2. 2. 1. Структурная гетерогенность гликозаминогликанов
      • 2. 2. 2. Модификационные возможности гликозаминогликанов
    • 2. 3. Структура протеогликанов
      • 2. 3. 1. Классификация протеогликанов
      • 2. 3. 2. Организация молекул протеогликанов
      • 2. 3. 3. Гликозилированные и белковые формы функционально активных протеогликанов
      • 2. 3. 4. Протеогликан и белок как альтернативные продукты одного гена
    • 2. 4. Локализация протеогликанов и их функции
      • 2. 4. 1. Протеогликаны внеклеточного матрикса
      • 2. 4. 2. Протеогликаны плазматических мембран
      • 2. 4. 3. Внутриклеточные протеогликаны
      • 2. 4. 4. Ядерные протеогликаны
    • 2. 5. Биологические функции протеогликанов
    • 2. 6. Протеогликаны нормальных и трансформированных клеток
      • 2. 6. 1. Изменение степени сульфатирования гликозаминогликанов
      • 2. 6. 2. Изменения состава протеогликанов в клетках с различным пролиферативным статусом
    • 2. 7. Антимитотическая активность протеогликанов
  • 3. МАТЕРИАЛЫ И МЕТОДЫ
    • 3. 1. Реактивы
    • 3. 2. Материалы
    • 3. 3. Методы
      • 3. 3. 1. Выделение ядер
      • 3. 3. 2. Очистка ядер от цитоскелетных филаментов
      • 3. 3. 3. Удаление ядерных мембран
      • 3. 3. 4. Фракционирование ядер
      • 3. 3. 5. Выделение протеогликанов
      • 3. 3. 6. Ионообменная хроматография йнтактных препаратов протеогликанов
      • 3. 3. 7. Экстракция липидов органическими растворителями
      • 3. 3. 8. Аналитический электрофорез в агарозном геле
      • 3. 3. 9. Обработка азотистой кислотой
      • 3. 3. 10. Обработка ферментами
      • 3. 3. 11. Электрофорез коровых белков в полиакриламидном геле
      • 3. 3. 12. Аналитические методы
      • 3. 3. 13. Гель-фильтрация очищенных препаратов протеогликанов
      • 3. 3. 14. Хроматографическое определение длины РНК
      • 3. 3. 15. Определение состава выделенной РНК методом тонкослойной хроматографии
  • 4. РЕЗУЛЬТАТЫ
    • 4. 1. Выделение протеогликанов из клеточных ядер
    • 4. 2. Определение состава ядерных гликозаминогликанов клеток печени мышей
    • 4. 3. Доказательство ядерного происхождения выделенных протеогликанов
      • 4. 3. 1. Спектр ядерных гликозаминогликанов до и после очистки ядер от цитоскелетных филаментов
      • 4. 3. 2. Сравнительный анализ состава гликозаминогликанов из различных клеточных субфракций
    • 4. 4. Связь гликозаминогликанов с коровым белком в ядрах клеток
    • 4. 5. Локализация протеогликанов в клеточном ядре
    • 4. 6. Изучение состава ядерных протеогликанов в трансформированных клетках печени мышей
      • 4. 6. 1. Определение состава ядерных протеогликанов опухолевых клеток
      • 4. 6. 2. Сравнительный анализ состава протеогликанов из ядер нормальных и трансформированных клеток печени мышей
    • 4. 7. Биохимические особенности ядерных протеогликанов
      • 4. 7. 1. Образование протеогликанами макромолекулярных агрегатов с РНК
      • 4. 7. 2. Хроматографический анализ интактного препарата ядерных протеогликанов
    • 4. 8. Исследование РНК, присутствующей в интактном препарате ядерных протеогликанов
      • 4. 8. 1. Определение длины РНК
      • 4. 8. 2. Определение нуклеотидного состава олигоРНК
  • 5. ОБСУЖДЕНИЕ

Протеогликаны (ПГ) являются одним из компонентов живой клетки.

Основное их количество сосредоточено во внеклеточном матриксе (ВКМ) и на поверхности клеток, где они играют важную роль в адгезии и агрегации клеток (Storms et al., 1996), поддержании межклеточного контакта и передаче информации (Bernfield et al., 1992), механизмах действия факторов роста (Faham et al., 1996, Gleizes et al., 1995). Эти эффекты во многом определяются углеводными цепями протеогликанов (гликозаминогликанами), которые способны к самоассоциации и взаимодействию с различными компонентами ВКМ, функционально активными регуляторными молекулами и двухвалентными катионами Са2+, Mg2*.

Наряду с выполнением структурных функций, связанных с организацией околоклеточного окружения, протеогликаны участвуют в механизмах регуляции клеточной пролиферации. Они являются одним из регуляторов клеточного цикла, называемых ранее «кейлонами» (Рыкова и др., 1981) и способны изменять митотическую активность клеток тканеспецифичным и видонеспецифичным образом (Роничевская и др., 1985). Механизмы регуляторного воздействия протеогликанов на пролиферацию клеток до сих пор неизвестны.

В последнее время было выдвинуто предположение, что один из таких механизмов может быть связан со способностью функционально активных углеводных цепей протеогликанов (гликозаминогликанов — ГАГ) транслоциро-ваться в ядро клетки. Такая транслокация показана для экзогенных гепаран-сульфатов (ГС) (Ishihara et al., 1986), мембранных гепарансульфатов и дерма-тансульфатов (ДС) (Hiscock et al., 1994), причем состав и количество транслоци-рованных ГС коррелируют с уровнем митотической активности клеток (Fedarko, Conrad, 1986). Что является материальной основой подобной взаимосвязи — пока непонятно. Возможно, проникая в ядро клетки, углеводные цепи гликозаминогликанов способны изменять матричную активность хроматина взаимодействием с ядерной ферментной системой (Furukawa, Terayama, 1977) и регулировать таким образом митотическую активность клетки (Fedarko et al. Д989, Ishihara, Conrad, 1989).

