Adam Smith
ΠΠΎΠ»ΠΆΠ½ΠΎ Π±ΡΡΡ ΠΎΡΠΌΠ΅ΡΠ΅Π½ΠΎ, ΡΡΠΎ ΠΊΠ°ΠΆΠ΄Π°Ρ ΠΈΠ· ΡΡΠΈΡ ΡΡΠ°Π΄ΠΈΠΉ ΡΠΎΠΏΡΠΎΠ²ΠΎΠΆΠ΄Π°Π΅ΡΡΡ ΡΡΡΠ΅ΠΆΠ΄Π΅Π½ΠΈΡΠΌΠΈ, ΠΏΠΎΠ΄Ρ ΠΎΠ΄ΡΡΠΈΠΌΠΈ Π΄Π»Ρ Π΅Π³ΠΎ ΠΏΠΎΡΡΠ΅Π±Π½ΠΎΡΡΠ΅ΠΉ. ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ, Π² Π²ΠΎΠ·ΡΠ°ΡΡΠ΅ ΠΎΡ ΠΎΡΠ½ΠΈΠΊΠ°, «Π΅ΡΡΡ ΡΡΠ°ΠΌ Π»ΡΠ±ΠΎΠΉ ΡΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½Π½ΡΠΉ ΡΡΠ΄ΡΡ ΠΈΠ»ΠΈ Π»ΡΠ±Π°Ρ ΡΠ΅Π³ΡΠ»ΡΡΠ½Π°Ρ Π°Π΄ΠΌΠΈΠ½ΠΈΡΡΡΠ°ΡΠΈΡ ΠΏΡΠ°Π²ΠΎΡΡΠ΄ΠΈΡ.» Π‘ ΠΏΠΎΡΠ²Π»Π΅Π½ΠΈΠ΅ΠΌ ΡΠΊΠΎΠΏΠ»Π΅Π½ΠΈΠΉ ΡΠ°ΠΌ ΠΏΠΎΡΠ²Π»ΡΠ΅ΡΡΡ Π±ΠΎΠ»Π΅Π΅ ΡΠ»ΠΎΠΆΠ½Π°Ρ ΡΠΎΡΠΌΠ° ΡΠΎΡΠΈΠ°Π»ΡΠ½ΠΎΠΉ ΠΎΡΠ³Π°Π½ΠΈΠ·Π°ΡΠΈΠΈ, Π²ΠΊΠ»ΡΡΠ°Ρ Π½Π΅ ΡΠΎΠ»ΡΠΊΠΎ «ΠΎΠ³ΡΠΎΠΌΠ½ΡΠ΅» Π°ΡΠΌΠΈΠΈ, Π½ΠΎ ΠΈ ΡΠ΅Π½ΡΡΠ°Π»ΡΠ½ΠΎΠ΅ ΡΡΡΠ΅ΠΆΠ΄Π΅Π½ΠΈΠ΅ ΡΠ°ΡΡΠ½ΠΎΠΉ ΡΠΎΠ±ΡΡΠ²Π΅Π½Π½ΠΎΡΡΠΈ… Π§ΠΈΡΠ°ΡΡ Π΅ΡΡ >
Adam Smith (ΡΠ΅ΡΠ΅ΡΠ°Ρ, ΠΊΡΡΡΠΎΠ²Π°Ρ, Π΄ΠΈΠΏΠ»ΠΎΠΌ, ΠΊΠΎΠ½ΡΡΠΎΠ»ΡΠ½Π°Ρ)
RUSSIAN ECONOMIC ACADEMY NAMED AFTER
G V PLEKHANOV
INTERNATIONAL BUSINESS STUDIES
ADAM SMITH
Student: Anton Skobelev
Group: 855
Moscow 1997
After two centuries, Adam Smith remains a towering figure in the history of economic thought. Known primarily for a single work, An Inquiry into the nature an causes of the Wealth of Nations (1776), the first comprehensive system of political economy, Smith is more properly regarded as a social philosopher whose economic writings constitute only the capstone to an overarching view of political and social evolution. If his masterwork is viewed in relation to his earlier lectures on moral philosophy and government, as well as to allusions in The Theory of Moral Sentiments (1759) to a work he hoped to write on «the general principles of law and government, and of the different revolutions they have undergone in the different ages and periods of society», then The Wealth of Nations may be seen not merely as a treatise on economics but as a partial exposition of a much larger scheme of historical evolution.
Early Life
Unfortunately, much is known about Smith’s thought than about his life. Though the exact date of his birth is unknown, he was baptised on June 5, 1723, in Kikcaldy, a small (population 1,500) but thriving fishing village near Edinburgh, the son by second marriage of Adam Smith, comptroller of customs at Kikcaldy, and Margaret Douglas, daughter of a substantial landowner. Of Smith’s childhood nothing is known other than that he received his elementary schooling in Kirkcaldy and that at the age of four years he was said to have been carried off by gypsies. Pursuits was mounted, and young Adam was abandoned by his captors. «He would have made, I fear, a poor gypsy», commented his principal biographer.
At the age of 14, in 1737, Smith entered the university of Glasgow, already remarkable as a centre of what was to become known as the Scottish Enlightenment. There, he was deeply influenced by Francis Hutcheson, a famous professor of moral philosophy from whose economic and philosophical views he was later to diverge but whose magnetic character seems to have been a main shaping force in Smith’s development. Graduating in 1740, Smith won a scholarship (the Snell Exhibition) and travelled on horseback to Oxford, where he stayed at Balliol College. Compared to the stimulating atmosphere of Glasgow, Oxford was an educational desert. His years there were spent largely in self-education, from which Smith obtained a firm grasp of both classical and contemporary philosophy.
Returning to his home after an absence of six years, Smith cast about for suitable employment. The connections of his mother’s family, together with the support of the jurist and philosopher Lord Henry Kames, resulted in an opportunity to give a series of public lectures in Edinburgh — a form of education then much in vogue in the prevailing spirit of «improvement».
The lectures, which ranged over a wide variety of subjects from rhetoric history and economics, made a deep impression on some of Smith’s notable contemporaries. They also had a marked influence on Smith’s own career, for in 1751, at the age of 27, he was appointed professor of logic at Glasgow, from which post he transferred in 1752 to the more remunerative professorship of moral philosophy, a subject that embraced the related fields of natural theology, ethics, jurisprudence, and political economy.
Glasgow
Smith then entered upon a period of extraordinary creativity, combined with a social and intellectual life that he afterward described as «by far the happiest, and most honourable period of my life». During the week he lectured daily from 7:30 to 8:30 am and again thrice weekly from 11 am to noon, to classes of up to 90 students, aged 14 and 16. (Although his lectures were presented in English, following the precedent of Hutcheson, rather than in Latin, the level of sophistication for so young an audience today strikes one as extraordinarily demanding.) Afternoons were occupied with university affairs in which Smith played an active role, being elected dean of faculty in 1758; his evenings were spent in the stimulating company of Glasgow society.
Among his circle of acquaintances were not only remembers of the aristocracy, many connected with the government, but also a range of intellectual and scientific figures that included Joseph Black, a pioneer in the field of chemistry, James Watt, later of steam-engine fame, Robert Foulis, a distinguished printer and publisher and subsequent founder of the first British Academy of Design, and not least, the philosopher David Hume, a lifelong friend whom Smith had met in Edinburgh. Smith was also introduced during these years to the company of the great merchants who were carrying on the colonial trade that had opened to Scotland following its union with England in 1707. One of them, Andrew Cochrane, had been a provost of Glasgow and had founded the famous Political Economy Club. From Cochrane and his fellow merchants Smith undoubtedly acquired the detailed information concerning trade and business that was to give such a sense of the real world to The Wealth of Nations.
The Theory of Moral Sentiments
In 1759 Smith Published his first work, The Theory of Moral Sentiments. Didactic, exhortative, and analytic by turns, The Theory lays the psychological foundation on which The Wealth of Nations was later to be built. In it Smith described the principles of «human nature «, which, together with Hume and the other leading philosophers of his time, he took as a universal and unchanging datum from which social institutions, as well as social behaviour, could be deduced.
One question in particular interested Smith in The Theory of Moral Sentiments. This was a problem that had attracted Smith’s teacher Hutcheson and a number of Scottish philosophers before him. The question was the source of the ability to form moral judgements, including judgements on one’s own behaviour, in the face of the seemingly overriding passions for self-preservation and self-interest. Smith’s answer, at considerable length, is the presence within each of us of an «inner man» who plays the role of the «impartial spectator», approving or condemning our own and others' actions with a voice impossible to disregard. (The theory may sound less naive if the question is reformulated to ask how instinctual drives are socialized through the superego.)
The thesis of the impartial spectator, however, conceals a more important aspect of the book. Smith saw humans as created by their ability to reason and — no less important — by their capacity for sympathy. This duality serves both to pit individuals against one another and to provide them with the rational and moral faculties to create institutions by which the internecine struggle can be mitigated and even turned to the common good. He wrote in his Moral Sentiments the famous observation that he was to repeat later in The Wealth of Nations: that self-seeking men are often «led by an invisible hand… without knowing it, without intending it, to advance the interest of the society.»
It should be noted that scholars have long debated whether Moral Sentiments complemented or was in conflict with The Wealth of Nations, which followed it. At one level there is a seeming clash between the theme of social morality contained in the first and largely amoral explanation of the manner in which individuals are socialized to become the market-oriented and class-bound actors that set the economic system into motion.
Travels on the Continent
The Theory quickly brought Smith wide esteem and in particular attracted the attention of Charles Townshend, himself something of an amateur economist, a considerable wit, and somewhat less of a statesman, whose fate it was to be the chancellor of the exchequer responsible for the measures of taxation that ultimately provoked the American Revolution. Townshend had recently married and was searching for a tutor for his stepson and ward, the young Duke of Buccleuch. Influenced by the strong recommendations of Hume and his own admiration for The Theory of Moral Sentiments, he Approached Smith to take the Charge.
The terms of employment were lucrative (an annual salary of Π300 plus travelling expenses and a pension of Π300 a year after), considerably more than Smith had earned as a professor. Accordingly, Smith resigned his Glasgow post in 1763 and set off for France the next year as the tutor of the young duke. They stayed mainly in Toulouse, where Smith began working on a book (eventually to be The Wealth of Nations) as an antidote to the excruciating boredom of the provinces. After 18 months of ennui he was rewarded with a two-month sojourn in Geneva, where he met Voltaire, for whom he had the profoundest respect, thence to Paris where Hume, then secretary to the British embassy, introduced Smith to the great literary salons of the French Enlightenment. There he met a group of social reformers and theorists headed by Francois Quesnay, who are known in history as the physiocrats. There is some controversy as to the precise degree of influence the physiocrats exerted on Smith, but it is known that he thought sufficiently well of Quesnay to have considered dedicating The Wealth of Nations to him, had not the French economist died before publication.
The stay in Paris was cut short by a shocking event. The younger brother of the Duke of Buccleuch, who had joined them in Toulouse, took ill and perished despite Smith’s frantic ministration. Smith and his charge immediately returned to London. Smith worked in London until the spring of 1767 with Lord Townshend, a period during which he was elected a fellow of the Royal Society and broadened still further his intellectual circle to include Edmund Burke, Samuel Johnson, Edward Gibbon, and perhaps Benjamin Franklin. Late that year he returned to Kirkcaldy, where the next six years were spent dictating and reworking The Wealth of Nations, followed by another stay of three years in London, where the work was finally completed and published in 1776.
The Wealth of Nations
Despite its renown as the first great work in political economy. The Wealth of Nations is in fact a continuation of the philosophical theme begun in The Theory of Moral Sentiments. The ultimate problem to which Smith addresses himself is how the inner struggle between the passions and the «impartial spectator' - explicated in Moral Sentiments in terms of the single individual — works its effects in the larger arena of history itself, both in the long-run evolution of society and in terms of the immediate characteristics of the stage of history typical of Smith’s own day.
The answer to this problem enters in Book 5, in which Smith outlines he four main stages of organization through which society is impelled, unless blocked by deficiencies of resources, wars, or bad policies of government: the original «rude' state of hunters, a second stage of nomadic agriculture, a third stage of feudal or manorial «farming», and a fourth and final stage of commercial interdependence.
It should be noted that each of these stages is accompanied by institutions suited to its needs. For example, in the age of the huntsman, «there is scar any established magistrate or any regular administration of justice. «With the advent of flocks there emerges a more complex form of social organization, comprising not only «formidable» armies but the central institution of private property with its indispensable buttress of law and order as well. It is the very essence of Smith’s thought that he recognized this institution, whose social usefulness he never doubted, as an instrument for the protection of privilege, rather than one to be justified in terms of natural law: «Civil government,» he wrote, «so far as it is instituted for the security of property, is in reality instituted for the defence of the rich against the poor, or of those who have some property against those who have none at all.» Finally, Smith describes the evolution through feudalism into a stage of society requiring new institutions such as market-determined rather than guild-determined wages and free rather than government-constrained enterprise. This later became known as laissez-faire capitalism; Smith called it the system of perfect liberty.
There is an obvious resemblance between this succession of changes in the material basis of production, each bringing its requisite alterations in the superstructure of laws and civil institutions, and the Marxian conception of history. Though the resemblance is indeed remarkable, there is also a crucial difference: in the Marxian scheme the engine of evolution is ultimately the struggle between contending classes, whereas in Smith’s philosophical history the primal moving agency is «human nature «driven by the desire for self-betterment and guided (or misguided) by the faculties of reason.
Society and «the invisible hand»
The theory of historical evolution, although it is perhaps the binding conception of The Wealth of Nations, is subordinated within the work itself to a detailed description of how the «invisible hand» actually operates within the commercial, or final, stage of society. This becomes the focus of Books I and II. In which Smith undertakes to elucidate two questions. The first is how a system of perfect liberty, operating under the drives and constraints of human nature and intelligently designed institutions, will give rise to an orderly society. The question, which had already been considerably elucidated by earlier writers, required both an explanation of the underlying orderliness in the pricing of individual commodities and an explanation of the «laws» that regulated the division of the entire «wealth» of the nation (which Smith saw as its annual production of goods and services) among the three great claimant classes — labourers, landlords, and manufacturers.
This orderliness, as would be expected, was produced by the interaction of the two aspects of human nature, its response to its passions and its susceptibility to reason and sympathy. But whereas The Theory of Moral Sentiments had relied mainly on the presence of the «inner man» to provide the necessary restraints to private action, in The Wealth of Nations one finds an institutional mechanism that acts to reconcile the disruptive possibilities inherent in a blind obedience to the passions alone. This protective mechanism is competition, an arrangement by which the passionate desire for bettering one’s condition — a «desire that comes with United States from the womb, and never leaves United States until we go into the grave «- is turned into a socially beneficial agency by pitting one person’s drive for self-betterment against another’s.
It is in the unintended outcome of this competitive struggle for self-betterment that the invisible hand regulating the economy shows itself, for Smith explains how mutual vying forces the prices of commodities down to their natural levels, which correspond to their costs of production. Moreover, by inducing labour and capital to move from less to more profitable occupations or areas, the competitive mechanism constantly restores prices to these «natural» levels despite short-run aberrations. Finally, by explaining that wages and rents and profits (the constituent parts of the costs of production) are themselves subject to this natural prices but also revealed an underlying orderliness in the distribution of income itself among workers, whose recompense was their wages; landlords, whose income was their rents; and manufacturers, whose reward was their profit.
Economic growth
Smith’s analysis of the market as a selfcorrecting mechanism was impressive. But his purpose was more ambitious than to demonstrate the self-adjusting properties of the system. Rather, it was to show that, under the impetus of the acquisitive drive, the annual flow of national wealth could be seen steadily to grow.
Smith’s explanation of economic growth, although not neatly assembled in one part of The Wealth of Nations, is quite clear. The score of it lies in his emphasis on the division of labour (itself an outgrowth of the «natural» propensity to trade) as the source of society’s capacity to increase its productivity. The Wealth of Nations opens with a famous passage describing a pin factory in which 10 persons, by specialising in various tasks, turn out 48,000 pins a day, compared with the few, perhaps only 1, that each could have produced alone. But this all-important division of labour does not take place unaided. It can occur only after the prior accumulation of capital (or stock, as Smith calls it), which is used to pay the additional workers and to buy tools and machines.
The drive for accumulation, however, brings problems. The manufacturer who accumulates stock needs more labourers (since labour-saving technology has no place in Smith’s scheme), and in attempting to hire them he bids up their wages above their «natural» price. Consequently his profits begin to fall, and the process of accumulation is in danger of ceasing. But now there enters an ingenious mechanism for continuing the advance. In bidding up the price of labour, the manufacturer inadvertently sets into motion a process that increases the supply of labour, for «the demand for men, like that for any other commodity, necessarily regulates the production of men.» Specifically, Smith had in mind the effect of higher wages in lessening child mortality. Under the influence of a larger labour supply, the wage rise is moderated and profits are maintained; the new supply of labourers offers a continuing opportunity for the manufacturer to introduce a further division of labour and thereby add to the system’s growth.
Here then was a «machine» for growth — a machine that operated with all the reliability of the Newtonian system with which Smith was quite familiar. Unlike the Newtonian system, however, Smith’s growth machine did not depend for its operation on the laws of nature alone. Human nature drove it, and human nature was a complex rather than a simple force. Thus, the wealth of nations would grow only if individuals, through their governments, did not inhibit this growth by catering to the pleas for special privilege that would prevent the competitive system from exerting its begin effect. Consequently, much of The Wealth of Nations, especially Book IV, is a polemic against the restrictive measures of the «mercantile system» that favoured monopolies at home and abroad. Smith’s system of «natural liberty», he is careful to point out, accords with the best interests of all but will not be put into practice if government is entrusted to, or heeds, the «mean rapacity, who neither are, nor ought to be, the rulers of mankind.»
The Wealth of Nations is therefore far from the ideological tract it is often supposed to be. Although Smith preached laissez-faire (with important exceptions), his argument was directed as much against monopoly as government; and although he extolled the social results of the acquisitive process, he almost invariably treated the manners and manoeuvres of businessmen with contempt. Nor did he see the commercial system itself as wholly admirable. He wrote with decrement about the intellectual degradation of the worker in a society in which the division of labour has proceeded very far; for by comparison with the alert intelligence of the husbandman, the specialised worker «generally becomes as stupid and ignorant as it is possible for a human being to become».
In all of this, it is notable that Smith was writing in an age of preindustrial capitalism. He seems to have had no real presentiment of the gathering Industrial Revolution, harbingers of which were visible in the great ironworks only a few miles from Edinburgh. He had nothing to say about large-scale industrial enterprise, and the few remarks in The Wealth of Nations concerning the future of joint-stock companies (corporations) are disparaging. Finally, one should bear in mind, that, if growth is the great theme of The Wealth of Nations, it is not unending growth. Here and there in the treatise are glimpsed at a secularly declining rate of profit; and Smith mentions as well the prospects that when the system eventually accumulates its «full complement of riches» — all the pin factories, so to speak, whose output could be absorbed — economic decline would begin, ending in an impoverished stagnation.
The Wealth of Nations was received with admiration by Smith’s wide circle of friends and admires, although it was by no means an immediate popular success. The work finished, Smith went into semiretirement. The year following its publication he was appointed commissioner both of customs and of salt duties for Scotland, posts that brought him Π600 a year. He thereupon informed his former charge that he no longer required his pension, to which Buccleuch replied that his sense of honour would never allow him to stop paying it. Smith was therefore quite well off in the final years of his life, which were spent mainly in Edinburgh with occasional trips to London or Glasgow (which appointed him a rector of the university). The years passed quietly, with several revisions of both major books but with no further publications. On July 17, 1790, at the age of 67, full of honours and recognition, Smith died; he was buried in the churchyard at Canongate with a simple monument stating that Adam Smith, author of The Wealth of Nations, was buried there.
Beyond the few facts of his life, which can be embroidered only in detail, exasperatingly little is known about the man. Smith never married, and almost nothing is known of his personal side. Moreover, it was the custom of his time to destroy rather than to preserve the private files if illustrious men, with the unhappy result that much of Smith’s unfinished work, as well as his personal papers, was destroyed (some as late as 1942). Only one portrait of Smith survives, a profile medallion by Tassie; it gives a glimpse of the older man with his somewhat heavy-lidded eyes, aquiline nose, and a hint of protrusive lower lip. «I am a beau in nothing but my books, «Smith once told a friend to whom he was showing his library of some 3,000 volumes.
From various accounts, he was also a man of many peculiarities, which included a stumbling manner of speech (until he had warmed to his subject), a gait described as «vermicular"/ and above all an extraordinary and even comic absence of mind. On the other hand, contemporaries wrote of a smile of «inexpressive benignity,» and of his political tact and dispatch in managing the sometimes acerbic business of the Glasgow faculty.
Certainly he enjoyed a high measure of contemporary fame; even in his early days at Glasgow his reputation attracted students from nations as distant as Russia, and his later years were crowned not only with expression of admiration from many European thinkers but by a growing recognition among British governing circles that his work provided a rationale of inestimable importance for practical economic policy.
Over the years, Smith’s lustre as a social philosopher has escaped much of the weathering that has affected the reputations of other first-rate political economists. Although he was writing for his generation, the breadth of his knowledge/ the cutting edge of his generalization, the boldness of his vision, have never ceased to attract the admiration of all social scientists, and in particular economists. Couched in the spacious, cadenced prose of his period, rich in imagery and crowded with life, The Wealth of Nations projects a sanguine but never sentimental image of society. Never so finely analytic as David Ricardo nor so stern and profound as Karl Marx, Smith is the very epitome of the Enlightenment: hopeful but realistic, speculative but practical, always respectful of the classical past but ultimately dedicated to the great discovery of his age — progress.