Регуляторная роль протеогликанов изучалась в лаборатории Структуры генома ИЦиГ СО РАН в течение ряда лет — исследовались протеогликаны из различных типов клеток, был охарактеризован их состав и структурные особенности. В работах В. И. Рыковой и Г. М. Роничевской с соавторами была показана антимитотическая активность ПГ, выделенных из препаратов суммарной клеточной РНК (Роничевская и др., 1973) и их влияние на синтез ДНК в клетке (Зимина, Рыкова, 1986). Был обнаружен интересный факт, связанный со строгой корреляцией антимитотического эффекта изучаемых протеогликанов с проли-феративным статусом клеток, из которых они были выделены — ПГ взрослых тканей обладали такой активностью, в то время как ПГ из эмбриональных и опухолевых тканей не обладали способностью ингибировать пролиферативную активность клеток (Роничевская, 1985, Fedarko et al., 1989).

На основании этих данных было высказано предположение, что транслокация экзогенных гликозаминогликанов в клеточное ядро является лишь одним из нескольких механизмов влияния ПГ (ГАГ) на митотическую активность клетки. Возможно, в клеточном ядре постоянно присутствуют специфические виды протеогликанов, участвующие в поддержании определенного пролиферативно-го статуса данной клетки, в то время как транслокация функционально активных гликозаминогликанов из других компартментов опосредует регуляторные эффекты экзогенных и мембранных макромолекул.

Для проверки этого предположения нам представляется важным показать присутствие (или отсутствие) в клеточных ядрах интактных макромолекул протеогликанов, имеющих белковый кор, и провести сравнительный анализ состава ядерных ПГ из клеток нормальной и трансформированной ткани. Идентификация макромолекулярных компонентов ядра, способных взаимодействовать с идентифицированными ядерными протеогликанами, могла бы дать перспективный подход к дальнейшему изучению роли внутриядерных ПГ и возможного механизма их функционирования.

Научная новизна и практическая ценность. В данной работе впервые показано, что: 1) основная часть ядерных гликозаминогликанов клеток печени мышей представлена дерматансульфатом. Идентифицированный в клеточных ядрах дерматансульфат ковалентно связан с коровым белком и является, таким образом, дерматансульфат протеогликаном. 2) В ядрах клеток, подвергнутых неопластической трансформации происходит частичное замещение дерматан-сульфата на хондроитинсульфат АС, который, как известно, является не полностью модифицированным предшественником дерматансульфата. 3) Дерматансульфат протеогликан в ядрах нормальных клеток присутствует в виде макро-молекулярных агрегатов с Г-богатой олигоРНК длиной 9−10 нуклеотидов, в то время как ХСАС этой способностью не обладает и выделяется в чистом виде. Полученные данные откывают возможность новых подходов к изучению механизма регуляторного действия макромолекул протеогликанов, основанных на использовании методов работы с РНК при исследовании внутриядерных комплексов протеогликан-РНК. Появление специфических ПГ (ХСАС) в ядрах активно пролиферирующих клеток может служить критерием определения про-лиферативного статуса исследуемой клетки и иметь практическое значение как один из возможных методов диагностики злокачественной трансформации. Публикации и апробации работы. По материалам диссертации опубликовано 6 печатных работ. Результаты исследований были доложены на Российско-Французском симпозиуме «Регуляция экспрессии генов» (Новосибирск, 1995), на международной Школе молодых ученых «Структура и функции генома» (Марсиана Марина, 1996).

2. ОБЗОР ЛИТЕРАТУРЫ.

7. ВЫВОДЫ.

1. В ядрах клеток печени мышей идентифицированы 2 различных класса гликозаминогликанов — гепарансульфат и дерматансульфат.

2. В клеточных ядрах гликозаминогликаны представлены в форме протеогликанов. Состав ядерных протеогликанов гетерогенен и содержит как простые протеогликаны (дерматансульфат протеогликан), так и сложный протеог-ликан, на белковом коре которого имеются цепи гепаран-сульфата и дерматансульфата.

3. Протеогликаны различных классов имеют различную внутриядерную локализацию — дерматансульфат локализован в хроматиновой фракции ядра, а гепарансульфат во фракции растворимых ядерных белков.

4. При злокачественной трансформации состав ядерных протеогликанов изменяется — присходит увеличение относительного содержания гепарансульфата и в ядрах клеток гепатомы появляется хондроитинсульфат АС, отсутствующий в ядрах нормальных клеток.

5. Дерматансульфат протеогликан, составляющий основную массу ядерных протеогликанов, выделяется в виде макро-молекулярного агрегата с Г-богатыми олигорибонуклео-тидами определенной длины (9−10нуклеотидов).

6.

ЗАКЛЮЧЕНИЕ

.

В ходе проведенного нами исследования было показано, что ядра клеток печени мышей содержат гетерогенный пул углеводных молекул гликозаминог-ликанов, в состав которого входят гепарансульфат и дерматансульфат.

Принципиальный момент нашего исследования связан с тем, что по-крайней мере часть молекул гликозаминогликанов присутствует в клеточном ядре в виде белково-углеводных молекул ПГ (дерматансульфат протеогликан и гепарансульфат-дерматансульфат протеогликан). Этот факт подтверждает предположение, что транслокация углеводных цепей гликозаминогликанов с плазматической мембраны является не единственным механизмом их появления в клеточном ядре. По-видимому, в живой клетке существует также механизм транспорта макромолекул протеогликанов в ядро непосредственно после их биосинтеза.

Состав внутриядерных протеогликанов не является постоянным и значительно отличается в зависимости от пролиферативного статуса клетки — дерматансульфат протеогликан, характерный для нормальных клеток печени мышей, частично замещен в клетках гепатомы на его не полностью модифицированный предшественник хондроитинсульфат АС. Подобный процесс происходит на плазматических мембранах трансформированных клеток и хорошо доказан (Dietrich, 1977), но для ядер клеток он показан впервые.

Различия в структуре молекул дерматансульфата (ДС) и хондроитинсуль-фата АС (ХСАС) проявляются и на биохимическом уровне — практически весь ДС в ядрах нормальных клеток присутствует в виде макромолекулярных агрегатов с другими компонентами ядра, в частности с олигоРНК, в то время как ХСАС этой способностью не обладает и выделяется в чистом виде.