BIBLIOGRAPHY:
John Rae. «Life of Adam Smith» 1985
William Scott. «Adam Smith as Student and Professor» 1987
Andrew S. Skinner. «Essays on Adam Smith» 1988
Π ΠΠ‘Π‘ΠΠΠ‘ΠΠΠ― ΠΠΠΠΠΠΠΠ§ΠΠ‘ΠΠΠ― ΠΠΠΠΠΠΠΠ― ΠΠ ΠΠΠΠΠ ΠΠΠ‘ΠΠ
Π V PLEKHANOV
ΠΠΠΠΠ£ΠΠΠ ΠΠΠΠ«Π ΠΠΠΠΠΠ«Π ΠΠ‘Π‘ΠΠΠΠΠΠΠΠΠ―
ΠΠΠΠ Π‘ΠΠΠ’
Π‘ΡΡΠ΄Π΅Π½Ρ: ΠΠ½ΡΠΎΠ½ Π‘ΠΊΠΎΠ±Π΅Π»Π΅Π²
ΠΡΡΠΏΠΏΠ°: 855
ΠΠΎΡΠΊΠ²Π° 1997
ΠΠΎΡΠ»Π΅ Π΄Π²ΡΡ ΡΡΠΎΠ»Π΅ΡΠΈΠΉ, ΠΠ΄Π°ΠΌ Π‘ΠΌΠΈΡ ΠΎΡΡΠ°Π΅ΡΡΡ Π²ΠΈΠ΄Π½ΠΎΠΉ ΡΠΈΠ³ΡΡΠΎΠΉ Π² ΠΈΡΡΠΎΡΠΈΠΈ ΡΠΊΠΎΠ½ΠΎΠΌΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΌΡΡΠ»ΠΈ. ΠΠ·Π²Π΅ΡΡΠ½ΡΠΉ ΠΏΡΠ΅ΠΆΠ΄Π΅ Π²ΡΠ΅Π³ΠΎ Π΅Π΄ΠΈΠ½ΡΡΠ²Π΅Π½Π½ΠΎΠΉ ΡΠ°Π±ΠΎΡΠΎΠΉ, Π Π°ΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΏΡΠΈΡΠΎΠ΄Ρ ΠΏΡΠΈΡΠΈΠ½Ρ ΠΠΎΠ³Π°ΡΡΡΠ²Π° ΠΠ°ΡΠΈΠΉ (1776), ΠΏΠ΅ΡΠ²Π°Ρ Π²ΡΠ΅ΡΡΠΎΡΠΎΠ½Π½ΡΡ ΡΠΈΡΡΠ΅ΠΌΠ° ΠΏΠΎΠ»ΠΈΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠΊΠΎΠ½ΠΎΠΌΠΈΠΊΠΈ, Π‘ΠΌΠΈΡ Π±ΠΎΠ»Π΅Π΅ Π΄ΠΎΠ»ΠΆΠ½ΡΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ ΡΠ°ΡΡΠ΅Π½Π΅Π½Ρ ΠΊΠ°ΠΊ ΡΠΎΡΠΈΠ°Π»ΡΠ½ΡΠΉ ΡΠΈΠ»ΠΎΡΠΎΡ, ΡΠΊΠΎΠ½ΠΎΠΌΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΏΠΈΡΡΠΌΠ° ΠΊΠΎΡΠΎΡΠΎΠ³ΠΎ ΡΠΎΡΡΠ°Π²Π»ΡΡΡ ΡΠΎΠ»ΡΠΊΠΎ ΠΊΠ°ΡΠ½ΠΈΠ·Π½ΡΠΉ ΠΊΠ°ΠΌΠ΅Π½Ρ ΠΊ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½ΠΈΡ ΠΏΠ΅ΡΠ΅ΠΊΡΡΡΠΈΡ ΠΏΠΎΠ»ΠΈΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΈ ΡΠΎΡΠΈΠ°Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠ°Π·Π²ΠΈΡΠΈΡ. ΠΡΠ»ΠΈ Π΅Π³ΠΎ masterwork ΡΠ°ΡΡΠΌΠ°ΡΡΠΈΠ²Π°Π΅ΡΡΡ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ Π΅Π³ΠΎ Π±ΠΎΠ»Π΅Π΅ ΡΠ°Π½Π½ΠΈΡ Π»Π΅ΠΊΡΠΈΠΉ ΠΏΠΎ ΠΌΠΎΡΠ°Π»ΡΠ½ΠΎΠΉ ΡΠΈΠ»ΠΎΡΠΎΡΠΈΠΈ ΠΈ ΠΏΡΠ°Π²ΠΈΡΠ΅Π»ΡΡΡΠ²Ρ, ΡΠ°ΠΊ ΠΆΠ΅ ΠΊΠ°ΠΊ ΠΊ Π½Π°ΠΌΠ΅ΠΊΠ°ΠΌ Π² Π’Π΅ΠΎΡΠΈΠΈ ΠΠΎΡΠ°Π»ΡΠ½ΡΡ Π§ΡΠ²ΡΡΠ² (1759) ΠΊ ΡΠ°Π±ΠΎΡΠ΅ ΠΎΠ½ Π½Π°Π΄Π΅ΡΠ»ΡΡ Π½Π°ΠΏΠΈΡΠ°ΡΡ Π½Π° «ΠΎΠ±ΡΠΈΡ ΠΏΡΠΈΠ½ΡΠΈΠΏΠ°Ρ Π·Π°ΠΊΠΎΠ½Π° ΠΈ ΠΏΡΠ°Π²ΠΈΡΠ΅Π»ΡΡΡΠ²Π°, ΠΈ ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ ΡΠ΅Π²ΠΎΠ»ΡΡΠΈΠΉ ΠΎΠ½ΠΈ ΠΏΠΎΠ΄Π²Π΅ΡΠ³Π»ΠΈΡΡ Π² ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ Π²ΠΎΠ·ΡΠ°ΡΡΠ°Ρ ΠΈ ΠΏΠ΅ΡΠΈΠΎΠ΄Π°Ρ ΠΎΠ±ΡΠ΅ΡΡΠ²Π°», ΡΠΎΠ³Π΄Π° ΠΠΎΠ³Π°ΡΡΡΠ²ΠΎ ΠΠ°ΡΠΈΠΉ ΠΌΠΎΠΆΠ΅Ρ Π±ΡΡΡ Π·Π°ΠΌΠ΅ΡΠ΅Π½ΠΎ Π½Π΅ ΠΏΡΠΎΡΡΠΎ ΠΊΠ°ΠΊ ΡΡΠ°ΠΊΡΠ°Ρ Π½Π° ΡΠΊΠΎΠ½ΠΎΠΌΠΈΠΊΠ΅, Π½ΠΎ ΠΊΠ°ΠΊ ΡΠ°ΡΡΠΈΡΠ½Π°Ρ Π²ΡΡΡΠ°Π²ΠΊΠ° Π½Π°ΠΌΠ½ΠΎΠ³ΠΎ Π±ΠΎΠ»ΡΡΠ΅ΠΉ ΡΡ Π΅ΠΌΡ ΠΈΡΡΠΎΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΡΠ°Π·Π²ΠΈΡΠΈΡ.
ΠΠΎΠ»ΠΎΠ΄ΠΎΡΡΡ
Π ΡΠΎΠΆΠ°Π»Π΅Π½ΠΈΡ, ΠΎΡΠ΅Π½Ρ ΠΈΠ·Π²Π΅ΡΡΠ΅Π½ ΠΎ ΠΌΡΡΠ»ΠΈ Π‘ΠΌΠΈΡΠ° ΡΠ΅ΠΌ ΠΎ Π΅Π³ΠΎ ΠΆΠΈΠ·Π½ΠΈ. Π₯ΠΎΡΡ ΡΠΎΡΠ½Π°Ρ Π΄Π°ΡΠ° Π΅Π³ΠΎ ΡΠΎΠΆΠ΄Π΅Π½ΠΈΡ Π½Π΅ΠΈΠ·Π²Π΅ΡΡΠ½Π°, ΠΎΠ½ ΠΊΡΠ΅ΡΡΠΈΠ»ΡΡ 5 ΠΈΡΠ½Ρ 1723, Π² Kikcaldy, ΠΌΠ°Π»Π΅Π½ΡΠΊΠΎΠ΅ (Π½Π°ΡΠ΅Π»Π΅Π½ΠΈΠ΅ 1 500), Π½ΠΎ ΠΏΡΠΎΡΠ²Π΅ΡΠ°ΡΡΠ°Ρ ΡΡΠ±Π°ΡΠΊΠ°Ρ Π΄Π΅ΡΠ΅Π²Π½Ρ ΠΎΠΊΠΎΠ»ΠΎ ΠΠ΄ΠΈΠ½Π±ΡΡΠ³Π°, ΡΡΠ½ Π²ΡΠΎΡΡΠΌ Π±ΡΠ°ΠΊΠΎΠΌ ΠΠ΄Π°ΠΌΠ° Π‘ΠΌΠΈΡΠ°, Π΄ΠΈΡΠΏΠ΅ΡΡΠ΅Ρ ΡΠ°ΠΌΠΎΠΆΠ½ΠΈ Π² Kikcaldy, ΠΈ ΠΠ°ΡΠ³Π°ΡΠ΅Ρ ΠΡΠ³Π»Π°ΡΠ΅, Π΄ΠΎΡΡ ΡΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎΠ³ΠΎ Π·Π΅ΠΌΠ»Π΅Π²Π»Π°Π΄Π΅Π»ΡΡΠ°. ΠΠ· Π΄Π΅ΡΡΡΠ²Π° Π‘ΠΌΠΈΡΠ° Π½ΠΈΡΡΠΎ Π½Π΅ ΠΈΠ·Π²Π΅ΡΡΠ½ΠΎ, ΠΊΡΠΎΠΌΠ΅ ΠΊΠΎΡΠΎΡΠΎΠ³ΠΎ ΠΎΠ½ ΠΏΠΎΠ»ΡΡΠΈΠ» Π΅Π³ΠΎ ΡΠ»Π΅ΠΌΠ΅Π½ΡΠ°ΡΠ½ΠΎΠ΅ ΠΎΠ±ΡΡΠ΅Π½ΠΈΠ΅ Π² ΠΠ΅ΡΠΊΠΎΠ»Π΄ΠΈ ΠΈ ΡΡΠΎ Π² Π²ΠΎΠ·ΡΠ°ΡΡΠ΅ ΡΠ΅ΡΡΡΠ΅Ρ Π»Π΅Ρ ΠΎΠ½, ΠΊΠ°ΠΊ Π³ΠΎΠ²ΠΎΡΠΈΠ»ΠΈ, Π±ΡΠ» Π²ΡΠΈΠ³ΡΠ°Π½ ΡΡΠ³Π°Π½Π°ΠΌΠΈ. ΠΡΠ΅ΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ Π±ΡΠ»ΠΎ ΡΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΎ, ΠΈ ΠΌΠΎΠ»ΠΎΠ΄ΠΎΠΉ ΠΠ΄Π°ΠΌ Π±ΡΠ» ΠΎΡΡΠ°Π²Π»Π΅Π½ Π΅Π³ΠΎ ΠΊΠ°ΠΏΠ΅ΡΠ°ΠΌΠΈ. «ΠΠ½ ΡΠ΄Π΅Π»Π°Π» Π±Ρ, Ρ Π±ΠΎΡΡΡ, Π±Π΅Π΄Π½ΡΠΉ ΡΡΠ³Π°Π½», ΠΏΡΠΎΠΊΠΎΠΌΠΌΠ΅Π½ΡΠΈΡΠΎΠ²Π°Π» Π΅Π³ΠΎ ΠΎΡΠ½ΠΎΠ²Π½ΠΎΠΉ Π±ΠΈΠΎΠ³ΡΠ°Ρ.
Π Π²ΠΎΠ·ΡΠ°ΡΡΠ΅ 14 Π»Π΅Ρ, Π² 1737, Π‘ΠΌΠΈΡ Π²ΠΎΡΠ΅Π» Π² ΡΠ½ΠΈΠ²Π΅ΡΡΠΈΡΠ΅Ρ ΠΠ»Π°Π·Π³ΠΎ, ΡΠΆΠ΅ Π·Π°ΠΌΠ΅ΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ ΠΊΠ°ΠΊ ΡΠ΅Π½ΡΡ ΡΠΎΠ³ΠΎ, ΡΡΠΎ Π΄ΠΎΠ»ΠΆΠ½ΠΎ Π±ΡΠ»ΠΎ ΡΡΠ°ΡΡ ΠΈΠ·Π²Π΅ΡΡΠ½ΡΠΌ ΠΊΠ°ΠΊ ΡΠΎΡΠ»Π°Π½Π΄ΡΠΊΠΎΠ΅ ΠΡΠΎΡΠ²Π΅ΡΠ΅Π½ΠΈΠ΅. Π’Π°ΠΌ, ΠΎΠ½ Π±ΡΠ» Π³Π»ΡΠ±ΠΎΠΊΠΎ ΠΏΠΎΠ΄ Π²Π»ΠΈΡΠ½ΠΈΠ΅ΠΌ Π€ΡΡΠ½ΡΠΈΡΠ° Π₯ΡΡΠ΅Π·ΠΎΠ½Π°, ΠΈΠ·Π²Π΅ΡΡΠ½ΡΠΉ ΠΏΡΠΎΡΠ΅ΡΡΠΎΡ ΠΌΠΎΡΠ°Π»ΡΠ½ΠΎΠΉ ΡΠΈΠ»ΠΎΡΠΎΡΠΈΠΈ, ΠΎΡ ΡΠΊΠΎΠ½ΠΎΠΌΠΈΡΠ΅ΡΠΊΠΈΡ ΠΈ ΡΠΈΠ»ΠΎΡΠΎΡΡΠΊΠΈΡ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½ΠΈΠΉ ΠΊΠΎΡΠΎΡΠΎΠΉ ΠΎΠ½ Π±ΡΠ» ΠΏΠΎΠ·ΠΆΠ΅, ΡΡΠΎΠ±Ρ ΠΎΡΠΊΠ»ΠΎΠ½ΠΈΡΡΡΡ, Π½ΠΎ ΡΠ΅ΠΉ ΠΌΠ°Π³Π½ΠΈΡΠ½ΡΠΉ Ρ Π°ΡΠ°ΠΊΡΠ΅Ρ, ΠΊΠ°ΠΆΠ΅ΡΡΡ, Π³Π»Π°Π²Π½Π°Ρ ΡΠΈΠ»Π° ΡΠΎΡΠΌΠΈΡΠΎΠ²Π°Π½ΠΈΡ Π² ΡΠ°Π·Π²ΠΈΡΠΈΠΈ Π‘ΠΌΠΈΡΠ°. ΠΠΎΠ»ΡΡΠ°Ρ Π²ΡΡΡΠ΅Π΅ ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ Π² 1740, Π‘ΠΌΠΈΡ Π²ΡΠΈΠ³ΡΠ°Π» ΡΡΠ΅Π½ΠΎΡΡΡ (ΠΏΡΠΈΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ ΠΠΎΠ²ΠΎΠ΄ΠΊΠ°) ΠΈ ΠΏΡΡΠ΅ΡΠ΅ΡΡΠ²ΠΎΠ²Π°Π» Π²Π΅ΡΡ ΠΎΠΌ Π² ΠΠΊΡΡΠΎΡΠ΄, Π³Π΄Π΅ ΠΎΠ½ ΠΎΡΡΠ°Π»ΡΡ Π² ΠΠΎΠ»Π»Π΅Π΄ΠΆΠ΅ Balliol. ΠΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Ρ ΠΏΠΎΠ±ΡΠ΄ΠΈΡΠ΅Π»ΡΠ½ΠΎΠΉ Π°ΡΠΌΠΎΡΡΠ΅ΡΠΎΠΉ ΠΠ»Π°Π·Π³ΠΎ, ΠΠΊΡΡΠΎΡΠ΄ Π±ΡΠ» ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎΠΉ ΠΏΡΡΡΡΠ½Π΅ΠΉ. ΠΠ³ΠΎ Π³ΠΎΠ΄Ρ ΡΠ°ΠΌ Π±ΡΠ»ΠΈ ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½Ρ Π² Π·Π½Π°ΡΠΈΡΠ΅Π»ΡΠ½ΠΎΠΉ ΡΡΠ΅ΠΏΠ΅Π½ΠΈ Π² ΡΠ°ΠΌΠΎΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠΈ, ΠΎΡ ΠΊΠΎΡΠΎΡΠΎΠ³ΠΎ Π‘ΠΌΠΈΡ ΠΏΠΎΠ»ΡΡΠΈΠ» ΡΡΡΠΎΠΉΡΠΈΠ²ΠΎΠ΅ ΡΡ Π²Π°ΡΡΠ²Π°Π½ΠΈΠ΅ ΠΈ ΠΊΠ»Π°ΡΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΈ ΡΠΎΠ²ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ ΡΠΈΠ»ΠΎΡΠΎΡΠΈΠΈ.
ΠΠΎΠ·Π²ΡΠ°ΡΠ°ΡΡΡ ΠΊ Π΅Π³ΠΎ Π΄ΠΎΠΌΡ ΠΏΠΎΡΠ»Π΅ ΠΎΡΡΡΡΡΡΠ²ΠΈΡ ΡΠ΅ΡΡΠΈ Π»Π΅Ρ, Π‘ΠΌΠΈΡ ΠΈΡΡΡ ΠΏΠΎΠ΄Ρ ΠΎΠ΄ΡΡΡΡ Π·Π°Π½ΡΡΠΎΡΡΡ. Π‘Π²ΡΠ·ΠΈ ΡΠ΅ΠΌΡΠΈ Π΅Π³ΠΎ ΠΌΠ°ΡΠ΅ΡΠΈ, Π²ΠΌΠ΅ΡΡΠ΅ Ρ ΠΏΠΎΠ΄Π΄Π΅ΡΠΆΠΊΠΎΠΉ Lord HenryΠ° ΠΡΠΉΠΌΡΠ° ΡΡΠΈΡΡΠ° ΠΈ ΡΠΈΠ»ΠΎΡΠΎΡΠ°, ΠΏΡΠΈΠ²Π΅Π»ΠΈ ΠΊ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΠΈ Π΄Π°ΡΡ ΡΡΠ΄ ΠΎΠ±ΡΠ΅ΡΡΠ²Π΅Π½Π½ΡΡ Π»Π΅ΠΊΡΠΈΠΉ Π² ΠΠ΄ΠΈΠ½Π±ΡΡΠ³Π΅ — ΡΠΎΡΠΌΠ° ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΡ ΡΠΎΠ³Π΄Π° ΠΎΡΠ΅Π½Ρ Π² ΠΌΠΎΠ΄Π΅ Π² ΠΏΡΠ΅ΠΎΠ±Π»Π°Π΄Π°ΡΡΠ΅ΠΌ Π΄ΡΡ Π΅ «ΡΡΠΎΠ²Π΅ΡΡΠ΅Π½ΡΡΠ²ΠΎΠ²Π°Π½ΠΈΡ» .
ΠΠ΅ΠΊΡΠΈΠΈ, ΠΊΠΎΡΠΎΡΡΠ΅ ΡΠ°ΡΠΏΠΎΠ»Π°Π³Π°Π»ΠΈΡΡ ΠΏΠΎ ΡΠΈΡΠΎΠΊΠΎΠΌΡ ΡΠ°Π·Π½ΠΎΠΎΠ±ΡΠ°Π·ΠΈΡ ΠΏΡΠ΅Π΄ΠΌΠ΅ΡΠΎΠ² ΠΎΡ ΠΈΡΡΠΎΡΠΈΠΈ ΡΠΈΡΠΎΡΠΈΠΊΠΈ ΠΈ ΡΠΊΠΎΠ½ΠΎΠΌΠΈΠΊΠΈ, ΠΏΡΠΎΠΈΠ·Π²Π΅Π»ΠΈ Π³Π»ΡΠ±ΠΎΠΊΠΎΠ΅ Π²ΠΏΠ΅ΡΠ°ΡΠ»Π΅Π½ΠΈΠ΅ Π½Π° Π½Π΅ΠΊΠΎΡΠΎΡΡΡ ΠΈΠ· ΠΈΠ·Π²Π΅ΡΡΠ½ΡΡ ΡΠΎΠ²ΡΠ΅ΠΌΠ΅Π½Π½ΠΈΠΊΠΎΠ² Π‘ΠΌΠΈΡΠ°. ΠΠ½ΠΈ ΡΠ°ΠΊΠΆΠ΅ ΠΈΠΌΠ΅Π»ΠΈ ΠΎΡΠΌΠ΅ΡΠ΅Π½Π½ΠΎΠ΅ Π²Π»ΠΈΡΠ½ΠΈΠ΅ Π½Π° ΡΠΎΠ±ΡΡΠ²Π΅Π½Π½ΡΡ ΠΊΠ°ΡΡΠ΅ΡΡ Π‘ΠΌΠΈΡΠ°, Π΄Π»Ρ Π² 1751, Π² Π²ΠΎΠ·ΡΠ°ΡΡΠ΅ 27 Π»Π΅Ρ, ΠΎΠ½ Π±ΡΠ» Π½Π°Π·Π½Π°ΡΠ΅Π½ ΠΏΡΠΎΡΠ΅ΡΡΠΎΡΠΎΠΌ Π»ΠΎΠ³ΠΈΠΊΠΈ Π² ΠΠ»Π°Π·Π³ΠΎ, ΠΈΠ· ΠΊΠ°ΠΊΠΎΠ³ΠΎ ΠΏΠΎΡΡΠ° ΠΎΠ½ ΠΏΠ΅ΡΠ΅ΡΠ΅Π» Π² 1752 ΠΊ Π±ΠΎΠ»Π΅Π΅ Π²ΠΎΠ·Π½Π°Π³ΡΠ°ΠΆΠ΄Π°ΡΡΠ΅ΠΌΡ ΠΏΡΠΎΡΠ΅ΡΡΠΎΡΡΡΠ²Ρ ΠΌΠΎΡΠ°Π»ΡΠ½ΠΎΠΉ ΡΠΈΠ»ΠΎΡΠΎΡΠΈΠΈ, ΠΏΡΠ΅Π΄ΠΌΠ΅Ρ, ΠΊΠΎΡΠΎΡΡΠΉ ΠΎΡ Π²Π°ΡΠΈΠ» ΡΠ²ΡΠ·Π°Π½Π½ΡΠ΅ ΠΎΠ±Π»Π°ΡΡΠΈ Π΅ΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎΠ³ΠΎ Π±ΠΎΠ³ΠΎΡΠ»ΠΎΠ²ΠΈΡ, ΡΡΠΈΠΊΠΈ, ΡΡΠΈΡΠΏΡΡΠ΄Π΅Π½ΡΠΈΠΈ, ΠΈ ΠΏΠΎΠ»ΠΈΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠΊΠΎΠ½ΠΎΠΌΠΈΠΊΠΈ.
ΠΠ»Π°Π·Π³ΠΎ
Π‘ΠΌΠΈΡ ΡΠΎΠ³Π΄Π° Π²ΡΡΡΠΏΠΈΠ» Π² ΠΏΠ΅ΡΠΈΠΎΠ΄ ΡΠΊΡΡΡΠ°ΠΎΡΠ΄ΠΈΠ½Π°ΡΠ½ΠΎΠ³ΠΎ ΡΠ²ΠΎΡΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΏΠΎΡΠ΅Π½ΡΠΈΠ°Π»Π°, ΠΎΠ±ΡΠ΅Π΄ΠΈΠ½Π΅Π½Π½ΠΎΠ³ΠΎ Ρ ΡΠΎΡΠΈΠ°Π»ΡΠ½ΠΎΠΉ ΠΈ ΠΈΠ½ΡΠ΅Π»Π»Π΅ΠΊΡΡΠ°Π»ΡΠ½ΠΎΠΉ ΠΆΠΈΠ·Π½ΡΡ, ΠΊΠΎΡΠΎΡΡΡ ΠΎΠ½ ΠΏΠΎΠ·ΠΆΠ΅ ΠΎΠΏΠΈΡΠ°Π» ΠΊΠ°ΠΊ «Π±Π΅Π·ΡΡΠ»ΠΎΠ²Π½ΠΎ ΡΠ°ΠΌΡΠΉ ΡΡΠ°ΡΡΠ»ΠΈΠ²ΡΠΉ, ΠΈ ΡΠ°ΠΌΡΠΉ Π±Π»Π°Π³ΠΎΡΠΎΠ΄Π½ΡΠΉ ΠΏΠ΅ΡΠΈΠΎΠ΄ ΠΌΠΎΠ΅ΠΉ ΠΆΠΈΠ·Π½ΠΈ». Π ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ Π½Π΅Π΄Π΅Π»ΠΈ ΠΎΠ½ ΡΠΈΡΠ°Π» Π»Π΅ΠΊΡΠΈΠΈ Π΅ΠΆΠ΅Π΄Π½Π΅Π²Π½ΠΎ ΠΎΡ 7:30 Π΄ΠΎ 8:30 ΠΈ ΡΠ½ΠΎΠ²Π° ΡΡΠΈΠΆΠ΄Ρ Π΅ΠΆΠ΅Π½Π΅Π΄Π΅Π»ΡΠ½ΠΎ Ρ 11:00 Π΄ΠΎ ΠΏΠΎΠ»ΡΠ΄Π½Ρ, ΠΊ ΠΊΠ»Π°ΡΡΠ°ΠΌ Π΄ΠΎ 90 ΡΡΡΠ΄Π΅Π½ΡΠΎΠ², Π² Π²ΠΎΠ·ΡΠ°ΡΡΠ΅ 14 ΠΈ 16. (Π₯ΠΎΡΡ Π΅Π³ΠΎ Π»Π΅ΠΊΡΠΈΠΈ Π±ΡΠ»ΠΈ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½Ρ Π½Π° Π°Π½Π³Π»ΠΈΠΉΡΠΊΠΎΠΌ ΡΠ·ΡΠΊΠ΅, ΠΏΠΎΡΠ»Π΅ ΠΏΡΠ΅ΡΠ΅Π΄Π΅Π½ΡΠ° Hutcheson, Π° Π½Π΅ Π² Π»Π°ΡΠΈΠ½ΡΠΊΠΎΠΌ, ΡΡΠΎΠ²Π΅Π½Ρ ΠΈΠ·ΠΎΡΡΠ΅Π½Π½ΠΎΡΡΠΈ Π΄Π»Ρ ΡΡΠΎΠ»Ρ ΠΌΠΎΠ»ΠΎΠ΄ΠΎΠΉ Π°ΡΠ΄ΠΈΡΠΎΡΠΈΠΈ ΡΠ΅Π³ΠΎΠ΄Π½Ρ ΠΊΠ°ΠΆΠ΅ΡΡΡ ΡΠΎΠΌΡ, Π½Π΅ΠΎΠ±ΡΡΠ½ΠΎ ΡΡΠ΅Π±ΡΡΡΠ΅ΠΌΡ.) ΠΠ½ΠΈ Π±ΡΠ»ΠΈ Π·Π°Π½ΡΡΡ ΡΠ½ΠΈΠ²Π΅ΡΡΠΈΡΠ΅ΡΡΠΊΠΈΠΌΠΈ Π΄Π΅Π»Π°ΠΌΠΈ, Π² ΠΊΠΎΡΠΎΡΡΡ Π‘ΠΌΠΈΡ ΠΈΠ³ΡΠ°Π» Π°ΠΊΡΠΈΠ²Π½ΡΡ ΡΠΎΠ»Ρ, Π±ΡΠ΄ΡΡΠΈ ΠΈΠ·Π±ΡΠ°Π½Π½ΡΠΌ Π΄Π΅ΠΊΠ°Π½ΠΎΠΌ ΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡΠΈ Π² 1758; Π΅Π³ΠΎ Π²Π΅ΡΠ΅ΡΠ° Π±ΡΠ»ΠΈ ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½Ρ Π² ΠΏΠΎΠ±ΡΠ΄ΠΈΡΠ΅Π»ΡΠ½ΠΎΠΉ ΠΊΠΎΠΌΠΏΠ°Π½ΠΈΠΈ ΠΎΠ±ΡΠ΅ΡΡΠ²Π° ΠΠ»Π°Π·Π³ΠΎ.