Гепарансульфаты (ГС) присутствуют в ядрах и нормальных, и трансформированных клеток, однако их количество заметно больше в ядрах клеток гепа-томы. По-видимому, ядерные ГС из клеток гепатомы обладают какими-то структурными и биохимическими особенностями (по сравнению с ГС из других клеточных субфракций, что было показано ранее).

Таким образом, нами были получены неизвестные ранее данные:

1) в ядрах присутствуют 2 вида белково-углеводных молекул протеогли-канов, локализованных в разных компартментах ядра,.

2) в ядрах клеток, подвергнутых неопластической трансформации происходит частичное замещение дерматансульфата на хондроитинсульфат АС и.

3) дерматансульфат протеогликан, характерный для ядер нормальных клеток, способен взаимодействовать с олигорибонуклеотидами, а хондроитинсульфат АС не способен к образованию аналогичных макромолекулярных комплексов.

Появление специфических ПГ (ХСАС) в ядрах активно пролиферирую-щих клеток могло бы служить критерием определения пролиферативного статуса исследуемой клетки и расширить имеющиеся представления о регуляторном влиянии внутриклеточных протеогликанов на пролиферативную активность клетки.

Полученные нами данные о взаимосвязи протеогликанов с РНК расширяют круг потенциальных «партнеров» протеогликанов за счет включения в их число олигорибонуклеотидов и позволяют предложить новые подходы к изучению функционального назначения внутриклеточных протеогликанов, основанные на использовании методов работы с РНК при исследовании внутриядерных комплексов протеогликан-РНК. Не исключено, что именно образование подобных макромолекулярных агрегатов является одним из звеньев механизма регуляции клеточной пролиферации экзогенными или эндогенными протеогликана-ми (гликозаминогликанами) и вопрос этот требует дальнейшего изучения.