Π‘ΡΠ΅Π΄ΠΈ Π΅Π³ΠΎ ΠΊΡΡΠ³Π° Π·Π½Π°ΠΊΠΎΠΌΡΡ Π½Π΅ Π±ΡΠ»ΠΈ, ΡΠΎΠ»ΡΠΊΠΎ ΠΏΠΎΠΌΠ½ΠΈΡ ΠΈΠ· Π°ΡΠΈΡΡΠΎΠΊΡΠ°ΡΠΈΠΈ, ΠΌΠ½ΠΎΠ³ΠΈΠ΅ ΡΠΎΠ΅Π΄ΠΈΠ½ΠΈΠ»ΠΈΡΡ Ρ ΠΏΡΠ°Π²ΠΈΡΠ΅Π»ΡΡΡΠ²ΠΎΠΌ, Π½ΠΎ ΡΠ°ΠΊΠΆΠ΅ ΠΈ Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½ΠΎΠΌ ΠΈΠ½ΡΠ΅Π»Π»Π΅ΠΊΡΡΠ°Π»ΡΠ½ΡΡ ΠΈ Π½Π°ΡΡΠ½ΡΡ ΡΠΈΠ³ΡΡ, ΠΊΠΎΡΠΎΡΡΠ΅ Π²ΠΊΠ»ΡΡΠ°Π»ΠΈ ΠΠΆΠΎΠ·Π΅ΡΠ° ΠΠ»Π°ΠΊΠ°, ΠΏΠΈΠΎΠ½Π΅Ρ Π² ΠΎΠ±Π»Π°ΡΡΠΈ Ρ ΠΈΠΌΠΈΠΈ, ΠΠΆΠ΅ΠΉΠΌΡΠ° Π£ΠΎΡΡΠ°, ΠΏΠΎΠ·ΠΆΠ΅ ΠΈΠ·Π²Π΅ΡΡΠ½ΠΎΡΡΠΈ ΠΏΠ°ΡΠΎΠ²ΠΎΠ³ΠΎ Π΄Π²ΠΈΠ³Π°ΡΠ΅Π»Ρ, Π ΠΎΠ±Π΅ΡΡΠ° Π€ΡΠΈΡΠ°, Π²ΡΠ΄Π°ΡΡΠ΅Π³ΠΎΡΡ ΠΏΡΠΈΠ½ΡΠ΅ΡΠ° ΠΈ ΠΈΠ·Π΄Π°ΡΠ΅Π»Ρ ΠΈ ΠΏΠΎΡΠ»Π΅Π΄ΡΡΡΠ΅Π³ΠΎ ΠΎΡΠ½ΠΎΠ²Π°ΡΠ΅Π»Ρ ΠΏΠ΅ΡΠ²ΠΎΠΉ Π±ΡΠΈΡΠ°Π½ΡΠΊΠΎΠΉ ΠΠΊΠ°Π΄Π΅ΠΌΠΈΠΈ ΠΡΠΎΠ΅ΠΊΡΠ°, ΠΈ Π½Π΅ Π² ΠΏΠΎΡΠ»Π΅Π΄Π½ΡΡ ΠΎΡΠ΅ΡΠ΅Π΄Ρ, ΡΠΈΠ»ΠΎΡΠΎΡΠ° ΠΡΠ²ΠΈΠ΄Π° Π₯ΡΡΠΌ, ΠΏΠΎΠΆΠΈΠ·Π½Π΅Π½Π½ΡΠΉ Π΄ΡΡΠ³, ΠΊΠΎΡΠΎΡΠΎΠ³ΠΎ Π‘ΠΌΠΈΡ Π²ΡΡΡΠ΅ΡΠΈΠ» Π² ΠΠ΄ΠΈΠ½Π±ΡΡΠ³Π΅. Π‘ΠΌΠΈΡ Π±ΡΠ» ΡΠ°ΠΊΠΆΠ΅ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½ Π² ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ ΡΡΠΈΡ Π»Π΅Ρ ΠΊΠΎΠΌΠΏΠ°Π½ΠΈΠΈ Π±ΠΎΠ»ΡΡΠΈΡ ΡΠΎΡΠ³ΠΎΠ²ΡΠ΅Π², ΠΊΠΎΡΠΎΡΡΠ΅ ΠΏΡΠΎΠ΄ΠΎΠ»ΠΆΠ°Π»ΠΈ ΠΊΠΎΠ»ΠΎΠ½ΠΈΠ°Π»ΡΠ½ΡΡ ΡΠΎΡΠ³ΠΎΠ²Π»Ρ, ΠΊΠΎΡΠΎΡΠ°Ρ ΠΎΡΠΊΡΡΠ»Π°ΡΡ ΠΊ Π¨ΠΎΡΠ»Π°Π½Π΄ΠΈΠΈ ΠΏΠΎΡΠ»Π΅ Π΅Π΅ ΡΠΎΡΠ·Π° Ρ ΠΠ½Π³Π»ΠΈΠ΅ΠΉ Π² 1707. ΠΠ΄ΠΈΠ½ ΠΈΠ· Π½ΠΈΡ , ΠΠ½Π΄ΡΡ ΠΠΎΠΊΡΡΠΉΠ½Π°, Π±ΡΠ» ΡΠ΅ΠΊΡΠΎΡΠΎΠΌ ΠΠ»Π°Π·Π³ΠΎ ΠΈ ΠΎΡΠ½ΠΎΠ²Π°Π» ΠΈΠ·Π²Π΅ΡΡΠ½ΡΠΉ ΠΠΎΠ»ΠΈΡΠΈΡΠ΅ΡΠΊΠΈΠΉ ΠΠ»ΡΠ± ΠΠΊΠΎΠ½ΠΎΠΌΠΈΠΊΠΈ. ΠΡ Cochrane ΠΈ Π΅Π³ΠΎ ΠΏΠΎΠ΄Π΄Π΅ΡΠΆΠΈΠ²Π°ΡΡΠΈΡ ΡΠΎΡΠ³ΠΎΠ²ΡΠ΅Π² Π‘ΠΌΠΈΡΠ° Π½Π΅ΡΠΎΠΌΠ½Π΅Π½Π½ΠΎ ΠΏΡΠΈΠΎΠ±ΡΠ΅ΡΠ°Π» ΠΏΠΎΠ΄ΡΠΎΠ±Π½ΡΡ ΠΈΠ½ΡΠΎΡΠΌΠ°ΡΠΈΡ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ ΡΠΎΡΠ³ΠΎΠ²Π»ΠΈ ΠΈ Π±ΠΈΠ·Π½Π΅ΡΠ°, ΠΊΠΎΡΠΎΡΡΠΉ Π΄ΠΎΠ»ΠΆΠ΅Π½ Π±ΡΠ» Π΄Π°ΡΡ ΡΠ°ΠΊΠΎΠΉ ΡΠΌΡΡΠ» ΡΠ΅Π°Π»ΡΠ½ΠΎΠ³ΠΎ ΠΌΠΈΡΠ° ΠΊ ΠΠΎΠ³Π°ΡΡΡΠ²Ρ ΠΠ°ΡΠΈΠΉ.
Π’Π΅ΠΎΡΠΈΡ ΠΠΎΡΠ°Π»ΡΠ½ΡΡ Π§ΡΠ²ΡΡΠ²
Π 1759 Π‘ΠΌΠΈΡ ΠΠ·Π΄Π°Π» Π΅Π³ΠΎ ΠΏΠ΅ΡΠ²ΡΡ ΡΠ°Π±ΠΎΡΡ, Π’Π΅ΠΎΡΠΈΡ ΠΠΎΡΠ°Π»ΡΠ½ΡΡ Π§ΡΠ²ΡΡΠ². ΠΠΈΠ΄Π°ΠΊΡΠΈΡΠ΅ΡΠΊΠΈΠΉ, Π½ΡΠ°Π²ΠΎΡΡΠΈΡΠ΅Π»ΡΠ½ΡΠΉ, ΠΈ Π°Π½Π°Π»ΠΈΡΠΈΡΠ΅ΡΠΊΠΈΠΉ ΠΏΠΎ ΠΎΡΠ΅ΡΠ΅Π΄ΠΈ, Π’Π΅ΠΎΡΠΈΡ ΠΊΠ»Π°Π΄Π΅Ρ ΠΏΡΠΈΡ ΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΠΉ ΡΠΎΠ½Π΄, Π½Π° ΠΊΠΎΡΠΎΡΠΎΠΌ ΠΠΎΠ³Π°ΡΡΡΠ²ΠΎ ΠΠ°ΡΠΈΠΉ Π±ΡΠ»ΠΎ ΠΏΠΎΠ·ΠΆΠ΅, ΡΡΠΎΠ±Ρ Π±ΡΡΡ ΠΏΠΎΡΡΡΠΎΠ΅Π½Π½ΡΠΌ. Π ΡΡΠΎΠΌ Π‘ΠΌΠΈΡ ΠΎΠΏΠΈΡΠ°Π» ΠΏΡΠΈΠ½ΡΠΈΠΏΡ «ΡΠ΅Π»ΠΎΠ²Π΅ΡΠ΅ΡΠΊΠΎΠΉ ΠΏΡΠΈΡΠΎΠ΄Ρ», ΠΊΠΎΡΠΎΡΡΡ, Π²ΠΌΠ΅ΡΡΠ΅ Ρ Π₯ΡΡΠΌ ΠΈ Π΄ΡΡΠ³ΠΈΠΌΠΈ Π²Π΅Π΄ΡΡΠΈΠΌΠΈ ΡΠΈΠ»ΠΎΡΠΎΡΠ°ΠΌΠΈ Π΅Π³ΠΎ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ, ΠΎΠ½ Π²Π·ΡΠ» ΠΊΠ°ΠΊ ΡΠ½ΠΈΠ²Π΅ΡΡΠ°Π»ΡΠ½Π°Ρ ΠΈ Π½Π΅ΠΈΠ·ΠΌΠ΅Π½Π½Π°Ρ Π΄Π°Π½Π½Π°Ρ Π²Π΅Π»ΠΈΡΠΈΠ½Π°, ΠΈΠ· ΠΊΠΎΡΠΎΡΠΎΠΉ ΠΌΠΎΠ³Π»ΠΈ Π±ΡΡΡ Π²ΡΠ²Π΅Π΄Π΅Π½Ρ ΡΠΎΡΠΈΠ°Π»ΡΠ½ΡΠ΅ ΡΡΡΠ΅ΠΆΠ΄Π΅Π½ΠΈΡ, ΡΠ°ΠΊ ΠΆΠ΅ ΠΊΠ°ΠΊ ΡΠΎΡΠΈΠ°Π»ΡΠ½ΠΎΠ΅ ΠΏΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠ΅.
ΠΠ΄ΠΈΠ½ Π²ΠΎΠΏΡΠΎΡ Π² ΡΠΏΠ΅ΡΠΈΡΠΈΡΠ΅ΡΠΊΠΎΠΌ Π·Π°ΠΈΠ½ΡΠ΅ΡΠ΅ΡΠΎΠ²Π°Π½Π½ΠΎΠΌ Π‘ΠΌΠΈΡΠ΅ Π² Π’Π΅ΠΎΡΠΈΠΈ ΠΠΎΡΠ°Π»ΡΠ½ΡΡ Π§ΡΠ²ΡΡΠ². ΠΡΠΎ Π±ΡΠ»ΠΎ ΠΏΡΠΎΠ±Π»Π΅ΠΌΠΎΠΉ, ΠΊΠΎΡΠΎΡΠ°Ρ ΠΏΡΠΈΠ²Π»Π΅ΠΊΠ»Π° ΠΏΡΠ΅ΠΏΠΎΠ΄Π°Π²Π°ΡΠ΅Π»Ρ Π‘ΠΌΠΈΡΠ° Π₯ΡΡΠ΅Π·ΠΎΠ½Π° ΠΈ ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²ΠΎ ΡΠΎΡΠ»Π°Π½Π΄ΡΠΊΠΈΡ ΡΠΈΠ»ΠΎΡΠΎΡΠΎΠ² ΠΏΠ΅ΡΠ΅Π΄ Π½ΠΈΠΌ. ΠΠΎΠΏΡΠΎΡ Π±ΡΠ» ΠΈΡΡΠΎΡΠ½ΠΈΠΊΠΎΠΌ ΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡΠΈ ΡΠΎΡΡΠ°Π²ΠΈΡΡ ΠΌΠΎΡΠ°Π»ΡΠ½ΡΠ΅ ΠΌΠ½Π΅Π½ΠΈΡ, Π²ΠΊΠ»ΡΡΠ°Ρ ΡΡΠΆΠ΄Π΅Π½ΠΈΡ ΠΏΠΎ ΡΠΎΠ±ΡΡΠ²Π΅Π½Π½ΠΎΠΌΡ ΠΏΠΎΠ²Π΅Π΄Π΅Π½ΠΈΡ, ΠΏΠ΅ΡΠ΅Π΄ Π»ΠΈΡΠΎΠΌ ΠΏΠΎ-Π²ΠΈΠ΄ΠΈΠΌΠΎΠΌΡ Π½Π°ΠΈΠ²Π°ΠΆΠ½Π΅ΠΉΡΠΈΡ ΡΡΡΠ°ΡΡΠ΅ΠΉ ΠΊ ΡΠ°ΠΌΠΎΡΠΎΡ ΡΠ°Π½Π΅Π½ΠΈΡ ΠΈ Π»ΠΈΡΠ½ΠΎΠΌΡ ΠΈΠ½ΡΠ΅ΡΠ΅ΡΡ. ΠΡΠ²Π΅Ρ Π‘ΠΌΠΈΡΠ°, Π² Π·Π½Π°ΡΠΈΡΠ΅Π»ΡΠ½ΠΎΠΉ Π΄Π»ΠΈΠ½Π΅, ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΏΡΠΈΡΡΡΡΡΠ²ΠΈΠ΅ΠΌ Π² ΠΏΡΠ΅Π΄Π΅Π»Π°Ρ ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ ΠΈΠ· Π½Π°Ρ «Π²Π½ΡΡΡΠ΅Π½Π½Π΅Π³ΠΎ «Ρ» «, ΠΊΠΎΡΠΎΡΡΠΉ ΠΈΠ³ΡΠ°Π΅Ρ ΡΠΎΠ»Ρ «Π±Π΅ΡΠΏΡΠΈΡΡΡΠ°ΡΡΠ½ΠΎΠ³ΠΎ Π·ΡΠΈΡΠ΅Π»Ρ», ΠΎΠ΄ΠΎΠ±ΡΡΡ ΠΈΠ»ΠΈ ΠΎΡΡΠΆΠ΄Π°Ρ Π½Π°ΡΠΈ ΡΠΎΠ±ΡΡΠ²Π΅Π½Π½ΡΠ΅ ΠΈ Π΄Π΅ΠΉΡΡΠ²ΠΈΡ Π΄ΡΡΠ³ΠΈΡ Ρ Π³ΠΎΠ»ΠΎΡΠΎΠΌ, Π½Π΅Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΡΠΌ ΠΈΠ³Π½ΠΎΡΠΈΡΠΎΠ²Π°ΡΡ. (Π’Π΅ΠΎΡΠΈΡ ΠΌΠΎΠΆΠ΅Ρ ΠΊΠ°Π·Π°ΡΡΡΡ ΠΌΠ΅Π½Π΅Π΅ Π½Π°ΠΈΠ²Π½ΠΎΠΉ, Π΅ΡΠ»ΠΈ Π²ΠΎΠΏΡΠΎΡ ΠΏΠΎΠ²ΡΠΎΡΠ½ΠΎ ΡΡΠΎΡΠΌΡΠ»ΠΈΡΠΎΠ²Π°Π½, ΡΡΠΎΠ±Ρ ΡΠΏΡΠΎΡΠΈΡΡ, ΠΊΠ°ΠΊ ΠΈΠ½ΡΡΠΈΠ½ΠΊΡΠΈΠ²Π½ΡΠ΅ Π΄Π²ΠΈΠ³Π°ΡΠ΅Π»ΠΈ ΡΠΎΡΠΈΠ°Π»ΠΈΠ·ΠΈΡΠΎΠ²Π°Π½Ρ ΡΠ΅ΡΠ΅Π· ΡΡΠΏΠ΅ΡΡΠ³ΠΎ.)
Π’Π΅Π·ΠΈΡ Π±Π΅ΡΠΏΡΠΈΡΡΡΠ°ΡΡΠ½ΠΎΠ³ΠΎ Π·ΡΠΈΡΠ΅Π»Ρ, ΠΎΠ΄Π½Π°ΠΊΠΎ, ΡΠΊΡΡΠ²Π°Π΅Ρ Π±ΠΎΠ»Π΅Π΅ Π²Π°ΠΆΠ½ΡΠΉ Π°ΡΠΏΠ΅ΠΊΡ ΠΊΠ½ΠΈΠ³ΠΈ. Π‘ΠΌΠΈΡ Π²ΠΈΠ΄Π΅Π» Π»ΡΠ΄Π΅ΠΉ ΠΊΠ°ΠΊ ΡΠΎΠ·Π΄Π°Π½ΠΎ ΠΈΡ ΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡΡΡ ΡΠ°ΡΡΡΠ΄ΠΈΡΡ ΠΈ — Π½Π΅ ΠΌΠ΅Π½Π΅Π΅ Π²Π°ΠΆΠ½ΡΠΉ — ΠΈΡ Π²ΠΌΠ΅ΡΡΠΈΠΌΠΎΡΡΡΡ Π΄Π»Ρ ΡΠΈΠΌΠΏΠ°ΡΠΈΠΈ. ΠΡΠ° Π΄ΡΠ°Π»ΡΠ½ΠΎΡΡΡ ΡΠ»ΡΠΆΠΈΡ ΠΈ Π»ΡΠ΄ΡΠΌ ΡΠΌΡ ΠΏΡΠΎΡΠΈΠ² Π΄ΡΡΠ³ Π΄ΡΡΠ³Π° ΠΈ ΠΏΡΠ΅Π΄ΠΎΡΡΠ°Π²Π»ΡΡΡ ΠΈΠΌ ΡΠ°ΡΠΈΠΎΠ½Π°Π»ΡΠ½ΡΠ΅ ΠΈ ΠΌΠΎΡΠ°Π»ΡΠ½ΡΠ΅ ΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡΠΈ, ΡΡΠΎΠ±Ρ ΡΠΎΠ·Π΄Π°ΡΡ ΡΡΡΠ΅ΠΆΠ΄Π΅Π½ΠΈΡ, ΠΊΠΎΡΠΎΡΡΠΌΠΈ ΠΌΠ΅ΠΆΠ΄ΠΎΡΡΠΎΠ±Π½Π°Ρ Π±ΠΎΡΡΠ±Π° ΠΌΠΎΠΆΠ΅Ρ Π±ΡΡΡ ΡΠΌΡΠ³ΡΠ΅Π½Π° ΠΈ Π΄Π°ΠΆΠ΅ ΠΏΡΠ΅Π²ΡΠ°ΡΠ΅Π½Π° ΠΊ ΠΎΠ±ΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎΠΉ ΠΏΠΎΠ»ΡΠ·Π΅. ΠΠ½ Π½Π°ΠΏΠΈΡΠ°Π» Π² Π΅Π³ΠΎ ΠΠΎΡΠ°Π»ΡΠ½ΡΡ Π§ΡΠ²ΡΡΠ²Π°Ρ ΠΈΠ·Π²Π΅ΡΡΠ½ΠΎΠ΅ Π½Π°Π±Π»ΡΠ΄Π΅Π½ΠΈΠ΅, ΡΡΠΎ ΠΎΠ½ Π΄ΠΎΠ»ΠΆΠ΅Π½ Π±ΡΠ» ΠΏΠΎΠ²ΡΠΎΡΠΈΡΡΡΡ ΠΏΠΎΠ·ΠΆΠ΅ Π² ΠΠΎΠ³Π°ΡΡΡΠ²Π΅ ΠΠ°ΡΠΈΠΉ: ΡΠ΅ ΡΠ²ΠΎΠ΅ΠΊΠΎΡΡΡΡΠ½ΡΠ΅ ΠΌΡΠΆΡΠΈΠ½Ρ — ΡΠ°ΡΡΠΎ «Π²ΠΎ Π³Π»Π°Π²Π΅ Ρ Π½Π΅Π²ΠΈΠ΄ΠΈΠΌΠΎΠΉ ΡΡΠΊΠΎΠΉ …, Π½Π΅ Π·Π½Π°Ρ ΡΡΠΎ, Π½Π΅ ΠΏΡΠ΅Π΄Π½Π°Π·Π½Π°ΡΠ°Ρ ΡΡΠΎ, ΠΏΡΠΎΠ΄Π²ΠΈΠ³Π°ΡΡ ΠΈΠ½ΡΠ΅ΡΠ΅Ρ ΠΎΠ±ΡΠ΅ΡΡΠ²Π°.»
ΠΠΎΠ»ΠΆΠ½ΠΎ Π±ΡΡΡ ΠΎΡΠΌΠ΅ΡΠ΅Π½ΠΎ, ΡΡΠΎ ΡΡΠ΅Π½ΡΠ΅ Π΄ΠΎΠ»Π³ΠΎ Π΄Π΅Π±Π°ΡΠΈΡΠΎΠ²Π°Π»ΠΈ, Π±ΡΠ»ΠΈ Π»ΠΈ ΠΠΎΡΠ°Π»ΡΠ½ΡΠ΅ Π΄ΠΎΠΏΠΎΠ»Π½Π΅Π½Π½ΡΠ΅ Π§ΡΠ²ΡΡΠ²Π° ΠΈΠ»ΠΈ Π² ΠΊΠΎΠ½ΡΠ»ΠΈΠΊΡΠ΅ Ρ ΠΠΎΠ³Π°ΡΡΡΠ²ΠΎΠΌ ΠΠ°ΡΠΈΠΉ, ΠΊΠΎΡΠΎΡΡΠ΅ ΡΠ»Π΅Π΄ΠΎΠ²Π°Π»ΠΈ Π·Π° ΡΡΠΈΠΌ. ΠΠ° ΠΎΠ΄Π½ΠΎΠΌ ΡΡΠΎΠ²Π½Π΅ Π΅ΡΡΡ ΠΊΠ°ΠΆΡΡΠ΅Π΅ΡΡ ΡΡΠΎΠ»ΠΊΠ½ΠΎΠ²Π΅Π½ΠΈΠ΅ ΠΌΠ΅ΠΆΠ΄Ρ ΡΠ΅ΠΌΠΎΠΉ ΡΠΎΡΠΈΠ°Π»ΡΠ½ΠΎΠΉ ΡΡΠΈΠΊΠΈ, ΡΠΎΠ΄Π΅ΡΠΆΠ°Π²ΡΠ΅ΠΉΡΡ Π² ΠΏΠ΅ΡΠ²ΠΎΠΌ ΠΈ Π² Π·Π½Π°ΡΠΈΡΠ΅Π»ΡΠ½ΠΎΠΉ ΡΡΠ΅ΠΏΠ΅Π½ΠΈ Π°ΠΌΠΎΡΠ°Π»ΡΠ½ΠΎΠΌ ΠΎΠ±ΡΡΡΠ½Π΅Π½ΠΈΠΈ ΠΌΠ°Π½Π΅ΡΡ, Π² ΠΊΠΎΡΠΎΡΠΎΠΉ Π»ΡΠ΄ΠΈ ΡΠΎΡΠΈΠ°Π»ΠΈΠ·ΠΈΡΠΎΠ²Π°Π½Ρ, ΡΡΠΎΠ±Ρ ΡΡΠ°ΡΡ ΠΎΡΠΈΠ΅Π½ΡΠΈΡΠΎΠ²Π°Π½Π½ΡΠΌΠΈ Π½Π° ΡΡΠ½ΠΎΠΊ ΠΈ Π½Π°ΠΏΡΠ°Π²Π»ΡΡΡΠΈΠΌΠΈΡΡ ΠΊ ΠΊΠ»Π°ΡΡΡ Π°ΠΊΡΠ΅ΡΠ°ΠΌΠΈ, ΠΊΠΎΡΠΎΡΡΠ΅ ΡΡΡΠ°Π½Π°Π²Π»ΠΈΠ²Π°Π»ΠΈ ΡΠΊΠΎΠ½ΠΎΠΌΠΈΡΠ΅ΡΠΊΡΡ ΡΠΈΡΡΠ΅ΠΌΡ Π² Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅.
ΠΡΡΠ΅ΡΠ΅ΡΡΠ²ΠΈΡ Π½Π° ΠΠΎΠ½ΡΠΈΠ½Π΅Π½ΡΠ΅
Π’Π΅ΠΎΡΠΈΡ Π±ΡΡΡΡΠΎ ΠΏΡΠΈΠ½Π΅ΡΠ»Π° Π‘ΠΌΠΈΡΡ ΡΠΈΡΠΎΠΊΠΎΠ΅ ΡΠ²Π°ΠΆΠ΅Π½ΠΈΠ΅ ΠΈ Π² ΠΎΡΠΎΠ±Π΅Π½Π½ΠΎΡΡΠΈ ΠΏΡΠΈΠ²Π»Π΅ΠΊΠ»Π° Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅ Π§Π°ΡΠ»ΡΠ·Π° Π’ΠΎΡΠ½ΡΠ΅Π½Π΄Π°, Π½Π΅ΠΏΠΎΡΡΠ΅Π΄ΡΡΠ²Π΅Π½Π½ΠΎ ΠΊΠΎΠ΅-ΡΡΠΎ Π»ΡΠ±ΠΈΡΠ΅Π»ΡΡΠΊΠΎΠ³ΠΎ ΡΠΊΠΎΠ½ΠΎΠΌΠΈΡΡΠ°, Π·Π½Π°ΡΠΈΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ ΠΎΡΡΡΠΎΡΠΌΠΈΡ, ΠΈ Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΎ ΠΌΠ΅Π½ΡΡΠ΅ Π³ΠΎΡΡΠ΄Π°ΡΡΡΠ²Π΅Π½Π½ΠΎΠ³ΠΎ Π΄Π΅ΡΡΠ΅Π»Ρ, ΡΡΠ΄ΡΠ±Π° ΠΊΠΎΡΠΎΡΠΎΠ³ΠΎ ΡΡΠΎ Π΄ΠΎΠ»ΠΆΠ΅Π½ Π±ΡΠ» Π±ΡΡΡ ΠΌΠΈΠ½ΠΈΡΡΡ ΡΠΈΠ½Π°Π½ΡΠΎΠ², ΠΎΡΠ²Π΅ΡΡΡΠ²Π΅Π½Π½ΡΠΉ Π·Π° ΠΌΠ΅ΡΡ Π½Π°Π»ΠΎΠ³ΠΎΠΎΠ±Π»ΠΎΠΆΠ΅Π½ΠΈΡ, ΠΊΠΎΡΠΎΡΠΎΠ΅ Π² ΠΊΠΎΠ½Π΅ΡΠ½ΠΎΠΌ ΡΡΠ΅ΡΠ΅ Π²ΡΠ·Π²Π°Π»ΠΎ Π°ΠΌΠ΅ΡΠΈΠΊΠ°Π½ΡΠΊΡΡ Π Π΅Π²ΠΎΠ»ΡΡΠΈΡ. Townshend Π½Π΅Π΄Π°Π²Π½ΠΎ ΠΆΠ΅Π½ΠΈΠ»ΡΡ ΠΈ ΠΈΡΠΊΠ°Π» Π½Π°ΡΡΠ°Π²Π½ΠΈΠΊΠ° Π΄Π»Ρ Π΅Π³ΠΎ ΠΏΠ°ΡΡΠ½ΠΊΠ° ΠΈ ΠΎΠΏΠ΅ΠΊΠΈ, ΠΌΠΎΠ»ΠΎΠ΄ΠΎΠΉ ΠΠ΅ΡΡΠΎΠ³ Buccleuch. ΠΠΎΠ΄ Π²Π»ΠΈΡΠ½ΠΈΠ΅ΠΌ ΡΠΈΠ»ΡΠ½ΡΡ ΡΠ΅ΠΊΠΎΠΌΠ΅Π½Π΄Π°ΡΠΈΠΉ Π₯ΡΡΠΌ ΠΈ Π΅Π³ΠΎ ΡΠΎΠ±ΡΡΠ²Π΅Π½Π½ΠΎΠ³ΠΎ Π²ΠΎΡΡ ΠΈΡΠ΅Π½ΠΈΡ Π’Π΅ΠΎΡΠΈΠ΅ΠΉ ΠΠΎΡΠ°Π»ΡΠ½ΡΡ Π§ΡΠ²ΡΡΠ², ΠΎΠ½ ΠΡΠΈΠ±Π»ΠΈΠ·ΠΈΠ»ΡΡ ΠΊ Π‘ΠΌΠΈΡΡ, ΡΡΠΎΠ±Ρ Π²Π·ΡΡΡ ΠΠ±Π²ΠΈΠ½Π΅Π½ΠΈΠ΅.
Π‘ΡΠΎΠΊΠΈ Π·Π°Π½ΡΡΠΎΡΡΠΈ Π±ΡΠ»ΠΈ ΠΏΡΠΈΠ±ΡΠ»ΡΠ½ΡΠΌΠΈ (Π΅ΠΆΠ΅Π³ΠΎΠ΄Π½Π°Ρ Π·Π°ΡΠΏΠ»Π°ΡΠ° Π300 ΠΏΠ»ΡΡ ΠΊΠΎΠΌΠ°Π½Π΄ΠΈΡΠΎΠ²ΠΎΡΠ½ΡΠ΅ ΠΈ ΠΏΠ΅Π½ΡΠΈΡ Π300 ΡΠΏΡΡΡΡ Π³ΠΎΠ΄ ΠΏΠΎΡΠ»Π΅ ΡΡΠΎΠ³ΠΎ), Π·Π½Π°ΡΠΈΡΠ΅Π»ΡΠ½ΠΎ Π±ΠΎΠ»ΡΡΠ΅, ΡΠ΅ΠΌ Π‘ΠΌΠΈΡ Π·Π°ΡΠ°Π±ΠΎΡΠ°Π» ΠΊΠ°ΠΊ ΠΏΡΠΎΡΠ΅ΡΡΠΎΡ. Π‘ΠΎΠΎΡΠ²Π΅ΡΡΡΠ²Π΅Π½Π½ΠΎ, Π‘ΠΌΠΈΡ ΠΎΡΡΠ°Π²ΠΈΠ» Π΅Π³ΠΎ ΠΏΠΎΡΡ ΠΠ»Π°Π·Π³ΠΎ Π² 1763 ΠΈ ΠΎΡΠΏΡΠ°Π²Π»ΡΠ»ΡΡ Π΄Π»Ρ Π€ΡΠ°Π½ΡΠΈΠΈ Π² ΡΠ»Π΅Π΄ΡΡΡΠ΅ΠΌ Π³ΠΎΠ΄Ρ ΠΊΠ°ΠΊ Π½Π°ΡΡΠ°Π²Π½ΠΈΠΊ ΠΌΠΎΠ»ΠΎΠ΄ΠΎΠ³ΠΎ Π³Π΅ΡΡΠΎΠ³Π°. ΠΠ½ΠΈ ΠΎΡΡΠ°Π»ΠΈΡΡ Π³Π»Π°Π²Π½ΡΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ Π² Π’ΡΠ»ΡΠ·Π΅, Π³Π΄Π΅ Π‘ΠΌΠΈΡ Π½Π°ΡΠ°Π» Π²ΠΎΠ·Π΄Π΅ΠΉΡΡΠ²ΠΎΠ²Π°ΡΡ Π½Π° ΠΊΠ½ΠΈΠ³Ρ (Π² ΠΊΠΎΠ½Π΅ΡΠ½ΠΎΠΌ ΡΡΠ΅ΡΠ΅, ΡΡΠΎΠ±Ρ Π±ΡΡΡ ΠΠΎΠ³Π°ΡΡΡΠ²ΠΎΠΌ ΠΠ°ΡΠΈΠΉ) ΠΊΠ°ΠΊ ΠΏΡΠΎΡΠΈΠ²ΠΎΡΠ΄ΠΈΠ΅ ΠΊ ΠΌΡΡΠΈΡΠ΅Π»ΡΠ½ΠΎΠΉ ΡΠΊΡΠΊΠ΅ ΠΎΠ±Π»Π°ΡΡΠ΅ΠΉ. ΠΠΎΡΠ»Π΅ 18 ΠΌΠ΅ΡΡΡΠ΅Π² ΡΠΊΡΠΊΠΈ ΠΎΠ½ Π±ΡΠ» Π²ΠΎΠ·Π½Π°Π³ΡΠ°ΠΆΠ΄Π΅Π½ Ρ Π΄Π²ΡΡ ΠΌΠ΅ΡΡΡΠ½ΡΠΌ ΠΏΡΠ΅Π±ΡΠ²Π°Π½ΠΈΠ΅ΠΌ Π² ΠΠ΅Π½Π΅Π²Π΅, Π³Π΄Π΅ ΠΎΠ½ Π²ΡΡΡΠ΅ΡΠΈΠ» Voltaire, ΠΊ ΠΊΠΎΠΌΡ ΠΎΠ½ ΠΈΠΌΠ΅Π» ΡΠ²Π°ΠΆΠ΅Π½ΠΈΠ΅ profoundest, ΠΎΡΡΡΠ΄Π° ΠΊ ΠΠ°ΡΠΈΠΆΡ, Π³Π΄Π΅ Π₯ΡΡΠΌ, ΡΠΎΠ³Π΄Π° ΡΠ΅ΠΊΡΠ΅ΡΠ°ΡΡ Π±ΡΠΈΡΠ°Π½ΡΠΊΠΎΠ³ΠΎ ΠΏΠΎΡΠΎΠ»ΡΡΡΠ²Π°, ΠΏΡΠ΅Π΄ΡΡΠ°Π²ΠΈΠ» Π‘ΠΌΠΈΡΠ° Π±ΠΎΠ»ΡΡΠΈΠΌ Π»ΠΈΡΠ΅ΡΠ°ΡΡΡΠ½ΡΠΌ ΡΠ°Π»ΠΎΠ½Π°ΠΌ ΡΡΠ°Π½ΡΡΠ·ΡΠΊΠΎΠ³ΠΎ ΠΡΠΎΡΠ²Π΅ΡΠ΅Π½ΠΈΡ. Π’Π°ΠΌ ΠΎΠ½ Π²ΡΡΡΠ΅ΡΠΈΠ» Π³ΡΡΠΏΠΏΡ ΡΠΎΡΠΈΠ°Π»ΡΠ½ΡΡ ΡΠ΅ΡΠΎΡΠΌΠ°ΡΠΎΡΠΎΠ² ΠΈ ΡΠ΅ΠΎΡΠ΅ΡΠΈΠΊΠΎΠ², Π²ΠΎΠ·Π³Π»Π°Π²Π»ΡΠ΅ΠΌΡΡ Francois Quesnay, ΠΊΡΠΎ ΠΈΠ·Π²Π΅ΡΡΠ΅Π½ Π² ΠΈΡΡΠΎΡΠΈΠΈ ΠΊΠ°ΠΊ physiocrats. ΠΡΡΡ Π½Π΅ΠΌΠ½ΠΎΠ³ΠΎ ΠΏΡΠΎΡΠΈΠ²ΠΎΡΠ΅ΡΠΈΡ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ ΡΠΎΡΠ½ΠΎΠΉ ΡΡΠ΅ΠΏΠ΅Π½ΠΈ Π²Π»ΠΈΡΠ½ΠΈΡ physiocrats, ΠΏΡΠΎΡΠ²Π»Π΅Π½Π½ΡΠΉ Π½Π° Π‘ΠΌΠΈΡΠ΅, Π½ΠΎ ΠΈΠ·Π²Π΅ΡΡΠ½ΠΎ, ΡΡΠΎ ΠΎΠ½ Π΄ΡΠΌΠ°Π» Π΄ΠΎΡΡΠ°ΡΠΎΡΠ½ΠΎ, ΡΡΠΎ ΠΈΡΡΠΎΡΠ½ΠΈΠΊ Quesnay ΡΠ°ΡΡΠΌΠΎΡΡΠ΅Π» ΠΏΠΎΡΠ²ΡΡΠ΅Π½ΠΈΠ΅ ΠΠΎΠ³Π°ΡΡΡΠ²Π° ΠΠ°ΡΠΈΠΉ ΠΊ Π½Π΅ΠΌΡ, Π½Π΅ ΠΈΠΌΠ΅Π» ΡΡΠ°Π½ΡΡΠ·ΡΠΊΠΎΠ³ΠΎ ΡΠΊΠΎΠ½ΠΎΠΌΠΈΡΡΠ°, ΡΠΌΠ΅ΡΡΠ΅Π³ΠΎ ΠΏΠ΅ΡΠ΅Π΄ ΠΏΡΠ±Π»ΠΈΠΊΠ°ΡΠΈΠ΅ΠΉ.
ΠΡΠ΅Π±ΡΠ²Π°Π½ΠΈΠ΅ Π² ΠΠ°ΡΠΈΠΆΠ΅ Π±ΡΠ»ΠΎ ΡΠΎΠΊΡΠ°ΡΠ΅Π½ΠΎ ΠΎΡΠ²ΡΠ°ΡΠΈΡΠ΅Π»ΡΠ½ΡΠΌ ΡΠ»ΡΡΠ°Π΅ΠΌ. ΠΠ»Π°Π΄ΡΠΈΠΉ Π±ΡΠ°Ρ ΠΠ΅ΡΡΠΎΠ³Π° Buccleuch, ΠΊΠΎΡΠΎΡΡΠΉ ΠΏΡΠΈΡΠΎΠ΅Π΄ΠΈΠ½ΠΈΠ»ΡΡ ΠΊ Π½ΠΈΠΌ Π² Π’ΡΠ»ΡΠ·Π΅, ΠΎΠ±ΠΈΠΆΠ°Π»ΡΡ ΠΈ ΠΏΠΎΠ³ΠΈΠ± Π½Π΅ΡΠΌΠΎΡΡΡ Π½Π° ΡΠΆΠ°ΡΠ½ΠΎΠ΅ ΠΎΠΊΠ°Π·Π°Π½ΠΈΠ΅ ΠΏΠΎΠΌΠΎΡΠΈ Π‘ΠΌΠΈΡΠ°. Π‘ΠΌΠΈΡ ΠΈ Π΅Π³ΠΎ ΠΎΠ±Π²ΠΈΠ½Π΅Π½ΠΈΠ΅ Π½Π΅ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎ Π²ΠΎΠ·Π²ΡΠ°ΡΠΈΠ»ΠΈΡΡ ΠΊ ΠΠΎΠ½Π΄ΠΎΠ½Ρ. Π‘ΠΌΠΈΡ ΡΠ°Π±ΠΎΡΠ°Π» Π² ΠΠΎΠ½Π΄ΠΎΠ½Π΅ Π΄ΠΎ Π²Π΅ΡΠ½Ρ 1767 Ρ LordΠΎΠΌ Π’ΠΎΡΠ½ΡΠ΅Π½Π΄ΠΎΠΌ, ΠΏΠ΅ΡΠΈΠΎΠ΄, Π² ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ ΠΊΠΎΡΠΎΡΠΎΠ³ΠΎ ΠΎΠ½ Π±ΡΠ» ΠΈΠ·Π±ΡΠ°Π½ ΡΠ΅Π»ΠΎΠ²Π΅ΠΊΠΎΠΌ ΠΠΎΡΠΎΠ»Π΅Π²ΡΠΊΠΎΠ³ΠΎ ΠΠ±ΡΠ΅ΡΡΠ²Π° ΠΈ ΡΠ°ΡΡΠΈΡΡΠ» Π²ΡΠ΅ Π΅ΡΠ΅ Π΄Π°Π»Π΅Π΅ Π΅Π³ΠΎ ΠΈΠ½ΡΠ΅Π»Π»Π΅ΠΊΡΡΠ°Π»ΡΠ½ΡΠΉ ΠΊΡΡΠ³, ΡΡΠΎΠ±Ρ Π²ΠΊΠ»ΡΡΠΈΡΡ ΠΠ΄ΠΌΡΠ½Π΄Π° ΠΠ΅ΡΠΊΠ°, Π‘ΡΠΌΡΡΠ»Ρ ΠΠΆΠΎΠ½ΡΠΎΠ½Π°, ΠΠ΄Π²Π°ΡΠ΄Π° ΠΠΆΠΈΠ±Π±ΠΎΠ½Π°, ΠΈ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ ΠΠ΅Π½Π΄ΠΆΠ°ΠΌΠΈΠ½ Π€ΡΡΠ½ΠΊΠ»ΠΈΠ½. Π ΠΊΠΎΠ½ΡΠ΅ ΡΠΎΠ³ΠΎ Π³ΠΎΠ΄Π° ΠΎΠ½ Π²ΠΎΠ·Π²ΡΠ°ΡΠΈΠ»ΡΡ ΠΊ ΠΠ΅ΡΠΊΠΎΠ»Π΄ΠΈ, Π³Π΄Π΅ ΡΠ»Π΅Π΄ΡΡΡΠΈΠ΅ ΡΠ΅ΡΡΡ Π»Π΅Ρ Π±ΡΠ»ΠΈ ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½Ρ, Π΄ΠΈΠΊΡΡΡ ΠΈ ΠΏΠ΅ΡΠ΅Π΄Π΅Π»ΡΠ²Π°Ρ ΠΠΎΠ³Π°ΡΡΡΠ²ΠΎ ΠΠ°ΡΠΈΠΉ, ΡΠΎΠΏΡΠΎΠ²ΠΎΠΆΠ΄Π°Π΅ΠΌΡΡ Π΄ΡΡΠ³ΠΈΠΌ ΠΏΡΠ΅Π±ΡΠ²Π°Π½ΠΈΠ΅ΠΌ ΡΡΠ΅Ρ Π»Π΅Ρ Π² ΠΠΎΠ½Π΄ΠΎΠ½Π΅, Π³Π΄Π΅ ΡΠ°Π±ΠΎΡΠ° Π±ΡΠ»Π° Π½Π°ΠΊΠΎΠ½Π΅Ρ Π·Π°ΠΊΠΎΠ½ΡΠ΅Π½Π° ΠΈ ΠΈΠ·Π΄Π°Π½Π° Π² 1776.
ΠΠΎΠ³Π°ΡΡΡΠ²ΠΎ ΠΠ°ΡΠΈΠΉ
ΠΠ΅ΡΠΌΠΎΡΡΡ Π½Π° Π΅Π³ΠΎ ΡΠ»Π°Π²Ρ ΠΊΠ°ΠΊ ΠΏΠ΅ΡΠ²Π°Ρ Π±ΠΎΠ»ΡΡΠ°Ρ ΡΠ°Π±ΠΎΡΠ° Π² ΠΏΠΎΠ»ΠΈΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠΊΠΎΠ½ΠΎΠΌΠΈΠΊΠ΅. ΠΠΎΠ³Π°ΡΡΡΠ²ΠΎ ΠΠ°ΡΠΈΠΉ — ΡΠ°ΠΊΡΠΈΡΠ΅ΡΠΊΠΈ ΠΏΡΠΎΠ΄ΠΎΠ»ΠΆΠ΅Π½ΠΈΠ΅ ΡΠΈΠ»ΠΎΡΠΎΡΡΠΊΠΎΠΉ ΡΠ΅ΠΌΡ, Π½Π°ΡΠ°ΡΠΎΠΉ Π² Π’Π΅ΠΎΡΠΈΠΈ ΠΠΎΡΠ°Π»ΡΠ½ΡΡ Π§ΡΠ²ΡΡΠ². ΠΠΊΠΎΠ½ΡΠ°ΡΠ΅Π»ΡΠ½Π°Ρ ΠΏΡΠΎΠ±Π»Π΅ΠΌΠ°, ΠΊ ΠΊΠΎΡΠΎΡΠΎΠΉ Π‘ΠΌΠΈΡ ΠΎΠ±ΡΠ°ΡΠ°Π΅ΡΡΡ, ΡΠΎΡΡΠΎΠΈΡ Π² ΡΠΎΠΌ, ΠΊΠ°ΠΊ Π²Π½ΡΡΡΠ΅Π½Π½ΡΡ Π±ΠΎΡΡΠ±Π° ΠΌΠ΅ΠΆΠ΄Ρ ΡΡΡΠ°ΡΡΡΠΌΠΈ ΠΈ «Π±Π΅ΡΠΏΡΠΈΡΡΡΠ°ΡΡΠ½ΡΠΌ Π·ΡΠΈΡΠ΅Π»Π΅ΠΌ' - ΠΎΠ±ΡΡΡΠ½Π΅Π½Π½ΡΠΉ Π² ΠΠΎΡΠ°Π»ΡΠ½ΡΡ Π§ΡΠ²ΡΡΠ²Π°Ρ Π² ΡΠ΅ΡΠΌΠΈΠ½Π°Ρ Π΅Π΄ΠΈΠ½ΡΡΠ²Π΅Π½Π½ΠΎΠ³ΠΎ ΡΠ΅Π»ΠΎΠ²Π΅ΠΊΠ° — ΡΠ°Π±ΠΎΡΠ°Π΅Ρ Π΅Π΅ ΡΡΡΠ΅ΠΊΡΡ Π² Π±ΠΎΠ»ΡΡΠ΅ΠΉ Π°ΡΠ΅Π½Π΅ ΠΈΡΡΠΎΡΠΈΠΈ Π½Π΅ΠΏΠΎΡΡΠ΅Π΄ΡΡΠ²Π΅Π½Π½ΠΎ, ΠΈ Π² ΠΎΡΠ΄Π°Π»Π΅Π½Π½ΠΎΠΌ ΡΠ°Π·Π²ΠΈΡΠΈΠΈ ΠΎΠ±ΡΠ΅ΡΡΠ²Π° ΠΈ Π² ΡΠ΅ΡΠΌΠΈΠ½Π°Ρ Π½Π΅ΠΏΠΎΡΡΠ΅Π΄ΡΡΠ²Π΅Π½Π½ΡΡ ΠΎΡΠΎΠ±Π΅Π½Π½ΠΎΡΡΠ΅ΠΉ ΡΡΠ°Π΄ΠΈΠΈ ΠΈΡΡΠΎΡΠΈΠΈ, ΡΠΈΠΏΠΈΡΠ½ΠΎΠΉ Π΄Π»Ρ ΡΠΎΠ±ΡΡΠ²Π΅Π½Π½ΠΎΠ³ΠΎ Π΄Π½Ρ Π‘ΠΌΠΈΡΠ°.