Показать весь текст

Список литературы

  1. Н.П., Рыкова В. И. Протеогликаны животных тканей и их влияние на синтез ДНК, — Биохимия, 1986, 51,9, 1555−1561.
  2. Н.П., Рыкова В. И., Дмитриев И. П. Сравнительная характеристика состава и степени сульфатирования гликозаминогликанов покоящихся и активно пролиферирующих тканей, — Биохимия, 1987, 52, 5, 856−861.
  3. Э.В., Рыкова В. И. Ядерные протеогликаны клеток печени мышей: выделение и идентификация. Биохимия, 1992, 57, 8, 1165−1170.
  4. Г. М., Зверева Л. Н., Рыкова В. И. Стимулирующее действие малых доз кейлоноподобных протеогликанов на клеточную пролиферацию.-Изв.СО АН СССР, сер. Биологич., 1985, 1, 128−134.
  5. Г. М., Рыкова В. И. Исследование органной специфичности антими-тотического действия гликопептидов, выделенных из препаратов РНК,-Докл.АН СССР, 1977, 237,2,481−483.
  6. Г. М., Черниченко JI.H., Рыкова В. И., Мартынова Р. П. Влияние препаратов РНК разной степени очистки и выделенной из них примеси на спонтанную аденокарциному молочной железы мышей линии СЗН.-Изв.СО АН СССР, сер. Биологич., 1973, 2, 138−143.
  7. В.И., Кропотова С. А., Каледин В. И., Семенова Л. А. Сравнительное исследование состава гликозаминогликанов в плазматических мембранах нормальных и трансформированных клеток печени мышей, — Биохимия, 1990,55,3,439−444.
  8. В.И., Роничевская Г. М., Елисеева Н.П, Салганик Р. И. Химический состав протеогликанов, обладающих активностью кейлонов.- Докл. АН СССР, 1981,261,6,1473−1476.
  9. В.И., Роничевская Г. М., Никифоровская Л. Ф., Черниченко JI.H. Канце-ростатический фактор гликопептидной природы, выделенный из препаратов печеночной РНК, — Докл.АН СССР, 1973, 209, 2, 486−488.
  10. Andres J.L., Stanley К., Cheifetz S., Massague J. Membrane-anchored and soluble forms of Betaglycan, a polymorphic proteoglycan that binds transforming growth factor-J.Cell Biol., 1989, 109, 6, 3137−3145.
  11. Bar R.S., Dake B.L., Stueck S. Stimulation of proteoglycans by IGF I and II in microvessel and large vessel endothelial cells.- Am.J.Physiol., 1987, 253, E21-E27.
  12. Bar-Ner M., Mayer M., Schirrmacher V., Vlodavsky I. Involvement of both heparanase and plasminogen activator in lymphoma cell-mediated degradation of heparan sulfate in the subendothelial extracellular matrix.- J.Cell.Physiol., 1986, 128, 2, 299−306.
  13. Bar-Ner M., Eldor A., Wasserman L., Matzner Y., Cohen I.R., Fuks Z., Vlodavsky I. Inhibition of heparanase-mediated degradation of extracellular matrix heparan sulfate by non-anticoagulant heparin species.- Blood, 1987, 70, 2, 551−557.
  14. Bernfield M., Kokenyesi R., Kato M., Hinkes M.T., Spring J., Gallo R.L., Lose E.J. Biology of the cyndecans: a family of transmembrane heparan sulfate proteoglycans.- Ann.Rev.Cell Biol., 1992, 8, 365−393.
  15. Berryman D.E., Bensadoun A. Heparan sulfate proteoglycans are primarily responsible for the maintenance of enzyme activity, binding, and degradation of lipoprotein lipase in Chinese hamster ovary cells.- J.Biol.Chem., 1995, 270, 41, 2 452 524 532.
  16. De Boek H., Lories V., David G., Cassiman J.-J., van den Berghe H. Idenyification of a 64 kDa heparan sulfate proteoglycan core protein from human lung fibroblast plasma membranes with a monoclonal antibody.- Biochem.J., 1987, 247, 3, 765 771.
  17. Brandan E., Maldonado M., Garrido J., Inestrosa N.C. Anchorage of collagen-tailed acetylcholinesterase to the extracellular matrix is mediated by heparan sulfate proteoglycans.- J.CellBiol., 1985,101, 985−992.
  18. Brandan E., Hirschberg C.B. Differential assosiation of rat liver heparan sulfate proteoglycans in membranes of the Golgi apparatus and the plasma membrane.-J.Biol.Chem., 1989, 264, 18, 10 520−10 526.
  19. Brickman Y.J., Ford M.D., Small D.H., Bartlett P.F., Nurcombe V. Heparan sulfates mediate the binding of basic fibroblast growth factor to a specific receptor on neural precursor cells.- J.Biol.Chem., 1995, 270, 42, 24 941−24 949.
  20. Brotherton T.W., Jagannadham M.V., Ginder G.D. Heparin binds to intactjmononucleosomes and induces a novel unfolded structure.- Biochem., 1989, 28, 8,3518−3524.
  21. Burridge K., Fath K., Kelly T., NIckolls G., Turner C. Focal adhesions: transmembrane junctions between the extra-cellular matrix and the cytoskeleton.-Ann.Rev.Cell Biol, 1988, 4, 487−525.
  22. Carey D.J., Todd M.S. A cytoskeleton-assosiated plasma membrane heparan sulfate proteoglycan in Schwann cells.- J.Biol.Chem., 1986, 261,16, 7518−7525.
  23. Carey D.J., Rafferty C.M., Schramm M.M. Assosiation of heparan sulfate proteoglycan and laminin with the cytoskeleton in rat liver.- J.Biol.Chem., 1987, 262,7,3376−3381.
  24. Carey D.J., Stalil R.S., Cizmeci-Smith G., Asuridi V.K. Syndecan-1 expressed in Schwann cells causes morphological transformation and cytoskeletal reorganization and associates with actin during cell spreading.- J.Biol.Chem., 1994,124,1−2,161−170.
  25. Carlson S.S., Wight Th.N. Nerve terminal anchorage protein 1 (TAP-1) is a chondroitin sulfate proteoglycan: biochemical and electron microscopic characterization.- Cell.Biol., 1987, 105, 6, 3075−3086.
  26. Carson D.L., Baxter C.S. Decreased sulfation of cellular chondroitin sulfate in response to activators of protein kinase C.- Biochem.Biophys.Res. Commun., 1986, 135,3,909−914.
  27. Castellot J.J., Pukac L.A., Caleb B.L., Wright Th.C., Karnovsky M.J. Heparin selectively inhibits a protein kinase C-dependent mechanisms of cell cycle progression in calf aortic smooth muscle cells.- J. Cell Biol., 1989, 109, 6, 31 473 155.