ΠΡΠ²Π΅Ρ Π½Π° ΡΡΡ ΠΏΡΠΎΠ±Π»Π΅ΠΌΡ Π²ΡΡΡΠΏΠ°Π΅Ρ Π² ΠΠ½ΠΈΠ³Ρ 5, Π² ΠΊΠΎΡΠΎΡΡΡ Π‘ΠΌΠΈΡ Π²ΡΠ΄Π΅Π»ΡΠ΅Ρ Π΅Π³ΠΎ ΡΠ΅ΡΡΡΠ΅ Π³Π»Π°Π²Π½ΡΡ ΡΡΠ°Π΄ΠΈΠΈ ΠΎΡΠ³Π°Π½ΠΈΠ·Π°ΡΠΈΠΈ, ΡΠ΅ΡΠ΅Π· ΠΊΠΎΡΠΎΡΡΡ ΠΎΠ±ΡΠ΅ΡΡΠ²ΠΎ ΠΏΠΎΠ±ΡΠΆΠ΄Π΅Π½ΠΎ, Π΅ΡΠ»ΠΈ Π½Π΅ Π±Π»ΠΎΠΊΠΈΡΠΎΠ²Π°Π½ΠΎ Π΄Π΅ΡΠΈΡΠΈΡΠ°ΠΌΠΈ ΡΠ΅ΡΡΡΡΠΎΠ², Π²ΠΎΠΉΠ½, ΠΈΠ»ΠΈ ΠΏΠ»ΠΎΡ ΠΎΠΉ ΠΏΠΎΠ»ΠΈΡΠΈΠΊΠΈ ΠΏΡΠ°Π²ΠΈΡΠ΅Π»ΡΡΡΠ²Π°: ΠΎΡΠΈΠ³ΠΈΠ½Π°Π»ΡΠ½ΠΎΠ΅ «Π³ΡΡΠ±ΠΎΠ΅' Π³ΠΎΡΡΠ΄Π°ΡΡΡΠ²ΠΎ ΠΎΡ ΠΎΡΠ½ΠΈΠΊΠΎΠ², Π²ΡΠΎΡΠ°Ρ ΡΡΠ°Π΄ΠΈΡ ΠΊΠΎΡΠ΅Π²ΠΎΠ³ΠΎ ΡΠ΅Π»ΡΡΠΊΠΎΠ³ΠΎ Ρ ΠΎΠ·ΡΠΉΡΡΠ²Π°, ΡΡΠ΅ΡΡΡ ΡΡΠ°Π΄ΠΈΡ ΡΠ΅ΠΎΠ΄Π°Π»ΡΠ½ΠΎΠ³ΠΎ ΠΈΠ»ΠΈ ΠΌΠ°Π½ΠΎΡΠΈΠ°Π»ΡΠ½ΠΎΠ³ΠΎ «ΡΠ΅Π»ΡΡΠΊΠΎΠ³ΠΎ Ρ ΠΎΠ·ΡΠΉΡΡΠ²Π°», ΠΈ ΠΎΠ΄Π½ΠΎΠΉ ΡΠ΅ΡΠ²Π΅ΡΡΠΈ ΠΈ Π·Π°ΠΊΠ»ΡΡΠΈΡΠ΅Π»ΡΠ½ΠΎΠΉ ΡΡΠ°Π΄ΠΈΠΈ ΠΊΠΎΠΌΠΌΠ΅ΡΡΠ΅ΡΠΊΠΎΠΉ Π²Π·Π°ΠΈΠΌΠΎΠ·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΠΈ.
ΠΠΎΠ»ΠΆΠ½ΠΎ Π±ΡΡΡ ΠΎΡΠΌΠ΅ΡΠ΅Π½ΠΎ, ΡΡΠΎ ΠΊΠ°ΠΆΠ΄Π°Ρ ΠΈΠ· ΡΡΠΈΡ ΡΡΠ°Π΄ΠΈΠΉ ΡΠΎΠΏΡΠΎΠ²ΠΎΠΆΠ΄Π°Π΅ΡΡΡ ΡΡΡΠ΅ΠΆΠ΄Π΅Π½ΠΈΡΠΌΠΈ, ΠΏΠΎΠ΄Ρ ΠΎΠ΄ΡΡΠΈΠΌΠΈ Π΄Π»Ρ Π΅Π³ΠΎ ΠΏΠΎΡΡΠ΅Π±Π½ΠΎΡΡΠ΅ΠΉ. ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ, Π² Π²ΠΎΠ·ΡΠ°ΡΡΠ΅ ΠΎΡ ΠΎΡΠ½ΠΈΠΊΠ°, «Π΅ΡΡΡ ΡΡΠ°ΠΌ Π»ΡΠ±ΠΎΠΉ ΡΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½Π½ΡΠΉ ΡΡΠ΄ΡΡ ΠΈΠ»ΠΈ Π»ΡΠ±Π°Ρ ΡΠ΅Π³ΡΠ»ΡΡΠ½Π°Ρ Π°Π΄ΠΌΠΈΠ½ΠΈΡΡΡΠ°ΡΠΈΡ ΠΏΡΠ°Π²ΠΎΡΡΠ΄ΠΈΡ.» Π‘ ΠΏΠΎΡΠ²Π»Π΅Π½ΠΈΠ΅ΠΌ ΡΠΊΠΎΠΏΠ»Π΅Π½ΠΈΠΉ ΡΠ°ΠΌ ΠΏΠΎΡΠ²Π»ΡΠ΅ΡΡΡ Π±ΠΎΠ»Π΅Π΅ ΡΠ»ΠΎΠΆΠ½Π°Ρ ΡΠΎΡΠΌΠ° ΡΠΎΡΠΈΠ°Π»ΡΠ½ΠΎΠΉ ΠΎΡΠ³Π°Π½ΠΈΠ·Π°ΡΠΈΠΈ, Π²ΠΊΠ»ΡΡΠ°Ρ Π½Π΅ ΡΠΎΠ»ΡΠΊΠΎ «ΠΎΠ³ΡΠΎΠΌΠ½ΡΠ΅» Π°ΡΠΌΠΈΠΈ, Π½ΠΎ ΠΈ ΡΠ΅Π½ΡΡΠ°Π»ΡΠ½ΠΎΠ΅ ΡΡΡΠ΅ΠΆΠ΄Π΅Π½ΠΈΠ΅ ΡΠ°ΡΡΠ½ΠΎΠΉ ΡΠΎΠ±ΡΡΠ²Π΅Π½Π½ΠΎΡΡΠΈ Ρ Π΅Π΅ ΠΎΠ±ΡΠ·Π°ΡΠ΅Π»ΡΠ½ΠΎΠΉ ΠΎΠΏΠΎΡΠΎΠΉ ΠΎΠ±ΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎΠ³ΠΎ ΠΏΠΎΡΡΠ΄ΠΊΠ° ΡΠ°ΠΊΠΆΠ΅. ΠΡΠΎ — ΡΠ°ΠΌΠ°Ρ ΡΡΡΠ½ΠΎΡΡΡ ΠΌΡΡΠ»ΠΈ Π‘ΠΌΠΈΡΠ°, ΡΡΠΎ ΠΎΠ½ ΠΏΡΠΈΠ·Π½Π°Π» ΡΡΠΎ ΡΡΡΠ΅ΠΆΠ΄Π΅Π½ΠΈΠ΅, ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ ΡΠΎΡΠΈΠ°Π»ΡΠ½ΠΎΠΉ ΠΏΠΎΠ»Π½ΠΎΡΠ΅Π½Π½ΠΎΡΡΠΈ ΠΊΠΎΡΠΎΡΠΎΠ³ΠΎ ΠΎΠ½ Π½ΠΈΠΊΠΎΠ³Π΄Π° Π½Π΅ ΡΠΎΠΌΠ½Π΅Π²Π°Π»ΡΡ, ΠΊΠ°ΠΊ ΠΈΠ½ΡΡΡΡΠΌΠ΅Π½Ρ Π΄Π»Ρ Π·Π°ΡΠΈΡΡ ΠΏΡΠΈΠ²ΠΈΠ»Π΅Π³ΠΈΠΈ, Π° Π½Π΅ ΠΎΠ΄ΠΈΠ½, ΡΡΠΎΠ±Ρ Π±ΡΡΡ ΠΎΠΏΡΠ°Π²Π΄Π°Π½Π½ΡΠΌ Π² ΡΠ΅ΡΠΌΠΈΠ½Π°Ρ Π΅ΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎΠ³ΠΎ Π·Π°ΠΊΠΎΠ½Π°: «ΠΡΠ°ΠΆΠ΄Π°Π½ΡΠΊΠΎΠ΅ ΠΏΡΠ°Π²ΠΈΡΠ΅Π»ΡΡΡΠ²ΠΎ,» ΠΎΠ½ Π½Π°ΠΏΠΈΡΠ°Π», «, Π½Π°ΡΠΊΠΎΠ»ΡΠΊΠΎ ΡΡΠΎ Π½Π°Π·Π½Π°ΡΠ΅Π½ΠΎ Π΄Π»Ρ Π±Π΅Π·ΠΎΠΏΠ°ΡΠ½ΠΎΡΡΠΈ ΡΠΎΠ±ΡΡΠ²Π΅Π½Π½ΠΎΡΡΠΈ, Π² Π΄Π΅ΠΉΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΠΎΡΡΠΈ Π½Π°Π·Π½Π°ΡΠ΅Π½ΠΎ Π΄Π»Ρ Π·Π°ΡΠΈΡΡ Π±ΠΎΠ³Π°ΡΡΡ ΠΏΡΠΎΡΠΈΠ² Π±Π΅Π΄Π½ΡΡ , ΠΈΠ»ΠΈ ΡΠ΅Ρ , ΠΊΡΠΎ ΠΈΠΌΠ΅Π΅Ρ Π½Π΅ΠΊΠΎΡΠΎΡΡΡ ΡΠΎΠ±ΡΡΠ²Π΅Π½Π½ΠΎΡΡΡ ΠΏΡΠΎΡΠΈΠ² ΡΠ΅Ρ , ΠΊΡΠΎ Π½Π΅ ΠΈΠΌΠ΅Π΅Ρ Π½ΠΈ ΠΎΠ΄Π½ΠΎΠ³ΠΎ Π²ΠΎΠΎΠ±ΡΠ΅.» ΠΠ°ΠΊΠΎΠ½Π΅Ρ, Π‘ΠΌΠΈΡ ΠΎΠΏΠΈΡΡΠ²Π°Π΅Ρ ΡΠ°Π·Π²ΠΈΡΠΈΠ΅ ΡΠ΅ΡΠ΅Π· ΡΠ΅ΠΎΠ΄Π°Π»ΠΈΠ·ΠΌ Π² ΡΡΠ°Π΄ΠΈΡ ΠΎΠ±ΡΠ΅ΡΡΠ²Π°, ΡΡΠ΅Π±ΡΡΡΠ΅Π³ΠΎ Π½ΠΎΠ²ΡΡ ΡΡΡΠ΅ΠΆΠ΄Π΅Π½ΠΈΠΉ, ΡΠΈΠΏΠ° ΡΠ΅ΡΠΈΡΠ΅Π»ΡΠ½ΠΎΠΉ ΡΡΠ½ΠΊΠΎΠΌ, Π° Π½Π΅ ΡΠ΅ΡΠΈΡΠ΅Π»ΡΠ½ΠΎΠΉ Π³ΠΈΠ»ΡΠ΄ΠΈΠ΅ΠΉ Π·Π°ΡΠ°Π±ΠΎΡΠ½ΠΎΠΉ ΠΏΠ»Π°ΡΡ ΠΈ ΡΠ²ΠΎΠ±ΠΎΠ΄Π½ΠΎΠ³ΠΎ, Π° Π½Π΅ ΠΏΡΠΈΠ½ΡΠΆΠ΄Π΅Π½Π½ΠΎΠ³ΠΎ ΠΏΡΠ°Π²ΠΈΡΠ΅Π»ΡΡΡΠ²ΠΎΠΌ ΠΏΡΠ΅Π΄ΠΏΡΠΈΡΡΠΈΡ. ΠΡΠΎ ΠΏΠΎΠ·ΠΆΠ΅ ΡΡΠ°Π»ΠΎ ΠΈΠ·Π²Π΅ΡΡΠ½ΡΠΌ ΠΊΠ°ΠΊ Π»ΠΈΠ±Π΅ΡΠ°Π»ΡΠ½ΡΠΉ ΠΊΠ°ΠΏΠΈΡΠ°Π»ΠΈΠ·ΠΌ; Π‘ΠΌΠΈΡ Π½Π°Π·Π²Π°Π» ΡΡΠΎ ΡΠΈΡΡΠ΅ΠΌΠΎΠΉ ΠΏΡΠ΅ΠΊΡΠ°ΡΠ½ΠΎΠΉ ΡΠ²ΠΎΠ±ΠΎΠ΄Ρ.
ΠΡΡΡ ΠΎΡΠ΅Π²ΠΈΠ΄Π½ΠΎΠ΅ ΠΏΠΎΠ΄ΠΎΠ±ΠΈΠ΅ ΠΌΠ΅ΠΆΠ΄Ρ ΡΡΠΎΠΉ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎΡΡΡΡ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠΉ Π² ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»ΡΠ½ΠΎΠΌ ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΠΈ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄ΡΡΠ²Π°, ΠΊΠ°ΠΆΠ΄ΠΎΠ΅ ΠΎΠ±Π΅ΡΠΏΠ΅ΡΠ΅Π½ΠΈΠ΅ Π΅Π³ΠΎ Π½Π΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΡΡ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠΉ Π² ΡΡΠΏΠ΅ΡΡΡΡΡΠΊΡΡΡΠ΅ Π·Π°ΠΊΠΎΠ½ΠΎΠ² ΠΈ Π³ΡΠ°ΠΆΠ΄Π°Π½ΡΠΊΠΈΡ ΡΡΡΠ΅ΠΆΠ΄Π΅Π½ΠΈΠΉ, ΠΈ ΠΠ°ΡΠΊΡΠΈΡΡΡΠΊΠΎΠΉ ΠΊΠΎΠ½ΡΠ΅ΠΏΡΠΈΠΈ ΠΈΡΡΠΎΡΠΈΠΈ. Π₯ΠΎΡΡ ΠΏΠΎΠ΄ΠΎΠ±ΠΈΠ΅ Π΄Π΅ΠΉΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΠΎ Π·Π°ΠΌΠ΅ΡΠ°ΡΠ΅Π»ΡΠ½ΠΎ, Π΅ΡΡΡ ΡΠ°ΠΊΠΆΠ΅ ΠΊΡΠΈΡΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΡΠ°Π·Π»ΠΈΡΠΈΠ΅: Π² ΠΠ°ΡΠΊΡΠΈΡΡΡΠΊΠΎΠΉ ΡΡ Π΅ΠΌΠ΅ Π΄Π²ΠΈΠ³Π°ΡΠ΅Π»Ρ ΡΠ°Π·Π²ΠΈΡΠΈΡ — Π² ΠΊΠΎΠ½Π΅ΡΠ½ΠΎΠΌ ΡΡΠ΅ΡΠ΅ Π±ΠΎΡΡΠ±Π° ΠΌΠ΅ΠΆΠ΄Ρ Π±ΠΎΡΡΡΠΈΠΌΠΈΡΡ ΠΊΠ»Π°ΡΡΠ°ΠΌΠΈ, ΡΠΎΠ³Π΄Π° ΠΊΠ°ΠΊ Π² ΡΠΈΠ»ΠΎΡΠΎΡΡΠΊΠΎΠΉ ΠΈΡΡΠΎΡΠΈΠΈ Π‘ΠΌΠΈΡΠ° ΠΎΡΠ½ΠΎΠ²Π½ΠΎΠ΅ Π΄Π²ΠΈΠΆΡΡΠ΅Π΅ΡΡ Π°Π³Π΅Π½ΡΡΡΠ²ΠΎ — «ΡΠ΅Π»ΠΎΠ²Π΅ΡΠ΅ΡΠΊΠ°Ρ ΠΏΡΠΈΡΠΎΠ΄Π° «Π²Π΅Π΄ΠΎΠΌΡΠΉ ΠΆΠ΅Π»Π°Π½ΠΈΠ΅ΠΌ ΡΠ°ΠΌΠΎΡΠ»ΡΡΡΠ΅Π½ΠΈΡ ΠΈ ΡΠΏΡΠ°Π²Π»ΡΠ΅ΠΌΡΠΉ (ΠΈΠ»ΠΈ Π΄Π΅Π·ΠΈΠ½ΡΠΎΡΠΌΠΈΡΠΎΠ²Π°Π½Π½ΡΠΉ) ΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡΡΠΌΠΈ ΠΏΡΠΈΡΠΈΠ½Ρ.
ΠΠ±ΡΠ΅ΡΡΠ²ΠΎ ΠΈ «Π½Π΅Π²ΠΈΠ΄ΠΈΠΌΠ°Ρ ΡΡΠΊΠ°»
Π’Π΅ΠΎΡΠΈΡ ΠΈΡΡΠΎΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΡΠ°Π·Π²ΠΈΡΠΈΡ, Ρ ΠΎΡΡ ΡΡΠΎ — Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠ±ΡΠ·Π°ΡΠ΅Π»ΡΠ½Π°Ρ ΠΊΠΎΠ½ΡΠ΅ΠΏΡΠΈΡ ΠΠΎΠ³Π°ΡΡΡΠ²Π° ΠΠ°ΡΠΈΠΉ, ΠΏΠΎΠ΄ΡΠΈΠ½Π΅Π½Π° Π² ΠΏΡΠ΅Π΄Π΅Π»Π°Ρ ΡΠ°Π±ΠΎΡΡ Π½Π΅ΠΏΠΎΡΡΠ΅Π΄ΡΡΠ²Π΅Π½Π½ΠΎ ΠΊ Π΄Π΅ΡΠ°Π»ΡΠ½ΠΎΠΌΡ ΠΎΠΏΠΈΡΠ°Π½ΠΈΡ ΡΠΎΠ³ΠΎ, ΠΊΠ°ΠΊ «Π½Π΅Π²ΠΈΠ΄ΠΈΠΌΠ°Ρ ΡΡΠΊΠ°» ΡΠ°ΠΊΡΠΈΡΠ΅ΡΠΊΠΈ ΡΠ°Π±ΠΎΡΠ°Π΅Ρ Π² ΠΏΡΠ΅Π΄Π΅Π»Π°Ρ ΠΊΠΎΠΌΠΌΠ΅ΡΡΠ΅ΡΠΊΠΎΠ³ΠΎ, ΠΈΠ»ΠΈ ΡΠΈΠ½Π°Π»Π°, ΡΡΠ°Π΄ΠΈΡ ΠΎΠ±ΡΠ΅ΡΡΠ²Π°. ΠΡΠΎ ΡΡΠ°Π½ΠΎΠ²ΠΈΡΡΡ ΡΠ΅Π½ΡΡΠΎΠΌ ΠΠ½ΠΈΠ³ Ρ ΠΈ II. Π ΠΊΠΎΡΠΎΡΠΎΠΌ Π‘ΠΌΠΈΡ ΠΎΠ±ΡΠ·ΡΠ΅ΡΡΡ ΠΎΠ±ΡΡΡΠ½ΡΡΡ Π΄Π²Π° Π²ΠΎΠΏΡΠΎΡΠ°. ΠΠ΅ΡΠ²ΠΎΠ΅ — ΡΠΎ, ΠΊΠ°ΠΊ ΡΠΈΡΡΠ΅ΠΌΠ° ΠΏΡΠ΅ΠΊΡΠ°ΡΠ½ΠΎΠΉ ΡΠ²ΠΎΠ±ΠΎΠ΄Ρ, ΡΠ°Π±ΠΎΡΠ°ΡΡΠ΅ΠΉ ΠΏΠΎΠ΄ Π΄Π²ΠΈΠ³Π°ΡΠ΅Π»ΡΠΌΠΈ ΠΈ ΠΎΠ³ΡΠ°Π½ΠΈΡΠ΅Π½ΠΈΡΠΌΠΈ ΡΠ΅Π»ΠΎΠ²Π΅ΡΠ΅ΡΠΊΠΎΠΉ ΠΏΡΠΈΡΠΎΠ΄Ρ ΠΈ ΡΠ°Π·ΡΠΌΠ½ΠΎ ΡΠ°Π·ΡΠ°Π±ΠΎΡΠ°Π½Π½ΡΠ΅ ΡΡΡΠ΅ΠΆΠ΄Π΅Π½ΠΈΡ, Π΄Π°ΡΡ Π½Π°ΡΠ°Π»ΠΎ Π΄Π΅ΠΆΡΡΠ½ΠΎΠΌΡ ΠΎΠ±ΡΠ΅ΡΡΠ²Ρ. ΠΠΎΠΏΡΠΎΡ, ΠΊΠΎΡΠΎΡΡΠΉ Π±ΡΠ» ΡΠΆΠ΅ Π·Π½Π°ΡΠΈΡΠ΅Π»ΡΠ½ΠΎ ΠΎΠ±ΡΡΡΠ½Π΅Π½ Π±ΠΎΠ»Π΅Π΅ ΡΠ°Π½Π½ΠΈΠΌΠΈ Π°Π²ΡΠΎΡΠ°ΠΌΠΈ, ΡΡΠ΅Π±ΠΎΠ²Π°Π» ΠΈ ΠΎΠ±ΡΡΡΠ½Π΅Π½ΠΈΡ ΠΎΡΠ½ΠΎΠ²Π½ΠΎΠΉ Π°ΠΊΠΊΡΡΠ°ΡΠ½ΠΎΡΡΠΈ Π² ΠΎΡΠ΅Π½ΠΊΠ΅ ΠΈΠ½Π΄ΠΈΠ²ΠΈΠ΄ΡΠ°Π»ΡΠ½ΡΡ ΠΏΡΠ΅Π΄ΠΌΠ΅ΡΠΎΠ² ΠΏΠΎΡΡΠ΅Π±Π»Π΅Π½ΠΈΡ ΠΈ ΠΎΠ±ΡΡΡΠ½Π΅Π½ΠΈΡ «Π·Π°ΠΊΠΎΠ½ΠΎΠ²», ΠΊΠΎΡΠΎΡΡΠ΅ ΡΠ΅Π³ΡΠ»ΠΈΡΠΎΠ²Π°Π»ΠΈ ΡΠ°Π·Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Π²ΡΠ΅Π³ΠΎ «Π±ΠΎΠ³Π°ΡΡΡΠ²Π°» Π½Π°ΡΠΈΠΈ (ΠΊΠΎΡΠΎΡΡΠΉ Π‘ΠΌΠΈΡ Π²ΠΈΠ΄Π΅Π» ΠΊΠ°ΠΊ Π΅Π΅ Π΅ΠΆΠ΅Π³ΠΎΠ΄Π½ΠΎΠ΅ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄ΡΡΠ²ΠΎ ΡΠΎΠ²Π°ΡΠΎΠ² ΠΈ ΡΡΠ»ΡΠ³) ΡΡΠ΅Π΄ΠΈ ΡΡΠ΅Ρ Π±ΠΎΠ»ΡΡΠΈΡ ΠΊΠ»Π°ΡΡΠΎΠ² ΠΏΡΠ΅ΡΠ΅Π½Π΄Π΅Π½ΡΠ° — ΡΠ΅ΡΠ½ΠΎΡΠ°Π±ΠΎΡΠΈΡ , Π²Π»Π°Π΄Π΅Π»ΡΡΠ΅Π², ΠΈ ΠΈΠ·Π³ΠΎΡΠΎΠ²ΠΈΡΠ΅Π»Π΅ΠΉ.