  28. Cheifetz S., Andres J.L., Massague J. The transforming growth factor-p receptor type III is a membrane proteoglycan.- J.Biol.Chem., 1988, 263, 32, 16 984−16 991.
  29. Chou C.-F., Smith A.J., Omary M.B. Characterization and dynamics of O-linked glycosylation of human cytokeratin 8 and 18, — J. Cell Biol, 1991, 115, 13(2), 353a.
  30. Christner J.E., Baker J.R., Caterson B. Studies on the properties of the extractable proteoglycans from bovine nasal cartilage.- J.Biol.Chem., 1983, 258, 23, 1 433 514 341.
  31. Collier S., Ghosh P. Effects of transforming growth factor beta on proteoglycan synthesis by cell and explant cultures derived from the knee joint meniscus. -Osteoarthritis Cartilage, 1995, 3,2, 127−138.
  32. Coster L., Rosenberg L.C., van der Rest M., Poole A.R. The dermatan sulfate proteoglycans of bovine sclera and their relationship to those of articular cartilage.- J.Biol.Chem., 1987, 262, 8, 3809−3812.
  33. David G., Berghe H.V.D. Transformed mouse mammary epithelial cells synthesize undersulfated basement membrane, proteoglycan.- J.Biol.Chem., 1983, 258, 12, 7338−7344.
  34. David G., Berghe H.V.D. Cell-surface heparan sulfate and heparan sulfate/chondroitin sulfate hybrid proteoglycans of mouse mammary epithelial cells.- Eur.J.Biochem., 1989, 178, 3, 609−617.
  35. Dell’Orbo C., De-Luca G., Gioglio L., Quacci D., Soldi C. The role of proteoglycans in maintaining collagen fibril morphology.- Histol.Histopathol., 1995, 10, 3, 583 588.
  36. Denti A., Sini P., Tira M.E., Balduini C. Structural heterogeneity of dermatan sulfate chains: correlation with heparin cofactor II activating properties.- Thromb.Res., 1995,79,2, 187−198.
  37. Derbyshire E.J., Comin G.A., Yang Y.C., Overholser J., Watkins L., Thorpe P.E. Anti-tumor and anti-angiogenic effects in mice of heparin conjugated to angiostatic steroids.- Int.J.Cancer, 1995, 63, 5, 694−701.
  38. Derbyshire E.J., Yang Y-Ch., Li Sh., Comin G.A., Belloir J., Thorpe Ph.E. Heparinsteroid conjugates lacking glucocorticoid or mineralocorticoid activities inhibit the proliferation of vascular endothelial cells.- Biochim.Biophys.Acta, 1996, 1310,86−96.
  39. Diamond M.S., Alon R., Parkos C.A., Quinn M.T., Springer T.A. Heparin is an adhesive ligand for the leukocyte integrin Mac-1 (CDllb/CDl).- J.Cell.Biol., 1995, 130, 6, 1473−1482.
  40. Dietrich C.P., Armelin H.A. Sulfated mucopolysaccharides from normal Swiss 3T3 cell line and its tumorigenic mutant ST1: lossible role of chondroitin sulfates in neoplastic transformation.- Biochem.Biophys.Res. Commun., 1978, 84, 3, 794 801.
  41. Dietrich C.P., Nader H.B., Straus A.H. Structural differences of heparan sulfates according to the tissue and species of origin.- Biochem.Biophys.Res.Commun., 1983, 111,3,865−871.
  42. Domowicz M., Li H., Hennig A., Henry J., Vertel B.M., Schwartz N.B. The biochemically and immunologically distinct CSPG of notochord is a product of the aggrecan gene.- Dev.Biol., 1995, 171, 2, 655−664.
  43. Dube S., Fisher J.W., Powell J.S. Glycosylation at specific sites of erythropoietin is essential for biosynthesis, secretion and biological function.- J.Biol.Chem., 1988, 263, 33, 17 516−17 521.
  44. Dziewiatkowski, Dominic D. Binding of calcium by proteoglycans in vitro. -Calcif.Tissue Int., 1987, 40, 5, 265−269.
  45. Elias J.A., Krol R.C., Freundlich B, Sampson Ph.M. Regulation of human lung fibroblast glycosaminoglycan production by recombinant interferons, tumor necrosis factor, and lymphotoxin.- J.Clin.Invest, 1988, 81, 325−333.
  46. Faham S., Hileman R.E., Fromm J.R., Linhardt R.J., Rees D.C. Heparin structure and interactions with basic fibroblast growth factor.- Science, 1996, 271, 5252,11 161 120.
  47. Fedarko N.S., Conrad H.E. A unique heparan sulfate in the nuclei of hepatocytes: structural changes with the growth state of the cells.- J. Cell Biol., 1986, 102, 587−599.
  48. Fedarko N.S., Ishihara M., Conrad H.E. Control of cell division in hepatoma cells by exogenous heparan sulfate proteoglycan.- J.Cell.Physiol., 1989, 139, 287−294.
  49. Fedarko N.S., Vetter U.K., Weinstein S., Robey P.G. Age-related changes in hyaluronan, proteoglycan, collagen, and osteonectin synthesis by human bone cells.- J.Cell.Physiol., 1992, 151, 215−227.
  50. Fibbi G., Vannucchi S., Cavallini P., Del Rosso M., Pasquali F., Cappelletti R., Chiarugi V. Involvement of chondroitin sulfate in preventing adhesive cellular interactions.-Biochim.Biophys.Acta, 1983, 762, 512−518.
  51. Fransson L.A., Sjoberg I., Chiarugi V.P. Co-polymeric glycosaminoglycans in transformed cells. Transformation-dependent changes in the self-associating properties of cell-surface heparan sulfate.- J.Biol.Chem., 1981, 256, 24, 1 304 413 047.
  52. Fransson L.A., Carlstedt J., Coster L., Malmstron A. Proteoheparan sulfate from human skin fibroblasts. Evidence for self-interaction via the heparan sulfate side chains.-J.Biol.Chem., 1983,258,23, 14 342−14 345.
  53. Fransson L.A. Structure and function of cell-associated proteoglycans.- Trends Biochem.Sci., 1987,12,10,406−411.
  54. Fransson L.A., Edgren G., Havsmark В., Schmidtchen A. Recycling, of a glycosylphosphatidylinositol-anchored heparan sulphate proteoglycan (glypican) in skin fibroblasts.- Glycobiology, 1995, 5, 4, 407−415.
  55. Frost S.J., McGary C.T., Raja R.H., Weigel P.H. Specific intracellular hyaluronic acid binding to isolated rat hepatocytes is membrane-assosiated.-Biochim.Biophys.Acta, 1988, 946, 1, 66−74.
  56. Gallagher J.T., Lyon M., Steward W.P. Structure and function of heparan sulfate proteoglycans.-Biochem.J., 1986, 236, 313−325.