ΠΡΠ° Π°ΠΊΠΊΡΡΠ°ΡΠ½ΠΎΡΡΡ, ΠΊΠ°ΠΊ ΠΎΠΆΠΈΠ΄Π°Π»ΡΡ Π±Ρ, Π±ΡΠ»Π° ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½Π° Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ΠΌ Π΄Π²ΡΡ Π°ΡΠΏΠ΅ΠΊΡΠΎΠ² ΡΠ΅Π»ΠΎΠ²Π΅ΡΠ΅ΡΠΊΠΎΠΉ ΠΏΡΠΈΡΠΎΠ΄Ρ, Π΅Π΅ ΠΎΡΠ²Π΅Ρ Π½Π° Π΅Π΅ ΡΡΡΠ°ΡΡΠΈ ΠΈ Π΅Π³ΠΎ Π²ΠΎΡΠΏΡΠΈΠΈΠΌΡΠΈΠ²ΠΎΡΡΡ, ΡΡΠΎΠ±Ρ ΡΠ°ΡΡΡΠ΄ΠΈΡΡ ΠΈ ΡΠΈΠΌΠΏΠ°ΡΠΈΡ. ΠΠΎ ΡΠΎΠ³Π΄Π° ΠΊΠ°ΠΊ Π’Π΅ΠΎΡΠΈΡ ΠΠΎΡΠ°Π»ΡΠ½ΡΡ Π§ΡΠ²ΡΡΠ² ΠΏΠΎΠ»ΠΎΠΆΠΈΠ»Π°ΡΡ Π³Π»Π°Π²Π½ΡΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ Π½Π° ΠΏΡΠΈΡΡΡΡΡΠ²ΠΈΠ΅ «Π²Π½ΡΡΡΠ΅Π½Π½Π΅Π³ΠΎ «Ρ» «, ΡΡΠΎΠ±Ρ ΠΎΠ±Π΅ΡΠΏΠ΅ΡΠΈΡΡ Π½Π΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΡΠ΅ ΠΎΠ³ΡΠ°Π½ΠΈΡΠ΅Π½ΠΈΡ ΠΊ ΡΠ°ΡΡΠ½ΠΎΠΌΡ Π΄Π΅ΠΉΡΡΠ²ΠΈΡ, Π² ΠΠΎΠ³Π°ΡΡΡΠ²Π΅ ΠΠ°ΡΠΈΠΉ, ΠΊΠ°ΠΆΠ΄ΡΠΉ Π½Π°Ρ ΠΎΠ΄ΠΈΡ ΡΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½Π½ΡΠΉ ΠΌΠ΅Ρ Π°Π½ΠΈΠ·ΠΌ, ΠΊΠΎΡΠΎΡΡΠΉ Π΄Π΅ΠΉΡΡΠ²ΡΠ΅Ρ, ΡΡΠΎΠ±Ρ ΡΡΠ΅Π³ΡΠ»ΠΈΡΠΎΠ²Π°ΡΡ ΠΏΠΎΠ΄ΡΡΠ²Π½ΡΠ΅ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΠΈ, Π²ΡΠΎΠΆΠ΄Π΅Π½Π½ΡΠ΅ ΡΠ»Π΅ΠΏΠΎΠΌΡ ΠΏΠΎΠ²ΠΈΠ½ΠΎΠ²Π΅Π½ΠΈΡ ΠΊ ΡΡΡΠ°ΡΡΡΠΌ ΠΎΠ΄Π½ΠΈΠΌ. ΠΡΠΎΡ Π·Π°ΡΠΈΡΠ½ΡΠΉ ΠΌΠ΅Ρ Π°Π½ΠΈΠ·ΠΌ — ΡΠΎΡΠ΅Π²Π½ΠΎΠ²Π°Π½ΠΈΠ΅, Π΄ΠΎΠ³ΠΎΠ²ΠΎΡΠ΅Π½Π½ΠΎΡΡΡ, Π² ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΠΈΠΈ Ρ ΠΊΠΎΡΠΎΡΠΎΠΉ ΡΡΡΠ°ΡΡΠ½ΠΎΠ΅ ΠΆΠ΅Π»Π°Π½ΠΈΠ΅ ΡΠ»ΡΡΡΠ΅Π½ΠΈΡ ΡΡΠ»ΠΎΠ²ΠΈΠ΅ — «ΠΆΠ΅Π»Π°Π½ΠΈΠ΅, ΠΊΠΎΡΠΎΡΠΎΠ΅ ΠΈΠ΄Π΅Ρ Ρ Π‘ΠΎΠ΅Π΄ΠΈΠ½Π΅Π½Π½ΡΠΌΠΈ Π¨ΡΠ°ΡΠ°ΠΌΠΈ ΠΎΡ ΠΌΠ°ΡΠΊΠΈ, ΠΈ Π½ΠΈΠΊΠΎΠ³Π΄Π° Π½Π΅ ΠΎΡΡΠ°Π²Π»ΡΠ΅Ρ Π‘ΠΎΠ΅Π΄ΠΈΠ½Π΅Π½Π½ΡΠ΅ Π¨ΡΠ°ΡΡ, ΠΏΠΎΠΊΠ° ΠΌΡ Π½Π΅ Π²Ρ ΠΎΠ΄ΠΈΠΌ Π² ΠΌΠΎΠ³ΠΈΠ»Ρ» — ΠΏΡΠ΅Π²ΡΠ°ΡΠ΅Π½ΠΎ Π² ΡΠΎΡΠΈΠ°Π»ΡΠ½ΠΎ Π²ΡΠ³ΠΎΠ΄Π½ΠΎΠ΅ Π°Π³Π΅Π½ΡΡΡΠ²ΠΎ, ΡΠΊΠ»Π°Π΄ΡΠ²Π°Ρ Π΄Π²ΠΈΠ³Π°ΡΠ΅Π»Ρ ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΡΠ΅Π»ΠΎΠ²Π΅ΠΊΠ° Π΄Π»Ρ ΡΠ°ΠΌΠΎΡΠ»ΡΡΡΠ΅Π½ΠΈΡ ΠΏΡΠΎΡΠΈΠ² ΡΡΠ΅Π³ΠΎ — Π»ΠΈΠ±ΠΎ.
ΠΠΌΠ΅Π½Π½ΠΎ Π² Π½Π΅ΠΏΡΠ΅Π΄Π½Π°ΠΌΠ΅ΡΠ΅Π½Π½ΠΎΠΌ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠ΅ ΡΡΠΎΠΉ ΠΊΠΎΠ½ΠΊΡΡΠ΅Π½ΡΠΎΡΠΏΠΎΡΠΎΠ±Π½ΠΎΠΉ Π±ΠΎΡΡΠ±Ρ Π·Π° ΡΠ°ΠΌΠΎΡΠ»ΡΡΡΠ΅Π½ΠΈΠ΅ Π½Π΅Π²ΠΈΠ΄ΠΈΠΌΠ°Ρ ΡΡΠΊΠ°, ΡΠ΅Π³ΡΠ»ΠΈΡΡΡΡΠ°Ρ ΡΠΊΠΎΠ½ΠΎΠΌΠΈΠΊΡ ΠΏΠΎΠΊΠ°Π·ΡΠ²Π°Π΅Ρ ΡΠ΅Π±Ρ, ΠΏΠΎΡΠΊΠΎΠ»ΡΠΊΡ Π‘ΠΌΠΈΡ ΠΎΠ±ΡΡΡΠ½ΡΠ΅Ρ, ΠΊΠ°ΠΊ Π²Π·Π°ΠΈΠΌΠ½ΡΠΉ ΡΠΎΠΏΠ΅ΡΠ½ΠΈΡΠ°ΡΡΠΈΠΉ Π·Π°Ρ Π»ΠΎΠΏΠ½ΡΠ» ΡΠ΅Π½Ρ ΠΏΡΠ΅Π΄ΠΌΠ΅ΡΠΎΠ² ΠΏΠΎΡΡΠ΅Π±Π»Π΅Π½ΠΈΡ ΠΊ ΠΈΡ Π΅ΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΡΠΌ ΡΡΠΎΠ²Π½ΡΠΌ, ΠΊΠΎΡΠΎΡΡΠ΅ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡ ΠΈΡ Π·Π°ΡΡΠ°ΡΠ°ΠΌ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄ΡΡΠ²Π°. ΠΡΠΎΠΌΠ΅ ΡΠΎΠ³ΠΎ, Π²ΡΠ·ΡΠ²Π°Ρ ΡΡΡΠ΄ ΠΈ ΠΊΠ°ΠΏΠΈΡΠ°Π» ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ°ΡΡΡΡ ΠΎΡ ΠΌΠ΅Π½ΡΡΠ΅ Π΄ΠΎ Π±ΠΎΠ»Π΅Π΅ Π²ΡΠ³ΠΎΠ΄Π½ΡΡ Π·Π°Π½ΡΡΠΈΠΉ ΠΈΠ»ΠΈ ΠΎΠ±Π»Π°ΡΡΠ΅ΠΉ, ΠΊΠΎΠ½ΠΊΡΡΠ΅Π½ΡΠΎΡΠΏΠΎΡΠΎΠ±Π½ΡΠΉ ΠΌΠ΅Ρ Π°Π½ΠΈΠ·ΠΌ ΠΏΠΎΡΡΠΎΡΠ½Π½ΠΎ Π²ΠΎΡΡΡΠ°Π½Π°Π²Π»ΠΈΠ²Π°Π΅Ρ ΡΠ΅Π½Ρ ΠΊ ΡΡΠΈΠΌ «Π΅ΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΡΠΌ» ΡΡΠΎΠ²Π½ΡΠΌ Π½Π΅ΡΠΌΠΎΡΡΡ Π½Π° ΠΊΠΎΡΠΎΡΠΊΠΎ-ΡΠΏΡΠ°Π²Π»ΡΠ΅ΠΌΡΠ΅ ΠΎΡΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΡ. ΠΠ°ΠΊΠΎΠ½Π΅Ρ, ΠΎΠ±ΡΡΡΠ½ΡΡ, ΡΡΠΎ Π·Π°ΡΠ°Π±ΠΎΡΠ½Π°Ρ ΠΏΠ»Π°ΡΠ° ΠΈ Π°ΡΠ΅Π½Π΄Π½ΡΠ΅ ΠΏΠ»Π°ΡΡ ΠΈ ΠΏΡΠΈΠ±ΡΠ»Ρ (ΡΠΎΡΡΠ°Π²Π½ΡΠ΅ ΡΠ°ΡΡΠΈ Π·Π°ΡΡΠ°Ρ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄ΡΡΠ²Π°) ΡΠ²Π»ΡΡΡΡΡ ΡΠ°ΠΌΠΎΡΡΠΎΡΡΠ΅Π»ΡΠ½ΠΎ ΠΏΠΎΠ΄ΡΠΈΠ½Π΅Π½Π½ΡΠΌΠΈ ΡΡΠΈΠΌ ΡΠ΅Π½Π°ΠΌ Π½Π° Π΅ΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΡΠΉ, Π½ΠΎ ΡΠ°ΠΊΠΆΠ΅ ΠΈ ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΈ ΠΎΡΠ½ΠΎΠ²Π½ΡΡ Π°ΠΊΠΊΡΡΠ°ΡΠ½ΠΎΡΡΡ Π² ΡΠ°ΡΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠΈ Π΄ΠΎΡ ΠΎΠ΄Π° Π½Π΅ΠΏΠΎΡΡΠ΅Π΄ΡΡΠ²Π΅Π½Π½ΠΎ ΡΡΠ΅Π΄ΠΈ ΡΠ°Π±ΠΎΡΠΈΡ , ΠΊΠΎΠΌΠΏΠ΅Π½ΡΠ°ΡΠΈΡ ΠΊΠΎΡΠΎΡΡΡ Π±ΡΠ»Π° ΠΈΡ Π·Π°ΡΠ°Π±ΠΎΡΠ½ΠΎΠΉ ΠΏΠ»Π°ΡΠΎΠΉ; Π²Π»Π°Π΄Π΅Π»ΡΡΡ, Π΄ΠΎΡ ΠΎΠ΄ ΠΊΠΎΡΠΎΡΡΡ Π±ΡΠ» ΠΈΡ Π°ΡΠ΅Π½Π΄Π½ΡΠΌΠΈ ΠΏΠ»Π°ΡΠ°ΠΌΠΈ; ΠΈ ΠΈΠ·Π³ΠΎΡΠΎΠ²ΠΈΡΠ΅Π»ΠΈ, Π½Π°Π³ΡΠ°Π΄Π° ΠΊΠΎΡΠΎΡΡΡ Π±ΡΠ»Π° ΠΈΡ ΠΏΡΠΈΠ±ΡΠ»ΡΡ.
ΠΠΊΠΎΠ½ΠΎΠΌΠΈΡΠ΅ΡΠΊΠΈΠΉ ΡΠΎΡΡ
ΠΠ½Π°Π»ΠΈΠ· Π‘ΠΌΠΈΡΠ° ΡΡΠ½ΠΊΠ° ΠΊΠ°ΠΊ ΡΠ°ΠΌΠΎ — ΠΈΡΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ ΠΌΠ΅Ρ Π°Π½ΠΈΠ·ΠΌΠ° Π±ΡΠ» Π²Π½ΡΡΠΈΡΠ΅Π»Π΅Π½. ΠΠΎ Π΅Π³ΠΎ ΡΠ΅Π»Ρ Π±ΡΠ»Π° Π±ΠΎΠ»Π΅Π΅ ΡΠ΅ΡΡΠΎΠ»ΡΠ±ΠΈΠ²Π° ΡΠ΅ΠΌ Π΄Π΅ΠΌΠΎΠ½ΡΡΡΠΈΡΠΎΠ²Π°ΡΡ ΡΠ°ΠΌΠΎΡΠ΅Π³ΡΠ»ΠΈΡΡΡΡΠΈΠ΅ΡΡ ΡΠ²ΠΎΠΉΡΡΠ²Π° ΡΠΈΡΡΠ΅ΠΌΡ. Π‘ΠΊΠΎΡΠ΅Π΅ ΡΡΠΎ Π΄ΠΎΠ»ΠΆΠ½ΠΎ Π±ΡΠ»ΠΎ ΠΏΠΎΠΊΠ°Π·Π°ΡΡ, ΡΡΠΎ, ΠΏΠΎΠ΄ ΡΡΠΈΠΌΡΠ»ΠΎΠΌ ΠΆΠ°Π΄Π½ΠΎΠ³ΠΎ Π΄Π²ΠΈΠ³Π°ΡΠ΅Π»Ρ, Π΅ΠΆΠ΅Π³ΠΎΠ΄Π½ΡΠΉ ΠΏΠΎΡΠΎΠΊ Π½Π°ΡΠΈΠΎΠ½Π°Π»ΡΠ½ΠΎΠ³ΠΎ Π±ΠΎΠ³Π°ΡΡΡΠ²Π° ΠΌΠΎΠ³ Π±ΡΡΡ Π·Π°ΠΌΠ΅ΡΠ΅Π½ ΡΡΡΠΎΠΉΡΠΈΠ²ΠΎ, ΡΡΠΎΠ±Ρ ΡΠ°ΡΡΠΈ.
ΠΠ±ΡΡΡΠ½Π΅Π½ΠΈΠ΅ Π‘ΠΌΠΈΡΠ° ΡΠΊΠΎΠ½ΠΎΠΌΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΡΠΎΡΡΠ°, Ρ ΠΎΡΡ Π½Π΅ Π°ΠΊΠΊΡΡΠ°ΡΠ½ΠΎ ΡΠΎΠ±ΡΠ°Π½Π½ΡΠΉ Π² ΠΎΠ΄Π½ΠΎΠΉ ΡΠ°ΡΡΠΈ ΠΠΎΠ³Π°ΡΡΡΠ²Π° ΠΠ°ΡΠΈΠΉ, ΡΠ²Π»ΡΠ΅ΡΡΡ Π²Π΅ΡΡΠΌΠ° ΡΡΠ½ΡΠΌ. Π‘ΡΠ΅Ρ ΡΡΠΎΠ³ΠΎ Π½Π°Ρ ΠΎΠ΄ΠΈΡΡΡ Π² Π΅Π³ΠΎ Π°ΠΊΡΠ΅Π½ΡΠ΅ Π½Π° ΡΠ°Π·Π΄Π΅Π»Π΅Π½ΠΈΠΈ ΡΡΡΠ΄Π° (Π½Π΅ΠΏΠΎΡΡΠ΅Π΄ΡΡΠ²Π΅Π½Π½ΠΎ ΠΏΡΠΎΠ΄ΡΠΊΡ «Π΅ΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎΠΉ» ΡΠΊΠ»ΠΎΠ½Π½ΠΎΡΡΠΈ ΡΠΎΡΠ³ΠΎΠ²Π°ΡΡ) ΠΊΠ°ΠΊ ΠΈΡΡΠΎΡΠ½ΠΈΠΊ Π²ΠΌΠ΅ΡΡΠΈΠΌΠΎΡΡΠΈ ΠΎΠ±ΡΠ΅ΡΡΠ²Π° ΡΠ²Π΅Π»ΠΈΡΠΈΡΡ Π΅Π΅ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΡΠ΅Π»ΡΠ½ΠΎΡΡΡ. ΠΠΎΠ³Π°ΡΡΡΠ²ΠΎ ΠΠ°ΡΠΈΠΉ ΠΎΡΠΊΡΡΠ²Π°Π΅ΡΡΡ ΠΈΠ·Π²Π΅ΡΡΠ½ΡΠΌ ΠΏΡΠΎΡ ΠΎΠ΄ΠΎΠΌ, ΠΎΠΏΠΈΡΡΠ²Π°ΡΡΠΈΠΌ ΡΠ°Π±ΡΠΈΠΊΡ Π±ΡΠ»Π°Π²ΠΊΠΈ, Π² ΠΊΠΎΡΠΎΡΠΎΠΉ 10 ΡΠ΅Π»ΠΎΠ²Π΅ΠΊ, ΡΠΏΠ΅ΡΠΈΠ°Π»ΠΈΠ·ΠΈΡΡΡΡΡ Π½Π° ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ Π·Π°Π΄Π°ΡΠ°Ρ , ΠΎΠΊΠ°Π·ΡΠ²Π°ΡΡΡΡ 48 000 Π±ΡΠ»Π°Π²ΠΎΠΊ Π² Π΄Π΅Π½Ρ, ΠΏΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Ρ Π½Π΅ΠΌΠ½ΠΎΠ³ΠΈΠΌΠΈ, Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ ΡΠΎΠ»ΡΠΊΠΎ 1, ΠΊΠΎΡΠΎΡΡΠΉ ΠΊΠ°ΠΆΠ΄ΡΠΉ, Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ, ΠΏΡΠΎΠΈΠ·Π²Π΅Π» ΠΎΠ΄ΠΈΠ½. ΠΠΎ ΡΡΠΎ ΡΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎΠ΅ ΡΠ°Π·Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΡΡΡΠ΄Π° Π½Π΅ ΠΈΠΌΠ΅Π΅Ρ ΠΌΠ΅ΡΡΠΎ Π»ΠΈΡΡΠ½Π½ΠΎΠ΅ ΠΏΠΎΠΌΠΎΡΠΈ. ΠΡΠΎ ΠΌΠΎΠΆΠ΅Ρ ΠΏΡΠΎΠΈΠ·ΠΎΠΉΡΠΈ ΡΠΎΠ»ΡΠΊΠΎ ΠΏΠΎΡΠ»Π΅ ΠΏΡΠ΅Π΄ΡΠ΅ΡΡΠ²ΡΡΡΠ΅Π³ΠΎ Π½Π°ΠΊΠΎΠΏΠ»Π΅Π½ΠΈΡ ΠΊΠ°ΠΏΠΈΡΠ°Π»Π° (ΠΈΠ»ΠΈ Π·Π°ΠΏΠ°Ρ, ΠΏΠΎΡΠΊΠΎΠ»ΡΠΊΡ Π‘ΠΌΠΈΡ Π½Π°Π·ΡΠ²Π°Π΅Ρ ΡΡΠΎ), ΠΊΠΎΡΠΎΡΡΠΉ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΠ΅ΡΡΡ, ΡΡΠΎΠ±Ρ Π·Π°ΠΏΠ»Π°ΡΠΈΡΡ Π΄ΠΎΠΏΠΎΠ»Π½ΠΈΡΠ΅Π»ΡΠ½ΡΠΌ ΡΠ°Π±ΠΎΡΠΈΠΌ ΠΈ ΠΊΡΠΏΠΈΡΡ ΠΈΠ½ΡΡΡΡΠΌΠ΅Π½ΡΡ ΠΈ ΠΌΠ°ΡΠΈΠ½Ρ.
ΠΠ²ΠΈΠ³Π°ΡΠ΅Π»Ρ Π΄Π»Ρ Π½Π°ΠΊΠΎΠΏΠ»Π΅Π½ΠΈΡ, ΠΎΠ΄Π½Π°ΠΊΠΎ, ΠΏΡΠΈΠ½ΠΎΡΠΈΡ ΠΏΡΠΎΠ±Π»Π΅ΠΌΡ. ΠΠ·Π³ΠΎΡΠΎΠ²ΠΈΡΠ΅Π»Ρ, ΠΊΠΎΡΠΎΡΡΠΉ Π½Π°ΠΊΠ°ΠΏΠ»ΠΈΠ²Π°Π΅Ρ Π·Π°ΠΏΠ°Ρ, Π½ΡΠΆΠ΄Π°Π΅ΡΡΡ Π² Π±ΠΎΠ»ΡΡΠ΅ΠΌ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²Π΅ ΡΠ΅ΡΠ½ΠΎΡΠ°Π±ΠΎΡΠΈΡ (ΡΠ°ΠΊ ΠΊΠ°ΠΊ ΡΠ°ΡΠΈΠΎΠ½Π°Π»ΠΈΠ·Π°ΡΠΎΡΡΠΊΠ°Ρ ΡΠ΅Ρ Π½ΠΎΠ»ΠΎΠ³ΠΈΡ Π½Π΅ ΠΈΠΌΠ΅Π΅Ρ Π½ΠΈΠΊΠ°ΠΊΠΎΠ³ΠΎ ΠΌΠ΅ΡΡΠ° Π² ΡΡ Π΅ΠΌΠ΅ Π‘ΠΌΠΈΡΠ°), ΠΈ Π² ΠΏΠΎΠΏΡΡΠΊΠ΅ Π½Π°Π½ΠΈΠΌΠ°ΡΡ ΠΈΡ ΠΎΠ½ ΠΏΡΠ΅Π΄Π»Π°Π³Π°Π΅Ρ ΠΈΡ Π·Π°ΡΠ°Π±ΠΎΡΠ½ΡΡ ΠΏΠ»Π°ΡΡ Π²ΡΡΠ΅ ΠΈΡ «Π΅ΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎΠΉ» ΡΠ΅Π½Ρ. Π‘Π»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ Π΅Π³ΠΎ ΠΏΡΠΈΠ±ΡΠ»Ρ Π½Π°ΡΠΈΠ½Π°Π΅Ρ ΠΏΠ°Π΄Π°ΡΡ, ΠΈ ΠΏΡΠΎΡΠ΅ΡΡ Π½Π°ΠΊΠΎΠΏΠ»Π΅Π½ΠΈΡ ΡΠΈΡΠΊΡΠ΅Ρ ΠΏΡΠ΅ΠΊΡΠ°ΡΠΈΡΡΡΡ. ΠΠΎ ΡΠ΅ΠΏΠ΅ΡΡ ΡΠ°ΠΌ Π²Ρ ΠΎΠ΄ΠΈΡ Π² ΠΈΠ·ΠΎΠ±ΡΠ΅ΡΠ°ΡΠ΅Π»ΡΠ½ΡΠΉ ΠΌΠ΅Ρ Π°Π½ΠΈΠ·ΠΌ ΡΡΠΎΠ±Ρ ΠΏΡΠΎΠ΄ΠΎΠ»ΠΆΠΈΡΡ ΠΏΡΠΎΠ³ΡΠ΅ΡΡ. Π ΠΏΡΠ°ΠΊΡΠΈΠΊΠ΅ ΠΏΠΎΡΡΠ΅ΠΏΠ΅Π½Π½ΠΎΠ³ΠΎ ΠΏΠΎΠ²ΡΡΠ΅Π½ΠΈΡ ΡΠ΅Π½Ρ ΠΏΠΎΠΊΡΠΏΠ°ΡΠ΅Π»Ρ ΡΠ΅Π½Ρ ΡΡΡΠ΄Π°, ΠΈΠ·Π³ΠΎΡΠΎΠ²ΠΈΡΠ΅Π»Ρ Π½Π΅ΠΎΡΡΠΎΡΠΎΠΆΠ½ΠΎ ΡΡΡΠ°Π½Π°Π²Π»ΠΈΠ²Π°Π΅Ρ Π² Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΠΏΡΠΎΡΠ΅ΡΡ, ΠΊΠΎΡΠΎΡΡΠΉ ΡΠ²Π΅Π»ΠΈΡΠΈΠ²Π°Π΅Ρ ΠΏΠΎΡΡΠ°Π²ΠΊΡ ΡΡΡΠ΄Π°, Π΄Π»Ρ «ΡΡΠ΅Π±ΠΎΠ²Π°Π½ΠΈΡ Π½Π° ΠΌΡΠΆΡΠΈΠ½, ΠΊΠ°ΠΊ ΡΡΠΎΡ Π΄Π»Ρ Π»ΡΠ±ΠΎΠ³ΠΎ Π΄ΡΡΠ³ΠΎΠ³ΠΎ ΡΠΎΠ²Π°ΡΠ°, ΠΎΠ±ΡΠ·Π°ΡΠ΅Π»ΡΠ½ΠΎ ΡΠ΅Π³ΡΠ»ΠΈΡΡΠ΅Ρ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄ΡΡΠ²ΠΎ ΠΌΡΠΆΡΠΈΠ½.» ΠΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Π½ΠΎ, Π‘ΠΌΠΈΡ ΠΈΠΌΠ΅Π» Π² Π²ΠΈΠ΄Ρ ΡΡΡΠ΅ΠΊΡ Π±ΠΎΠ»Π΅Π΅ Π²ΡΡΠΎΠΊΠΎΠΉ Π·Π°ΡΠ°Π±ΠΎΡΠ½ΠΎΠΉ ΠΏΠ»Π°ΡΡ Π² ΡΠΌΠ΅Π½ΡΡΠ°ΡΡΠ΅ΠΉΡΡ Π΄Π΅ΡΡΠΊΠΎΠΉ ΡΠΌΠ΅ΡΡΠ½ΠΎΡΡΠΈ. ΠΠΎΠ΄ Π²Π»ΠΈΡΠ½ΠΈΠ΅ΠΌ Π±ΠΎΠ»ΡΡΠ΅ΠΉ ΠΎΠ±Π΅ΡΠΏΠ΅ΡΠ΅Π½Π½ΠΎΡΡΠΈ ΡΠ°Π±ΠΎΡΠ΅ΠΉ ΡΠΈΠ»ΠΎΠΉ, ΡΠΌΠ΅Π½ΡΡΠ΅Π½ΠΎ ΠΏΠΎΠ²ΡΡΠ΅Π½ΠΈΠ΅ Π·Π°ΡΠ°Π±ΠΎΡΠ½ΠΎΠΉ ΠΏΠ»Π°ΡΡ, ΠΈ ΠΏΡΠΈΠ±ΡΠ»Ρ ΠΏΠΎΠ΄Π΄Π΅ΡΠΆΠ°Π½Π°; Π½ΠΎΠ²Π°Ρ ΠΏΠΎΡΡΠ°Π²ΠΊΠ° ΡΠ΅ΡΠ½ΠΎΡΠ°Π±ΠΎΡΠΈΡ ΠΏΡΠ΅Π΄Π»Π°Π³Π°Π΅Ρ ΠΏΡΠΎΠ΄ΠΎΠ»ΠΆΠ°ΡΡΡΡΡΡ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΡ ΠΈΠ·Π³ΠΎΡΠΎΠ²ΠΈΡΠ΅Π»Ρ, ΡΡΠΎΠ±Ρ Π²Π²Π΅ΡΡΠΈ Π΄Π°Π»ΡΠ½Π΅ΠΉΡΠ΅Π΅ ΡΠ°Π·Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΡΡΡΠ΄Π° ΠΈ ΡΠ°ΠΊΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ Π΄ΠΎΠ±Π°Π²ΠΈΡΡ ΠΊ ΡΠΎΡΡΡ ΡΠΈΡΡΠ΅ΠΌΡ.