  57. Gill P. J., Silbert C.K., Silbert J.E. Effects of heparan sulfate removal on attachment and reattachment of fibroblasts and endothelial cells.- Biochem., 1986, 25, 405 410.
  58. Gleizes P.E., Noaillac-Depeyre J., Amalric F., Gas N. Basic fibroblast growth factor (FGF-2) internalization through the heparan sulfate proteoglycans-mediated pathway: an ultrastructural approach.- Eur.J.Cell.Biol., 1995, 66, 1, 47−59.
  59. Gordon H., Hall Z.W. Glycosaminoglycan variants in the C2 muscle cell line.-Developmental Biology, 1989, 135, 1,1−11.
  60. Gordon P.B., Choi H.U., Conn G., Ahmed A., Ehrmann В., Rosenberg L., Hatcher V.B. ECM HS PGs modulate the mitogenic capacity of acidic fibroblast growth factor.- J.Cell.Physiol., 1989, 140,3, 584−592.
  61. Goringer H.U., Koslowsky D.J., Morales Т.Н., Stuart K. Proc.Nat.Ac.Sci., 1994, 91, 1776−1780.
  62. Greve C., Opsahl W., Reiser K., Abbott U., Kenney C., Benson D., Rucker R. Collagen crosslinking and cartilage glycosaminoglycan composition in normal and scoliotic chickens.- Biochim.Biophys.Acta, 1988, 967, 2, 275−283.
  63. Hausser H., Hoppe W., Rauch U., Kresse H. Endocytosis of a small dermatan sulfate proteoglycan. Identification of binding proteins.- Biochem.J., 1989, 263, 1, 137 142.
  64. Heimer R., Bashey R.I., Kyle J., Jimenez S.A. TGF-beta modulates the synthesis of proteoglycans by myocardial fibroblasts in culture.- J.Mol.Cell.Cardiol, 1995, 27,10,2191−2198.
  65. Hiss D., Scott-Burden T., Gevers W. Disulfide-bonded heparan sulfate proteoglycans associated with the surfaces of cultured bovine vascular endothelial cells.-Eur.J.Biochem., 1987, 162, 1, 89−94.
  66. Huber S., Winterhalter K.H., Vaughan L. Isolation and sequence analysis of the glycosaminoglycan attachment site of type IX collagen.- J.Biol.Chem., 1988, 263, 2, 752−756.
  67. Hunter G.K., Wong K.S., Kim J.J. Binding of calcium to glycosaminoglycans: an equilibrium dialysis study.- Arch.Biochem.Biophys., 1988, 260, 1, 161−167.
  68. Jackson F.R., Bargiello T.A., Yun S.-H., Young M.W. Product of per locus of Drosophila shares homology with proteoglycans.- Nature, 1986, 320, 185−188.
  69. Jackson R.L., Busch S.J., Cardin A.D. Glycosaminoglycans: molecular properties, protein interactions, and role in physiological processes.- Physiol.Rev., 1991, 71, 2, 481−539.
  70. Jackson D.G., Bell J.I., Dickinson R., Timans J., Shields J., Whittle N. Proteoglycan forms of the lymphocyte homing receptor CD44 are alternatively spliced variants containing the v3 exon.- J.Cell.Biol., 1995, 128, 4, 673−685.
  71. Kato M., Saunders S., Nguyen H., Bernfield M. Loss of cell surface syndecan-1 causes epithelia to transform into anchorage-independent mesenchyme-like cells.-Mol.Biol.Cell., 1995, 6, 5, 559−576.
  72. Katz E.P., Wachtel E.J., Maroudas A. Extrafibrillar proteoglycans osmotically regulate the molecular packing of collagen in cartilage.- Biochim.Biophys.Acta, 1986, 882,1,136−139.
  73. Keller R., Furtmayr H. Isolation and characterization of basement membrane and cell proteoheparan sulfates from HR9 cells.- Eur.J.Biochem., 1986, 161, 3, 707−714.
  74. Keller R., Pratt B.M., Furthmayr H., Madri J.A. Aortic endothelial cell proteoheparan sulfate: II. Modulation by extracellular matrix Am.J.Pathol., 1987, 128, 2, 299 306.
  75. King I.A., Hounsell E.F. Cytokeratin 13 containsO-glycosidically linked N-acetylglycosamine residues.- J.Biol.Chem., 1989, 264, 24, 14 022−14 028.
  76. Kinoshita S. Some observations on a protein-mucopolysaccharide complex found in sea urchin embryos.- Exp. Cell Res., 1974, 85, 31−40.
  77. Kjellen L., Lindahl U. Proteoglycans: structures and interactions.-Annu.Rev.Biochem., 1991, 60,443−475.
  78. Koda J.E., Bernfield M. Heparan sulfate proteoglycans from mouse mammary epithelial cells. Basal extracellular proteoglycan binds specifically to native type I collagen fibrils.- J.Biol.Chem., 1984, 259,19,11 763−11 770.
  79. Kokenyesi R., Bernfield M. Core protein structure and sequence determine the site and presence of heparan sulfate and chondroitin sulfate on syndecan-1.- J.Biol.Chem., 1994,269,16,12 304−12 309.
  80. Kokenyesi R., Silbert J.E. Formation of heparan sulfate or chondroitin/deraiatan sulfate on recombinant domain I of mouse perlecan expressed in Chinese hamster ovary cells.- Biochem.Biophys.Res.Commun., 1995, 211, 1, 262−267.
  81. Kolset S.O., Gallagher J.T. Proteoglycans in haemopoietic cells.-Biochim.Biophys.Acta, 1990, 1032,191−211.
  82. Kovalszky I., Pogany G., Molnar G., Jeney A., Lapis K., Karacsonyi S., Szecseny A., Iozzo R.V. Altered glycosaminoglycan composition in reactive and neoplastic human liver.- Biochem.Biophys.Res.Commun., 1990, 167, 3, 883−890.
  83. Maeda S., Kimura H., Koga N., Lin K.H., Saito T. Cell-density-dependent DNA fragmentation and its supression by heparin in primary culture of adult rat hepatocytes.-Biochem.Biophys.Res.Commun., 1993, 195, 1, 270−275.
  84. Mandon E., Kempner E.S., Ishihara M., Hirschberg C.B. A monomelic protein in the Golgi membrane catalyzes both N-deacetylation and N-sulfation of heparan sulfate.- J.Biol.Chem., 1994,269,16,11 729−11 733.
  85. Maniglia Ch.A., Gomez J.J., Luikart Sh.D., Sartorelli A.C. Glycosaminoglycan production and distribution in cloned B16 murine melanoma cell lines exhibiting different lung colony-forming efficiencies.- J. NCI, 1985, 75, 1, 111−120.
  86. Massague J. A helping hand from proteoglycans.- Curr.Opin.Cell Biol., 1991, 1, 117 119.
  87. Meyer-Puttlitz B., Milev P., Junker E., Zimmer I, Margolis R.U., Margolis R.K. Chondroitin sulfate and chondroitin/keratan sulfate proteoglycans of nervous tissue: developmental changes of neurocan and phosphacan.- J.Neurochem., 1995, 65, 5, 2327−2337.
  88. Miller J., Hatch J.A., Simonis S., Cullen S.E. Identification of the glycosaminoglycan-attachment site of mouse invariant-chain proteoglycan core protein by site-directed mutagenesis.-Proc .Natl. Acad. Sci. USA, 1988, 85, 5, 1359−1363.
  89. Mitchell L., Superina R., Delorme M., Vegh P., Berry L., Hoogendoorn H., Andrew M. Circulating dermatan sulfate and heparan sulfate/heparin proteoglycans in children undergoing liver transplantation.- Tliromb.Haemost., 1995, 74, 3, 859 863.
  90. Morgelin M., Paulsson M., Heinegard D., Aebi U., Engel J. Evidence of a defined spatial arrangement of hyaluronate in the central filament of cartilage proteoglycan aggregates.- Biochem.J., 1995, 307,2, 595−601.
  91. Moseley R., Waddington R., Evans P., Halliwell B., Embery G. The chemical modification of glycosaminoglycan structure by oxygen-derived species in vitro.-Biochim.Biophys.Acta., 1995,1244, 245−252.
  92. Mueller S.N., Thomas K.A., DiSalvo J., Levine E.M. Stabilization by heparin of acidic fibroblast growth factor mitogenicity for human endothelial cells in vitro.-J.Cell.Physiol., 1989,140, 3, 439−448.
  93. Nakajima M., Irimura T., Di Ferrante N, Nicolson G.L. Metastatic melanoma cell heparanase. Characterization of heparan sulfate degradation fragments produced by B16 melanoma endoglucuronidase.- J.Biol.Chem., 1984, 259, 4, 2283−2290.
  94. Oegema T.R., Kraft E.L., Jourdian G.W., VanValen T.R. Phosphorylation of chondroitin sulfate in proteoglycans from the Swarm rat chondrosarcoma.-J.Biol.Chem., 1984, 259, 63,1720−1726.
  95. Ohishi H., Binette J.P., Schmid K. Myocardial chondroitin sulfates D and E in a case of acute carbon monoxide poisoning.- Clin.Chim.Acta, 1986, 156,157−164.
  96. Ohtsuki T., Hatake K., Suzu S., Saito K., Motoyoshi K., Miura Y. Immunohistochemical identification of proteoglycan form of macrophage colony-stimulating factor on bone surface.- Calcif. Tissue Int., 1995, 57, 3, 213−217.
  97. Oldberg A., Antonsson P., Lindblom K., Heinegard D. A collagen-binding 59-kD protein (fibromodulin) is structurally related to the small interstitial proteoglycans PG-S1 and PG-S2 (decorin).- EMBO, 1989, 8, 9,2601−2604.
  98. Parish Ch.R., Coombe D.R., Jakobsen K.B., Bennett F.A., Underwood P.A. Evidence that sulfated polysaccharides inhibit tumor metastasis by blocking tumor-cell-derived heparanases.- Int.J.Cancer, 1987, 40, 4, 511−518.
  99. Pavao M.S., Mourao P.A., Mulloy B., Tollefsen D.M. A unique dermatan sulfate-like glycosaminoglycan from ascidian. Its structure and the effect of its unusual sulfation pattern on anticoagulant activity.- J.Biol.Chem., 1995, 270, 52, 3 102 731 036.
  100. Poole A.R. Proteoglycans in health and disease: structures and functions.- Biochem.J., 1986,236,1, 1−14.
  101. Pukac L.A., Castellot J.J., Wright Th.C., Caleb B.L., Karnovsky M.J. Heparin inhibits c-fos and c-myc mRNA expression in vascular smooth muscle cells.- Cell Regulation, 1990,1, 435−443.
  102. Rabenstein D.L., Robert J.M., Peng J. Multinuclear magnetic resonance studies of the interaction of inorganic cations with heparin.- Carbohydr.Res., 1995, 278, 2, 239 256.
  103. Raja H.H., McGary C.T., Weigel P.H. Affinity and distribution of surface and intracellular hyaluronic acid receptors in isolated rat liver endothelial cells.-J.Biol.Chem., 1988, 263, 32,16 661−16 668.
  104. Rapraeger A. Transforming growth factor (type) promotes the addition of chondroitin sulfate chains to the cell surface proteoglycan (Syndecan) of mouse mammary epithelia.- J. Cell Biol., 1989,109, 5,2509−2518.
  105. Richard Ch., Liuzzo J.P., Moscatelli D. Fibroblast growth factor-2 can mediate cell attachment by linking receptors and heparan sulfate proteoglycans on neighboring cells.- J.Biol.Chem., 1995,270,41, 24 188−24 197,
  106. Ruoslahti E. Structure and biology of proteoglycans.- Ann.Rev.Cell Biol., 1988, 4, 229−255.
  107. Sakai K., Sada K., Tanaka Y., Kobayashi T., Nakamura Sh-i., Yamamura N. Regulation of cytosolic protein-tyrosine kinase from porcine spleen by polyamines and negative-charged polysaccharides.- Biochem.Biophys.Res. Commun., 1988, 154, 3, 883−889.
  108. Salmivirta M., Jalkanen M. Syndecan family of cell surface proteoglycans: developmentally regulated receptors for extracellular effector molecules.-Experientia, 1995, 51, 9−10, 863−872.
  109. Sanderson R.D., Bernfield M. Molecular polimorphism of a cell surface proteoglycan: distinct structures on simple and stratified epithelia.- Proc.Natl.Acad.Sci.USA, 1988, 85, 24, 9562−9566.
  110. Sant B.J., Cullen S.E., Giacoletto K.S., Schwartz B.D. Invariant chain is the core protein of the la-associated chondroitin sulfate proteoglycan.- J. Exp .Med., 1985, 162,1916−1934.
  111. Savolainen H. Isolation and electrophoretic analysis of human serum proteoglycans and their reaction with nickel in vitro.- Res.Commun.Mol.Pathol.Pharmacol., 1995,88,3,359−362.
  112. Schlessinger J., Lax I., Lemmon M. Regulation of growth factor activation by proteoglycans: what is the role of the low affinity receptors?- Cell, 1995, 83, 3, 357−360.
  113. Schmidt A. Proteoglycan-protein interaction in arterial tissue.- Biochem.Soc.Trans., 1989, 17, 19−20.
  114. Schmidt A., Skaletz-Rorowski A., Buddecke E. Basic fibroblast growth factor controls the expression and molecular structure of heparan sulfate in corneal endothelial cells.- Eur.J.Biochem., 1995, 234, 2, 479−484.
  115. Schmidt G., Robenek H., Harrach B., Glossl J., Nolte V., Hormann H., Richter H., Kresse H. Interaction of small dermatan sulfate proteoglycan from fibroblasts with fibronectin.- J. Cell Biol., 1987,104, 6, 1683−1691.