ΠΠ΄Π΅ΡΡ ΡΠΎΠ³Π΄Π° Π±ΡΠ»Π° «ΠΌΠ°ΡΠΈΠ½ΠΎΠΉ» Π΄Π»Ρ ΡΠΎΡΡΠ° — ΠΌΠ°ΡΠΈΠ½Ρ, ΠΊΠΎΡΠΎΡΠ°Ρ ΡΠ°Π±ΠΎΡΠ°Π»Π° ΡΠΎ Π²ΡΠ΅ΠΉ Π½Π°Π΄Π΅ΠΆΠ½ΠΎΡΡΡΡ Π½ΡΡΡΠΎΠ½ΠΎΠ²ΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΡ, Ρ ΠΊΠΎΡΠΎΡΠΎΠΉ Π‘ΠΌΠΈΡ Π±ΡΠ» Π²Π΅ΡΡΠΌΠ° Π·Π½Π°ΠΊΠΎΠΌ. Π ΠΎΡΠ»ΠΈΡΠΈΠ΅ ΠΎΡ Π½ΡΡΡΠΎΠ½ΠΎΠ²ΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΡ, ΠΎΠ΄Π½Π°ΠΊΠΎ, ΠΌΠ°ΡΠΈΠ½Π° ΡΠΎΡΡΠ° Π‘ΠΌΠΈΡΠ° Π½Π΅ Π·Π°Π²ΠΈΡΠ΅Π»Π° Π΄Π»Ρ Π΅Π΅ ΠΎΠΏΠ΅ΡΠ°ΡΠΈΠΈ ΠΎΡ Π·Π°ΠΊΠΎΠ½ΠΎΠ² ΠΏΡΠΈΡΠΎΠ΄Ρ ΠΎΠ΄Π½ΠΎΠΉ. Π§Π΅Π»ΠΎΠ²Π΅ΡΠ΅ΡΠΊΠ°Ρ ΠΏΡΠΈΡΠΎΠ΄Π° Π²Π΅Π»Π° ΡΡΠΎ, ΠΈ ΡΠ΅Π»ΠΎΠ²Π΅ΡΠ΅ΡΠΊΠ°Ρ ΠΏΡΠΈΡΠΎΠ΄Π° Π±ΡΠ»Π° ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠΎΠΌ, Π° Π½Π΅ ΠΏΡΠΎΡΡΠΎΠΉ ΡΠΈΠ»ΠΎΠΉ. Π’Π°ΠΊΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ, Π±ΠΎΠ³Π°ΡΡΡΠ²ΠΎ Π½Π°ΡΠΈΠΉ ΡΠΎΡΠ»ΠΎ Π±Ρ, ΡΠΎΠ»ΡΠΊΠΎ Π΅ΡΠ»ΠΈ Π»ΡΠ΄ΠΈ, ΡΠ΅ΡΠ΅Π· ΠΈΡ ΠΏΡΠ°Π²ΠΈΡΠ΅Π»ΡΡΡΠ²Π°, Π½Π΅ Π·Π°ΠΏΡΠ΅ΡΠ°Π»ΠΈ ΡΡΠΎΡ ΡΠΎΡΡ, ΡΠ³ΠΎΠΆΠ΄Π°Ρ ΠΏΡΠΎΡΡΠ±Π°ΠΌ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ ΡΠΏΠ΅ΡΠΈΠ°Π»ΡΠ½ΠΎΠΉ ΠΏΡΠΈΠ²ΠΈΠ»Π΅Π³ΠΈΠΈ, ΠΊΠΎΡΠΎΡΠ°Ρ Π±ΡΠ΄Π΅Ρ ΠΏΡΠ΅ΠΏΡΡΡΡΠ²ΠΎΠ²Π°ΡΡ ΠΊΠΎΠ½ΠΊΡΡΠ΅Π½ΡΠΎΡΠΏΠΎΡΠΎΠ±Π½ΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΠ΅ ΠΏΡΠΎΡΠ²Π»ΡΡΡ Π½Π°ΡΠ°ΡΡ ΡΡΡΠ΅ΠΊΡ. Π‘Π»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ, Π±ΠΎΠ»ΡΡΠ°Ρ ΡΠ°ΡΡΡ ΠΠΎΠ³Π°ΡΡΡΠ²Π° ΠΠ°ΡΠΈΠΉ, ΠΎΡΠΎΠ±Π΅Π½Π½ΠΎ ΠΠ½ΠΈΠ³Π° IV, ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΏΠΎΠ»Π΅ΠΌΠΈΡΠ΅ΡΠΊΠΈΠΌ ΠΏΡΠΎΡΠΈΠ² ΠΎΠ³ΡΠ°Π½ΠΈΡΠΈΡΠ΅Π»ΡΠ½ΡΡ ΠΌΠ΅Ρ «ΠΊΠΎΠΌΠΌΠ΅ΡΡΠ΅ΡΠΊΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΡ», ΠΊΠΎΡΠΎΡΠ°Ρ ΠΎΠ΄ΠΎΠ±ΡΠΈΠ»Π° ΠΌΠΎΠ½ΠΎΠΏΠΎΠ»ΠΈΠΈ Π΄ΠΎΠΌΠ° ΠΈ Π·Π° Π³ΡΠ°Π½ΠΈΡΠ΅ΠΉ. Π‘ΠΈΡΡΠ΅ΠΌΠ° Π‘ΠΌΠΈΡΠ° «Π΅ΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎΠΉ ΡΠ²ΠΎΠ±ΠΎΠ΄Ρ», ΠΎΠ½ Π΄Π΅Π»Π°Π΅Ρ Π²ΡΠ΅ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΠ΅ ΡΠΊΠ°Π·Π°ΡΡ, ΡΠΎΠ³Π»Π°ΡΠΈΡ Ρ Π»ΡΡΡΠΈΠΌΠΈ ΠΈΠ½ΡΠ΅ΡΠ΅ΡΠ°ΠΌΠΈ ΠΏΠΎΡΡΠΈ Π½Π΅ Π±ΡΠ΄ΡΡ ΠΎΡΡΡΠ΅ΡΡΠ²Π»Π΅Π½Ρ, Π΅ΡΠ»ΠΈ ΠΏΡΠ°Π²ΠΈΡΠ΅Π»ΡΡΡΠ²ΠΎ Π±ΡΠ΄Π΅Ρ ΠΏΠΎΡΡΡΠ΅Π½ΠΎ ΠΊ, ΠΈΠ»ΠΈ ΡΡΡΠ΅Ρ, «ΡΡΠ΅Π΄Π½ΡΡ ΠΆΠ°Π΄Π½ΠΎΡΡΡ, ΠΊΡΠΎ Π½ΠΈ Π½Π΅ ΡΠ²Π»ΡΠ΅ΡΡΡ, Π½ΠΈ Π΄ΠΎΠ»ΠΆΠ΅Π½ Π±ΡΡΡ, ΠΏΡΠ°Π²ΠΈΡΠ΅Π»ΠΈ ΡΠ΅Π»ΠΎΠ²Π΅ΡΠ΅ΡΡΠ²Π°.»
ΠΠΎΠ³Π°ΡΡΡΠ²ΠΎ ΠΠ°ΡΠΈΠΉ ΠΏΠΎΡΡΠΎΠΌΡ Π΄Π°Π»Π΅ΠΊΠΎ ΠΎΡ ΠΈΠ΄Π΅ΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΡΡΠ°ΠΊΡΠ°ΡΠ°, ΠΊΠΎΡΠΎΡΡΠΌ ΡΡΠΎ ΡΠ°ΡΡΠΎ Π΄ΠΎΠ»ΠΆΠ½ΠΎ Π±ΡΡΡ. Π₯ΠΎΡΡ Π‘ΠΌΠΈΡ ΠΏΡΠΎΠΏΠΎΠ²Π΅Π΄ΠΎΠ²Π°Π» Π½Π΅Π²ΠΌΠ΅ΡΠ°ΡΠ΅Π»ΡΡΡΠ²ΠΎ (Ρ Π²Π°ΠΆΠ½ΡΠΌΠΈ ΠΈΡΠΊΠ»ΡΡΠ΅Π½ΠΈΡΠΌΠΈ), Π΅Π³ΠΎ Π°ΡΠ³ΡΠΌΠ΅Π½Ρ Π±ΡΠ» Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ ΡΠ°ΠΊ ΠΏΡΠΎΡΠΈΠ² ΠΌΠΎΠ½ΠΎΠΏΠΎΠ»ΠΈΠΈ ΠΊΠ°ΠΊ ΠΏΡΠ°Π²ΠΈΡΠ΅Π»ΡΡΡΠ²ΠΎ; ΠΈ Ρ ΠΎΡΡ ΠΎΠ½ ΡΠ°ΡΡ Π²Π°Π»ΠΈΠ²Π°Π» ΡΠΎΡΠΈΠ°Π»ΡΠ½ΡΠ΅ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΡ ΠΆΠ°Π΄Π½ΠΎΠ³ΠΎ ΠΏΡΠΎΡΠ΅ΡΡΠ°, ΠΎΠ½ ΠΏΠΎΡΡΠΈ Π½Π΅ΠΈΠ·ΠΌΠ΅Π½Π½ΠΎ ΡΠ°ΡΡΠΌΠ°ΡΡΠΈΠ²Π°Π» ΠΌΠ°Π½Π΅ΡΡ ΠΈ ΠΌΠ°Π½Π΅Π²ΡΡ Π±ΠΈΠ·Π½Π΅ΡΠΌΠ΅Π½ΠΎΠ² Ρ ΠΏΡΠ΅Π·ΡΠ΅Π½ΠΈΠ΅ΠΌ. Π ΠΏΡΠΈ ΡΡΠΎΠΌ ΠΎΠ½ Π½Π΅ Π²ΠΈΠ΄Π΅Π» ΠΊΠΎΠΌΠΌΠ΅ΡΡΠ΅ΡΠΊΡΡ ΡΠΈΡΡΠ΅ΠΌΡ Π½Π΅ΠΏΠΎΡΡΠ΅Π΄ΡΡΠ²Π΅Π½Π½ΠΎ ΠΊΠ°ΠΊ ΡΠΎΠ²Π΅ΡΡΠ΅Π½Π½ΠΎ Π·Π°ΠΌΠ΅ΡΠ°ΡΠ΅Π»ΡΠ½ΡΡ. ΠΠ½ Π½Π°ΠΏΠΈΡΠ°Π» Ρ Π΄Π΅ΠΊΡΠ΅ΠΌΠ΅Π½ΡΠΎΠΌ ΠΎΠ± ΠΈΠ½ΡΠ΅Π»Π»Π΅ΠΊΡΡΠ°Π»ΡΠ½ΠΎΠΉ Π΄Π΅Π³ΡΠ°Π΄Π°ΡΠΈΠΈ ΡΠ°Π±ΠΎΡΠ΅Π³ΠΎ Π² ΠΎΠ±ΡΠ΅ΡΡΠ²Π΅, Π² ΠΊΠΎΡΠΎΡΠΎΠΌ ΡΠ°Π·Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΡΡΡΠ΄Π° ΠΏΠ΅ΡΠ΅ΡΠ»ΠΎ ΠΎΡΠ΅Π½Ρ Π΄Π°Π»Π΅ΠΊΠΎ; Π΄Π»Ρ Π² ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΈ Ρ Π°Π²Π°ΡΠΈΠΉΠ½ΡΠΌΠΈ ΡΠ²Π΅Π΄Π΅Π½ΠΈΡΠΌΠΈ ΡΠ΅ΡΠΌΠ΅ΡΠ°, ΡΠΏΠ΅ΡΠΈΠ°Π»ΠΈΠ·ΠΈΡΠΎΠ²Π°Π½Π½ΡΠΉ ΡΠ°Π±ΠΎΡΠΈΠΉ «Π²ΠΎΠΎΠ±ΡΠ΅ ΡΡΠ°Π½ΠΎΠ²ΠΈΡΡΡ ΡΡΠΎΠ»Ρ ΠΆΠ΅ Π³Π»ΡΠΏΡΠΌ ΠΈ Π½Π΅ΠΎΡΠ²Π΅Π΄ΠΎΠΌΠ»Π΅Π½Π½ΡΠΌ, ΠΊΠ°ΠΊ ΡΡΠΎ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ Π΄Π»Ρ ΡΠ΅Π»ΠΎΠ²Π΅ΠΊΠ° ΡΡΠ°ΡΡ».
ΠΠΎ Π²ΡΠ΅ ΡΡΠΎ, ΠΈΠ·Π²Π΅ΡΡΠ½ΠΎ, ΠΊΠΎΡΠΎΡΡΠΉ Π‘ΠΌΠΈΡ ΠΏΠΈΡΠ°Π» Π² Π²ΠΎΠ·ΡΠ°ΡΡΠ΅ Π΄ΠΎΠΈΠ΄ΡΡΡΡΠΈΠ°Π»ΡΠ½ΠΎΠ³ΠΎ ΠΊΠ°ΠΏΠΈΡΠ°Π»ΠΈΠ·ΠΌΠ°. ΠΠ½, ΠΊΠ°ΠΆΠ΅ΡΡΡ, Π½Π΅ ΠΈΠΌΠ΅Π΅Ρ Π½ΠΈΠΊΠ°ΠΊΠΎΠ³ΠΎ ΡΠ΅Π°Π»ΡΠ½ΠΎΠ³ΠΎ ΠΏΡΠ΅Π΄ΡΡΠ²ΡΡΠ²ΠΈΡ ΡΠΎΠ±ΠΈΡΠ°ΡΡΠ΅ΠΉΡΡ ΠΠ½Π΄ΡΡΡΡΠΈΠ°Π»ΡΠ½ΠΎΠΉ Π Π΅Π²ΠΎΠ»ΡΡΠΈΠΈ, ΠΏΡΠ΅Π΄Π²Π΅ΡΡΠ½ΠΈΠΊΠΈ ΠΊΠΎΡΠΎΡΠΎΠΉ Π±ΡΠ»ΠΈ Π²ΠΈΠ΄ΠΈΠΌΡ Π² Π±ΠΎΠ»ΡΡΠΎΠΌ ΠΌΠ΅ΡΠ°Π»Π»ΡΡΠ³ΠΈΡΠ΅ΡΠΊΠΎΠΌ Π·Π°Π²ΠΎΠ΄Π΅ ΡΠΎΠ»ΡΠΊΠΎ Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΎ ΠΌΠΈΠ»Ρ ΠΈΠ· ΠΠ΄ΠΈΠ½Π±ΡΡΠ³Π°. ΠΠ½ Π½Π΅ ΠΈΠΌΠ΅Π» Π½ΠΈΡΠ΅Π³ΠΎ, ΡΡΠΎΠ±Ρ ΡΠΊΠ°Π·Π°ΡΡ ΠΎ ΠΊΡΡΠΏΠ½ΠΎΠΌΠ°ΡΡΡΠ°Π±Π½ΠΎΠΌ ΠΈΠ½Π΄ΡΡΡΡΠΈΠ°Π»ΡΠ½ΠΎΠΌ ΠΏΡΠ΅Π΄ΠΏΡΠΈΡΡΠΈΠΈ, ΠΈ Π½Π΅ΠΌΠ½ΠΎΠ³ΠΎ Π·Π°ΠΌΠ΅ΡΠ°Π½ΠΈΠΉ Π² ΠΠΎΠ³Π°ΡΡΡΠ²Π΅ ΠΠ°ΡΠΈΠΉ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ Π±ΡΠ΄ΡΡΠ΅Π³ΠΎ Π°ΠΊΡΠΈΠΎΠ½Π΅ΡΠ½ΡΡ ΠΎΠ±ΡΠ΅ΡΡΠ² (ΠΊΠΎΡΠΏΠΎΡΠ°ΡΠΈΠΈ) ΠΎΡΡΠΆΠ΄Π°ΡΡ. ΠΠ°ΠΊΠΎΠ½Π΅Ρ, Π½ΡΠΆΠ½ΠΎ ΠΏΡΠΈΠ½ΡΡΡ Π²ΠΎ Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅, ΡΡΠΎ, Π΅ΡΠ»ΠΈ ΡΠΎΡΡ — Π±ΠΎΠ»ΡΡΠ°Ρ ΡΠ΅ΠΌΠ° ΠΠΎΠ³Π°ΡΡΡΠ²Π° ΠΠ°ΡΠΈΠΉ, ΡΡΠΎ Π½Π΅ Π±Π΅ΡΠΊΠΎΠ½Π΅ΡΠ½ΡΠΉ ΡΠΎΡΡ. ΠΠ΄Π΅ΡΡ ΠΈ ΡΠ°ΠΌ Π² ΡΡΠ°ΠΊΡΠ°ΡΠ΅ Π±ΡΠΎΡΠ°ΡΡΡΡ Π²Π·Π³Π»ΡΠ΄ ΠΏΠΎ ΡΠ²Π΅ΡΡΠΊΠΈ ΡΠΌΠ΅Π½ΡΡΠ°ΡΡΠ΅ΠΉΡΡ Π½ΠΎΡΠΌΠ΅ ΠΏΡΠΈΠ±ΡΠ»ΠΈ; ΠΈ Π‘ΠΌΠΈΡ ΡΠΏΠΎΠΌΠΈΠ½Π°Π΅Ρ ΡΠ°ΠΊΠΆΠ΅ ΠΏΠ΅ΡΡΠΏΠ΅ΠΊΡΠΈΠ²Ρ, ΡΡΠΎ, ΠΊΠΎΠ³Π΄Π° ΡΠΈΡΡΠ΅ΠΌΠ° Π² ΠΊΠΎΠ½Π΅ΡΠ½ΠΎΠΌ ΡΡΠ΅ΡΠ΅ Π½Π°ΠΊΠ°ΠΏΠ»ΠΈΠ²Π°Π΅Ρ Π΅Π΅ «ΠΏΠΎΠ»Π½ΠΎΠ΅ Π΄ΠΎΠΏΠΎΠ»Π½Π΅Π½ΠΈΠ΅ Π±ΠΎΠ³Π°ΡΡΡΠ²Π°» — Π²ΡΠ΅ ΡΠ°Π±ΡΠΈΠΊΠΈ Π±ΡΠ»Π°Π²ΠΊΠΈ, Π΅ΡΠ»ΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΡΠ°ΠΊ Π²ΡΡΠ°Π·ΠΈΡΡΡΡ, ΡΡΡ ΠΏΡΠΎΠ΄ΡΠΊΡΠΈΡ ΠΌΠΎΠ³Π»Π° Π±ΡΡΡ ΠΏΠΎΠ³Π»ΠΎΡΠ΅Π½Π° — ΡΠΊΠΎΠ½ΠΎΠΌΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΡΠ½ΠΈΠΆΠ΅Π½ΠΈΠ΅ Π½Π°ΡΠ½Π΅ΡΡΡ, Π·Π°ΠΊΠ°Π½ΡΠΈΠ²Π°ΡΡΡ Π² ΠΎΠ±Π΅Π΄Π½Π΅Π²ΡΠ΅ΠΌ Π·Π°ΡΡΠΎΠ΅.