  116. Schonheit E., Witsch-Prehm P., Harrach B., Robenek H., Rauterberg J., Kresse H. Interaction of biglycan with type I collagen J.Biol.Chem., 1995, 270, 6, 17 761 783.
  117. Scott J.E. On the polylactose nature of chondroitin and keratan sulfates.- Biochem.J., 1994,298,1,221−222.
  118. Scott J., Heatley F., Wood B. Comparison of secondary structures in water of chondroitin-4-sulfate and dermatan sulfate: implications in the formation of tertiary structures.- Biochemistry, 1995, 34,47,15 467−15 474.
  119. Shanley D.J., Cossu G., Boettiger D., Holtzer H., Pacific M. Transformation by Rous sarcoma virus induces similar patterns of glycosaminoglycan synthesis in chick embryo skin fibroblasts and vertebral chondroblasts.- J.Biol.Chem., 1983, 258, 2, 810−816.
  120. Sobue M., Takeuchi J., Yoshida K., Akao S., Fukatsu T., Nagasaka T., Nakashima N. Isolation and characterization of proteoglycans from human nonepithelial tumors. -Cancer Res., 1987,47,1, 160−168.
  121. Spray D.C., Fujita M., Saez J.C., Choi H., Watanabe T., Hertzberg E., Rosenberg L.C., Reid L.M. Proteoglycans and glycosaminoglycans induce gap junction synthesis and function in primary liver cultures.- J. Cell Biol., 1987, 105, 541−551.
  122. Steward W.P., Christmas S.E., Lyon M., Gallagher J.T. The synthesis of proteoglycans by human T lymphocytes.- Biochim.Biophys.Acta, 1990, 1052, 3, 416−425.
  123. Stipp C.S., Litwack E.D., Lander A.D. Cerebroglycan: an integral membrane heparan sulfate proteoglycan that is unique to the developing nervous system andexpressed specifically during neuronal differentiation.- J. Cell Biol., 1994, 124, 12, 149−160.
  124. Storms S.D., Anvekar V.M., Adams L.D., Murray B.A. Heterophilic NCAM-mediated cell adhesion to proteoglycans from chick embryonic brain membranes.-Exp.Cell.Res., 1996,223, 2, 385−394.
  125. Sun X., Mosher D.F., Rapraeger A. Heparan sulfate-mediated binding of epithelial cell surface proteoglycan to thrombospondin.- J.Biol.Chem., 1989, 264, 5, 28 852 889.
  126. Takeuchi J. Structure and function of extracellular matrix with special references to proteoglycan.- Rinsho.Byori., 1995, 43, 10, 979−987.
  127. Tanaka T., Har-El R., Tanzer M.L. Partial structure of the gene for chicken cartilage proteoglycan core protein.- J.Biol.Chem., 1988, 263, 30,15 831−15 835.
  128. Tang L.H., Buckwalter J.A., Rosenberg L.C. Effect of link protein concentration on articular cartilage proteoglycan aggregation.- J.Orthop.Res., 14, 2, 334−339.
  129. Templeton D.M. Metal-binding properties of the isolated glomerular basement membrane.-Biochim.Biophys.Acta, 1987, 926, 1, 94−105.
  130. Tryggvason K., Hoyhtya M., Salo T. Proteolytic degradation of extracellular matrix in tumor invasion.- Biochim.Biophys.Acta, 1987, 907, 3, 191−217.
  131. Tsilibary E.C., Koliakos G.G., Charonis A.S., Vogel A.M., Reger L.A., Furch L.T. Heparin type IV collagen interactions: equilibrium binding and inhibition of type IV collagen self-assembly.- J.Biol.Chem., 1988, 263, 35, 19 112−19 118.
  132. Uldbjerg N., Danielsen C.C. A study of the interaction in vitro between type I collagen and a small dermatan sulfate proteoglycan.- Biochem.J., 1988, 251, 3, 643−648.
  133. Umbreit J.N. A small RNA is associated with dermatan sulfate proteoglycan.-Anticancer Res., 1996a, 16, 1899−1914.
  134. Umbreit J.N. Proteoglycans and glycosaminoglycans during maturation of the mouse mammary gland.- Anticancer Res., 19 966,16, 3013−3029.i
  135. Vannucchi S., Pasquali F., Chiarugi V., Ruggiero M. Internalization and metabolism of endogenous heparin by cultured endothelial cells.- Biochem. Biophys. Res. Commun., 1986, 140, 1, 294−301.
  136. Velasco A., Hidalgo J., Perez-Vilar J., Garcia-Herdugo G., Navas P. Detection of GAGs in the Golgi complex of chondrocytes.- Eur. J. Cell Biol., 1988, 47, 2, 241 250.
  137. Watanabe K., Yamada H., Yamaguchi Y. K-glypican: a novel GPI-ancliored heparan sulfate proteoglycan that is highly expressed in developing brain and kidney.-J.Cell.Biol., 1995,130, 5,1207−1218.
  138. Willuweit B., Aktories K. Heparin uncouples (^-adrenoceptors from the G-protein in membranes of human platelets. Biochem.J., 1988, 249, 3, 857−863.
  139. Woods A., Couchman J.R., Hook M. Heparan sulfate proteoglycans of rat embryo fibroblasts. A hydrophobic form may link cytoskeleton and matrix components.-J.Biol.Chem., 1985, 260,19, 10 872−10 879.
  140. Yamaguchi M., Kinoshita S., Suzuki N. Dermatan sulfate formation in gastrulae of the sea urchin Clypeaster japonicus.-J.Biochem., 1989,106, 158−162.
  141. Yamamoto K., Terayama H. Comparison of cell coat acid mucopolysaccharides of normal liver and various ascites hepatoma cells.- Cancer Res., 1973, 33, 22 572 264.
  142. Yanagishita M. Inhibition of intracellular degradation of proteoglycans by leupeptin in rat ovarian granulosa cells.- J.Biol.Chem., 1985, 260, 20, 11 075−11 082.
  143. Yurchenco P.D., Cheng Yi-Sh., Ruben G.C. Self-assembly of a high molecular weight basement membrane heparan sulfate proteoglycan into dimers and oligomers.-J.Biol.Chem., 1987, 262, 36, 17 668−17 676.
  144. Zako M., Shinomura T., Ujita M., Ito K., Kimata K. Expression of PG-M (V3), an alternatively spliced form of PG-M without a chondroitin sulfate attachment in region in mouse and human tissues, — J.Biol.Chem., 1995, 270, 8, 3914−3918.
  145. Zimmermann D.R., Ruoslahti E. Multiple domains of the large fibroblast proteoglycan versican.- EMBO, 1989, 8, 10, 2975−2981.
Заполнить форму текущей работой