ΠΠΎΠ³Π°ΡΡΡΠ²ΠΎ ΠΠ°ΡΠΈΠΉ Π±ΡΠ»ΠΎ ΠΏΠΎΠ»ΡΡΠ΅Π½ΠΎ Ρ Π²ΠΎΡΡ ΠΈΡΠ΅Π½ΠΈΠ΅ΠΌ ΡΠΈΡΠΎΠΊΠΈΠΌ ΠΊΡΡΠ³ΠΎΠΌ Π‘ΠΌΠΈΡΠ° Π΄ΡΡΠ·Π΅ΠΉ ΠΈ Π²ΠΎΡΡ ΠΈΡΠ°Π΅ΡΡΡ, Ρ ΠΎΡΡ ΡΡΠΎ Π½ΠΈ Π² ΠΊΠΎΠ΅ΠΌ ΡΠ»ΡΡΠ°Π΅ Π½Π΅ Π±ΡΠ» Π½Π΅ΠΏΠΎΡΡΠ΅Π΄ΡΡΠ²Π΅Π½Π½ΡΠΉ ΠΏΠΎΠΏΡΠ»ΡΡΠ½ΡΠΉ ΡΡΠΏΠ΅Ρ . Π Π°Π±ΠΎΡΠ° Π·Π°ΠΊΠΎΠ½ΡΠΈΠ»Π°ΡΡ, Π‘ΠΌΠΈΡ Π²ΠΎΡΠ΅Π» Π² ΠΏΠΎΠ»ΡΠΎΡΡΡΠ°Π²ΠΊΡ. ΠΠΎΠ΄ ΠΏΠΎΡΠ»Π΅ Π΅Π³ΠΎ ΠΏΡΠ±Π»ΠΈΠΊΠ°ΡΠΈΠΈ, ΠΎΠ½ Π±ΡΠ» Π½Π°Π·Π½Π°ΡΠ΅Π½ ΡΠΏΠ΅ΡΠΈΠ°Π»ΡΠ½ΡΠΌ ΡΠΏΠΎΠ»Π½ΠΎΠΌΠΎΡΠ΅Π½Π½ΡΠΌ ΠΎΠ±Π΅ΠΈΠΌΠΈ ΠΈΠ· ΡΠ°ΠΌΠΎΠΆΠ½ΠΈ ΠΈ ΠΎΠ±ΡΠ·Π°Π½Π½ΠΎΡΡΠ΅ΠΉ ΡΠΎΠ»ΠΈ Π΄Π»Ρ Π¨ΠΎΡΠ»Π°Π½Π΄ΠΈΠΈ, ΠΏΠΎΡΡΡ, ΠΊΠΎΡΠΎΡΡΠ΅ ΠΏΡΠΈΠ½Π΅ΡΠ»ΠΈ Π΅ΠΌΡ Π600 Π³ΠΎΠ΄. ΠΠ½ Π²ΡΠ»Π΅Π΄ Π·Π° ΡΡΠΈΠΌ ΡΠΎΠΎΠ±ΡΠ°Π» Π΅Π³ΠΎ ΠΏΡΠ΅ΠΆΠ½Π΅ΠΌΡ ΠΎΠ±Π²ΠΈΠ½Π΅Π½ΠΈΡ, ΡΡΠΎ ΠΎΠ½ Π±ΠΎΠ»ΡΡΠ΅ Π½Π΅ ΡΡΠ΅Π±ΠΎΠ²Π°Π» Π΅Π³ΠΎ ΠΏΠ΅Π½ΡΠΈΠΈ, Π½Π° ΠΊΠΎΡΠΎΡΡΡ Buccleuch ΠΎΡΠ²Π΅ΡΠΈΠ», ΡΡΠΎ Π΅Π³ΠΎ ΡΠΌΡΡΠ» ΡΠ΅ΡΡΠΈ Π½ΠΈΠΊΠΎΠ³Π΄Π° Π½Π΅ Π±ΡΠ΄Π΅Ρ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡΡ Π΅ΠΌΡ ΠΏΡΠ΅ΠΊΡΠ°ΡΠ°ΡΡ ΠΏΠ»Π°ΡΠΈΡΡ ΡΡΠΎ. Π‘ΠΌΠΈΡ Π±ΡΠ» ΠΏΠΎΡΡΠΎΠΌΡ Π²Π΅ΡΡΠΌΠ° Π±ΠΎΠ³Π°Ρ Π² Π·Π°ΠΊΠ»ΡΡΠΈΡΠ΅Π»ΡΠ½ΡΡ Π³ΠΎΠ΄Π°Ρ Π΅Π³ΠΎ ΠΆΠΈΠ·Π½ΠΈ, ΠΊΠΎΡΠΎΡΡΠ΅ Π±ΡΠ»ΠΈ ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½Ρ Π³Π»Π°Π²Π½ΡΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ Π² ΠΠ΄ΠΈΠ½Π±ΡΡΠ³Π΅ ΡΠΎ ΡΠ»ΡΡΠ°ΠΉΠ½ΡΠΌΠΈ ΠΏΠΎΠ΅Π·Π΄ΠΊΠ°ΠΌΠΈ Π² ΠΠΎΠ½Π΄ΠΎΠ½ ΠΈΠ»ΠΈ ΠΠ»Π°Π·Π³ΠΎ (ΠΊΠΎΡΠΎΡΡΠΉ Π½Π°Π·Π½Π°ΡΠΈΠ» Π΅Π³ΠΎ ΡΠ΅ΠΊΡΠΎΡΠΎΠΌ ΡΠ½ΠΈΠ²Π΅ΡΡΠΈΡΠ΅ΡΠ°). ΠΠΎΠ΄Ρ ΠΏΡΠΎΡΠ»ΠΈ ΡΠΏΠΎΠΊΠΎΠΉΠ½ΠΎ, Ρ Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΈΠΌΠΈ ΠΏΠ΅ΡΠ΅ΡΠΌΠΎΡΡΠ°ΠΌΠΈ ΠΎΠ±Π΅ΠΈΡ Π³Π»Π°Π²Π½ΡΡ ΠΊΠ½ΠΈΠ³, Π½ΠΎ Π±Π΅Π· Π΄Π°Π»ΡΠ½Π΅ΠΉΡΠΈΡ ΠΏΡΠ±Π»ΠΈΠΊΠ°ΡΠΈΠΉ. 17 ΠΈΡΠ»Ρ 1790, Π² Π²ΠΎΠ·ΡΠ°ΡΡΠ΅ 67 Π»Π΅Ρ, ΠΏΠΎΠ»Π½ΡΠΉ ΠΏΠΎΡΠ΅ΡΡΠ΅ΠΉ ΠΈ ΠΏΡΠΈΠ·Π½Π°Π½ΠΈΡ, Π‘ΠΌΠΈΡ ΡΠΌΠ΅Ρ; ΠΎΠ½ Π±ΡΠ» ΠΏΠΎΡ ΠΎΡΠΎΠ½Π΅Π½ Π² ΠΊΠ»Π°Π΄Π±ΠΈΡΠ΅ Π² Canongate Ρ ΠΏΡΠΎΡΡΡΠΌ ΠΏΠ°ΠΌΡΡΠ½ΠΈΠΊΠΎΠΌ, Π·Π°ΡΠ²Π»ΡΡΡΠΈΠΌ, ΡΡΠΎ ΠΠ΄Π°ΠΌ Π‘ΠΌΠΈΡ, Π°Π²ΡΠΎΡ ΠΠΎΠ³Π°ΡΡΡΠ²Π° ΠΠ°ΡΠΈΠΉ, Π±ΡΠ» ΠΏΠΎΡ ΠΎΡΠΎΠ½Π΅Π½ ΡΠ°ΠΌ.
ΠΠ½Π΅ Π½Π΅ΠΌΠ½ΠΎΠ³ΠΈΡ ΡΠ°ΠΊΡΠΎΠ² Π΅Π³ΠΎ ΠΆΠΈΠ·Π½ΠΈ, ΡΠΎ, ΠΊΠΎΡΠΎΡΠ°Ρ ΠΌΠΎΠΆΠ΅Ρ Π±ΡΡΡ Π²ΡΡΠΈΡΠ° ΡΠΎΠ»ΡΠΊΠΎ ΠΏΠΎΠ΄ΡΠΎΠ±Π½ΠΎ, Π½Π΅Π²ΡΠ½ΠΎΡΠΈΠΌΠΎ Π½Π΅ΠΌΠ½ΠΎΠ³ΠΎ, ΠΈΠ·Π²Π΅ΡΡΠ½ΠΎ ΠΎ ΡΠ΅Π»ΠΎΠ²Π΅ΠΊΠ΅. Π‘ΠΌΠΈΡ Π½ΠΈΠΊΠΎΠ³Π΄Π° Π½Π΅ ΠΆΠ΅Π½ΠΈΠ»ΡΡ, ΠΈ ΠΏΠΎΡΡΠΈ Π½ΠΈΡΡΠΎ Π½Π΅ ΠΈΠ·Π²Π΅ΡΡΠ½ΠΎ ΠΎ Π΅Π³ΠΎ Π»ΠΈΡΠ½ΠΎΠΉ ΡΡΠΎΡΠΎΠ½Π΅. ΠΡΠΎΠΌΠ΅ ΡΠΎΠ³ΠΎ, ΡΡΠΎ Π±ΡΠ»Π° ΡΡΠ°Π΄ΠΈΡΠΈΡ Π΅Π³ΠΎ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ, ΡΡΠΎΠ±Ρ ΡΠ°Π·ΡΡΡΠΈΡΡ, Π° Π½Π΅ ΡΠΎΡ ΡΠ°Π½ΠΈΡΡ ΡΠ°ΡΡΠ½ΡΠ΅ ΡΠ°ΠΉΠ»Ρ, Π΅ΡΠ»ΠΈ ΠΏΡΠΎΡΠ»Π°Π²Π»Π΅Π½Π½ΡΠ΅ ΠΌΡΠΆΡΠΈΠ½Ρ, Ρ Π½Π΅ΡΡΠ°ΡΡΠ½ΡΠΌ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠΎΠΌ ΡΠ°ΠΊ Π±ΠΎΠ»ΡΡΠ°Ρ ΡΠ°ΡΡΡ Π½Π΅Π·Π°ΠΊΠΎΠ½ΡΠ΅Π½Π½ΠΎΠΉ ΡΠ°Π±ΠΎΡΡ Π‘ΠΌΠΈΡΠ°, ΡΠ°ΠΊ ΠΆΠ΅ ΠΊΠ°ΠΊ Π΅Π³ΠΎ Π»ΠΈΡΠ½ΡΡ Π±ΡΠΌΠ°Π³, Π±ΡΠ»ΠΈ ΡΠ°Π·ΡΡΡΠ΅Π½Ρ (Π½Π΅ΠΊΠΎΡΠΎΡΡΠ΅ ΡΠΆΠ΅ Π² 1942). Π’ΠΎΠ»ΡΠΊΠΎ ΠΎΠ΄ΠΈΠ½ ΠΏΠΎΡΡΡΠ΅Ρ Π‘ΠΌΠΈΡΠ° Π²ΡΠΆΠΈΠ²Π°Π΅Ρ, ΠΌΠ΅Π΄Π°Π»ΡΠΎΠ½ ΠΏΡΠΎΡΠΈΠ»Ρ Tassie; ΡΡΠΎ Π΄Π°Π΅Ρ ΠΏΡΠΎΠ±Π»Π΅ΡΠΊ ΡΡΠ°ΡΡΠ΅Π³ΠΎ ΡΠ΅Π»ΠΎΠ²Π΅ΠΊΠ° Π΅Π³ΠΎ Π³Π»Π°Π·Π°ΠΌΠΈ Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΎ ΡΡΠΆΠ΅Π»ΠΎ-Ρ-ΠΊΡΡΡΠΊΠΎΠΉ, ΠΎΡΠ»ΠΈΠ½ΡΠΌ Π½ΠΎΡΠΎΠΌ, ΠΈ Π½Π°ΠΌΠ΅ΠΊΠΎΠΌ Π²ΡΡΡΡΠΏΠ°ΡΡΠ΅ΠΉ Π½ΠΈΠΆΠ½Π΅ΠΉ Π³ΡΠ±Ρ. «Π― — Π΄Π΅Π½Π΄ΠΈ Π² ΡΠΎΠ»ΡΠΊΠΎ ΠΌΠΎΠΈΡ ΠΊΠ½ΠΈΠ³Π°Ρ , «ΡΠΊΠ°Π·Π°Π» Π‘ΠΌΠΈΡ ΠΎΠ΄Π½Π°ΠΆΠ΄Ρ Π΄ΡΡΠ³Ρ, ΠΊΠΎΡΠΎΡΠΎΠΌΡ ΠΎΠ½ ΠΏΠΎΠΊΠ°Π·ΡΠ²Π°Π» Π΅Π³ΠΎ Π±ΠΈΠ±Π»ΠΈΠΎΡΠ΅ΠΊΠ΅ ΠΏΡΠΈΠ±Π»ΠΈΠ·ΠΈΡΠ΅Π»ΡΠ½ΠΎ 3 000 ΠΎΠ±ΡΠ΅ΠΌΠΎΠ².
ΠΡ ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ ΡΡΠ΅ΡΠΎΠ², ΠΎΠ½ Π±ΡΠ» ΡΠ°ΠΊΠΆΠ΅ ΡΠ΅Π»ΠΎΠ²Π΅ΠΊΠΎΠΌ ΠΌΠ½ΠΎΠ³ΠΈΡ ΠΎΡΠΎΠ±Π΅Π½Π½ΠΎΡΡΠ΅ΠΉ, ΠΊΠΎΡΠΎΡΡΠ΅ Π²ΠΊΠ»ΡΡΠ°Π»ΠΈ Π½Π°ΡΡΠΊΠ°ΡΡΡΡΡΡ ΠΌΠ°Π½Π΅ΡΡ ΡΠ΅ΡΠΈ (ΠΏΠΎΠΊΠ° ΠΎΠ½ Π½Π΅ Π½Π°Π³ΡΠ΅Π»ΡΡ ΠΊ Π΅Π³ΠΎ ΠΏΡΠ΅Π΄ΠΌΠ΅ΡΡ), ΠΏΠΎΡ ΠΎΠ΄ΠΊΠ°, ΠΎΠΏΠΈΡΠ°Π½Π½Π°Ρ ΠΊΠ°ΠΊ «vermicular» / ΠΈ ΠΏΡΠ΅ΠΆΠ΄Π΅ Π²ΡΠ΅Π³ΠΎ ΡΠΊΡΡΡΠ°ΠΎΡΠ΄ΠΈΠ½Π°ΡΠ½ΠΎΠ΅ ΠΈ Π΄Π°ΠΆΠ΅ ΠΊΠΎΠΌΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΠΎΡΡΡΡΡΡΠ²ΠΈΠ΅ ΠΌΠ½Π΅Π½ΠΈΡ. Π‘ Π΄ΡΡΠ³ΠΎΠΉ ΡΡΠΎΡΠΎΠ½Ρ, ΡΠΎΠ²ΡΠ΅ΠΌΠ΅Π½Π½ΠΈΠΊΠΈ Π½Π°ΠΏΠΈΡΠ°Π»ΠΈ ΠΈΠ· ΡΠ»ΡΠ±ΠΊΠΈ «Π½Π΅Π²ΡΡΠ°Π·ΠΈΡΠ΅Π»ΡΠ½ΠΎΠΉ Π΄ΠΎΠ±ΡΠΎΡΡ,» ΠΈ Π΅Π³ΠΎ ΠΏΠΎΠ»ΠΈΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΡΠ°ΠΊΡΠ° ΠΈ ΠΎΡΠΏΡΠ°Π²ΠΊΠΈ Π² ΡΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠΈ ΠΈΠ½ΠΎΠ³Π΄Π° Π΅Π΄ΠΊΠΈΠΌ Π±ΠΈΠ·Π½Π΅ΡΠΎΠΌ ΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡΠΈ ΠΠ»Π°Π·Π³ΠΎ.
ΠΠΎΠ½Π΅ΡΠ½ΠΎ ΠΎΠ½ Π½Π°ΡΠ»Π°ΠΆΠ΄Π°Π»ΡΡ Π²ΡΡΠΎΠΊΠΎΠΉ ΠΌΠ΅ΡΠΎΠΉ ΡΠΎΠ²ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ ΠΈΠ·Π²Π΅ΡΡΠ½ΠΎΡΡΠΈ; Π΄Π°ΠΆΠ΅ Π² Π΅Π³ΠΎ ΡΠ°Π½Π½ΠΈΠ΅ Π΄Π½ΠΈ Π² ΠΠ»Π°Π·Π³ΠΎ Π΅Π³ΠΎ ΡΠ΅ΠΏΡΡΠ°ΡΠΈΡ ΠΏΡΠΈΠ²Π»Π΅ΠΊΠ»Π° ΡΡΡΠ΄Π΅Π½ΡΠΎΠ² ΠΈΠ· Π½Π°ΡΠΈΠΉ ΡΡΠΎΠ»Ρ ΠΆΠ΅ ΠΎΡΠ΄Π°Π»Π΅Π½Π½ΡΡ ΠΊΠ°ΠΊ Π ΠΎΡΡΠΈΡ, ΠΈ Π΅Π³ΠΎ Π±ΠΎΠ»Π΅Π΅ ΠΏΠΎΠ·Π΄Π½ΠΈΠ΅ Π³ΠΎΠ΄Ρ ΠΊΠΎΡΠΎΠ½ΠΎΠ²Π°Π»ΠΈΡΡ Π½Π΅ ΡΠΎΠ»ΡΠΊΠΎ Ρ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅ΠΌ Π²ΠΎΡΡ ΠΈΡΠ΅Π½ΠΈΡ ΠΎΡ ΠΌΠ½ΠΎΠ³ΠΈΡ Π΅Π²ΡΠΎΠΏΠ΅ΠΉΡΠΊΠΈΡ ΠΌΡΡΠ»ΠΈΡΠ΅Π»Π΅ΠΉ, Π½ΠΎ ΠΈ ΡΠ°ΡΡΡΡΠΈΠΌ ΠΏΡΠΈΠ·Π½Π°Π½ΠΈΠ΅ΠΌ ΡΡΠ΅Π΄ΠΈ Π±ΡΠΈΡΠ°Π½ΡΠΊΠΈΡ ΡΠΏΡΠ°Π²Π»ΡΡΡΠΈΡ ΠΊΡΡΠ³ΠΎΠ², ΡΡΠΎ Π΅Π³ΠΎ ΡΠ°Π±ΠΎΡΠ° ΠΎΠ±Π΅ΡΠΏΠ΅ΡΠΈΠ»Π° ΠΎΠ±ΡΡΡΠ½Π΅Π½ΠΈΠ΅ Π½Π΅ΠΎΡΠ΅Π½ΠΈΠΌΠΎΠΉ Π²Π°ΠΆΠ½ΠΎΡΡΠΈ Π΄Π»Ρ ΠΏΡΠ°ΠΊΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠΊΠΎΠ½ΠΎΠΌΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΏΠΎΠ»ΠΈΡΠΈΠΊΠΈ.
ΠΠ° ΡΡΠΈ Π³ΠΎΠ΄Ρ, Π±Π»Π΅ΡΠΊ Π‘ΠΌΠΈΡΠ° ΠΊΠ°ΠΊ ΡΠΎΡΠΈΠ°Π»ΡΠ½ΡΠΉ ΡΠΈΠ»ΠΎΡΠΎΡ ΠΈΠ·Π±Π΅ΠΆΠ°Π» Π±ΠΎΠ»ΡΡΠΎΠΉ ΡΠ°ΡΡΠΈ Π½Π°ΠΊΠ»ΠΎΠ½Π°, ΠΊΠΎΡΠΎΡΡΠΉ Π·Π°ΡΡΠΎΠ½ΡΠ» ΡΠ΅ΠΏΡΡΠ°ΡΠΈΠΈ Π΄ΡΡΠ³ΠΈΡ ΠΏΠ΅ΡΠ²ΠΎΠΊΠ»Π°ΡΡΠ½ΡΡ ΠΏΠΎΠ»ΠΈΡΠΈΡΠ΅ΡΠΊΠΈΡ ΡΠΊΠΎΠ½ΠΎΠΌΠΈΡΡΠΎΠ². Π₯ΠΎΡΡ ΠΎΠ½ ΠΏΠΈΡΠ°Π» Π΄Π»Ρ Π΅Π³ΠΎ ΠΏΠΎΠΊΠΎΠ»Π΅Π½ΠΈΡ, ΡΠΈΡΠΎΡΠ° Π΅Π³ΠΎ Π·Π½Π°Π½ΠΈΡ / Π»Π΅Π·Π²ΠΈΠ΅ Π΅Π³ΠΎ ΠΎΠ±ΠΎΠ±ΡΠ΅Π½ΠΈΡ, ΡΠΌΠ΅Π»ΠΎΡΡΡ Π΅Π³ΠΎ Π²ΠΈΠ΄Π΅Π½ΠΈΡ, Π½ΠΈΠΊΠΎΠ³Π΄Π° Π½Π΅ ΠΏΡΠ΅ΠΊΡΠ°ΡΠ°Π»ΠΈ ΠΏΡΠΈΠ²Π»Π΅ΠΊΠ°ΡΡ Π²ΠΎΡΡ ΠΈΡΠ΅Π½ΠΈΠ΅ Π²ΡΠ΅Ρ ΡΠΎΡΠΈΠΎΠ»ΠΎΠ³ΠΎΠ², ΠΈ Π² ΡΠΏΠ΅ΡΠΈΡΠΈΡΠ΅ΡΠΊΠΈΡ ΡΠΊΠΎΠ½ΠΎΠΌΠΈΡΡΠ°Ρ . ΠΠ·Π»ΠΎΠΆΠ΅Π½Π½ΡΠΉ Π² ΠΏΡΠΎΡΡΠΎΡΠ½ΠΎΠΉ, ΡΠΈΡΠΌΠΈΡΠ½ΠΎΠΉ ΠΏΡΠΎΠ·Π΅ Π΅Π³ΠΎ ΠΏΠ΅ΡΠΈΠΎΠ΄Π°, Π±ΠΎΠ³Π°ΡΠΎΠ³ΠΎ ΠΎΠ±ΡΠ°Π·Π°ΠΌΠΈ ΠΈ ΠΏΠ΅ΡΠ΅ΠΏΠΎΠ»Π½Π΅Π½Π½ΡΠΉ ΠΆΠΈΠ·Π½ΡΡ, ΠΠΎΠ³Π°ΡΡΡΠ²ΠΎ ΠΠ°ΡΠΈΠΉ ΠΏΡΠΎΠ΅ΠΊΡΠΈΡΡΠ΅Ρ ΠΆΠΈΠ·Π½Π΅ΡΠ°Π΄ΠΎΡΡΠ½ΠΎΠ΅, Π½ΠΎ Π½ΠΈΠΊΠΎΠ³Π΄Π° ΡΠ΅Π½ΡΠΈΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΠΎΠ΅ ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½ΠΈΠ΅ ΠΎΠ±ΡΠ΅ΡΡΠ²Π°. ΠΠΈΠΊΠΎΠ³Π΄Π° ΡΠ°ΠΊ ΡΠΎΡΠ½ΠΎ Π°Π½Π°Π»ΠΈΡΠΈΡΠ΅ΡΠΊΠΈΠΉ ΠΊΠ°ΠΊ ΠΡΠ²ΠΈΠ΄ Π ΠΈΠΊΠ°ΡΠ΄ΠΎ, Π½ΠΈ ΡΡΠΎΠ»Ρ ΡΡΡΠΎΠ³ΠΈΠΉ ΠΈ Π³Π»ΡΠ±ΠΎΠΊΠΈΠΉ ΠΊΠ°ΠΊ ΠΠ°ΡΠ» ΠΠ°ΡΠΊΡ, Π‘ΠΌΠΈΡ Π½Π΅ ΡΠ°ΠΌΠΎΠ΅ Π²ΠΎΠΏΠ»ΠΎΡΠ΅Π½ΠΈΠ΅ ΠΡΠΎΡΠ²Π΅ΡΠ΅Π½ΠΈΡ: ΠΎΠ±Π½Π°Π΄Π΅ΠΆΠΈΠ²Π°ΡΡΠΈΠΉ, Π½ΠΎ ΡΠ΅Π°Π»ΠΈΡΡΠΈΡΠ΅ΡΠΊΠΈΠΉ, ΡΠΏΠ΅ΠΊΡΠ»ΡΡΠΈΠ²Π½ΡΠΉ, Π½ΠΎ ΠΏΡΠ°ΠΊΡΠΈΡΠ½ΡΠΉ, Π²ΡΠ΅Π³Π΄Π° ΠΏΠΎΡΡΠΈΡΠ΅Π»ΡΠ½ΡΠΉ ΠΈΠ· ΠΊΠ»Π°ΡΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΏΡΠΎΡΠ»ΠΎΠ³ΠΎ, Π½ΠΎ Π² ΠΊΠΎΠ½Π΅ΡΠ½ΠΎΠΌ ΡΡΠ΅ΡΠ΅ ΠΏΠΎΡΠ²ΡΡΠ΅Π½Π½ΡΠΉ Π±ΠΎΠ»ΡΡΠΎΠΌΡ ΠΎΡΠΊΡΡΡΠΈΡ Π΅Π³ΠΎ Π²ΠΎΠ·ΡΠ°ΡΡΠ° — ΠΏΡΠΎΠ΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ.
ΠΠΠΠΠΠΠΠ ΠΠ€ΠΠ―:
ΠΠΆΠΎΠ½ Π Π΅ΠΉ. «ΠΠΈΠ·Π½Ρ ΠΠ΄Π°ΠΌΠ° Π‘ΠΌΠΈΡΠ°» 1985
Π£ΠΈΠ»ΡΡΠΌ Π‘ΠΊΠΎΡΡ. «ΠΠ΄Π°ΠΌ Π‘ΠΌΠΈΡ ΠΊΠ°ΠΊ Π‘ΡΡΠ΄Π΅Π½Ρ ΠΈ ΠΡΠΎΡΠ΅ΡΡΠΎΡ» 1987
ΠΠ½Π΄ΡΡ Π‘. Π‘ΠΊΠΈΠ½Π½Π΅Ρ. «ΠΡΡΠ΅ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ ΠΠ΄Π°ΠΌΠ° Π‘ΠΌΠΈΡΠ°» 1988