Помощь в написании студенческих работ
Антистрессовый сервис

Иммунохимические методы анализа гербицида пропанида в объектах окружающей среды

ДиссертацияПомощь в написанииУзнать стоимостьмоей работы

В настоящее время большое внимание уделяется проблеме экологического мониторинга объектов окружающей среды на остаточное содержание пестицидов. Одним из широко используемых пестицидов в сельском хозяйстве многих стран мира является гербицид пропанид (3,4-дихлорпропионанилид). В течение нескольких десятилетий этот гербицид применяют для обработки полей и сельскохозяйственных угодий, на которых… Читать ещё >

Иммунохимические методы анализа гербицида пропанида в объектах окружающей среды (реферат, курсовая, диплом, контрольная)

Содержание

  • СПИСОК СОКРАЩЕНИЙ ОБЗОР ЛИТЕРАТУРЫ
  • ГЛАВА 1. Общая характеристика гербицида пропанид
    • 1. 1. Механизм гербицидного действия пропанида
    • 1. 2. Метаболизм и транспорт пропанида в окружающей среде
    • 1. 3. Физико-химические методы определения пропанида
  • ГЛАВА 2. Иммунохимические методы определения пестицидов
    • 2. 1. Основы иммуноанализа пестицидов
    • 2. 2. Поляризационный флуоресцентный иммуноанализ пестицидов
    • 2. 3. Твердофазный иммуноферментный анализ пестицидов
  • ГЛАВА 3. Иммунохимическая пробоподготовка
    • 3. 1. Методы пробоподготовки
    • 3. 2. Иммуноафинная экстракция
      • 3. 2. 1. Получение и свойства иммуносорбентов
      • 3. 2. 2. Применение иммуноэкстракции для анализа реальных объектов
  • ГЛАВА 4. Материалы и методы
    • 4. 1. Материалы и оборудование
    • 4. 2. Методы
  • РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ
  • ГЛАВА 5. Поляризационный флуоресцентный иммуноанализ гербицида пропанида
    • 5. 1. Получение конъюгатов пропанида с белками и поликлональных антисывороток
    • 5. 2. Получение меченных (флуоресцентных) производных
    • 5. 3. Тестирование поликлональных сывороток
    • 5. 4. Влияние структуры маркеров на кривые титрования поликлональных антисывороток
    • 5. 5. Влияние структуры маркеров на чувствительность и предел обнаружения ПФИА пропанида
    • 5. 6. Специфичность ПФИА пропанида
  • ГЛАВА 6. Разработка метода ПФИА для количественного определения пропанида в минеральной воде и некоторых пищевых продуктах
    • 6. 1. Определение пропанида в минеральной воде
    • 6. 2. Определение пропанида в лимонном соке
    • 6. 3. Определение пропанида в рисе
    • 6. 4. ПФИА пропанида в системе обращенных мицелл
  • ГЛАВА 7. Разработка и оптимизация конкурентного твердофазного иммуноферментного анализа пропанида
    • 7. 1. Синтез конъюгата гербицид-белок для сорбции на твердой фазе и оптимизация условий проведения иммуноферментного анализа пропанида
    • 7. 2. Специфичность анализа
    • 7. 3. Твердофазный ИФА пропанида в рисе
  • ГЛАВА 8. Разработка метода аффинной хроматографии для селективной экстракции пропанида и группы родственных уреагербицидов
    • 8. 1. Синтез иммуносорбента
    • 8. 2. Экстракционные свойства иммуносорбента
    • 8. 3. Селективность и предел обнаружения
    • 8. 4. Иммуноэкстракция в автоматическом режиме
    • 8. 5. Применение метода иммуноэкстракции для определения пропанида в реальных объектах
  • ВЫВОДЫ

В настоящее время большое внимание уделяется проблеме экологического мониторинга объектов окружающей среды на остаточное содержание пестицидов. Одним из широко используемых пестицидов в сельском хозяйстве многих стран мира является гербицид пропанид (3,4-дихлорпропионанилид). В течение нескольких десятилетий этот гербицид применяют для обработки полей и сельскохозяйственных угодий, на которых выращивают различные злаковые культуры, кориандр, виноград, а также оливковые и цитрусовые деревья. Сельскохозяйственные препараты, содержащие пропанид, обладают токсичностью, что может представлять риск для здоровья человека и отрицательно влиять на состояние экосистем. Токсичность пропанида и его основного метаболита 3,4-дихлоранилина (3,4-ДХА) по отношению к живым организмам сопряжена с их аккумуляцией в растениях, почве, гуминовых кислотах и дальнейшим образованием других канцерогенных веществ (N-гидроксипроизводных гербицида). Вследствие этого возникает проблема возможного загрязнения питьевой воды и сельскохозяйственных культур остаточными количествами гербицида и свидетельствует о необходимости непрерывного контроля объектов окружающей среды на наличие в них остатков пропанида.

Методы газовой и жидкостной хроматографии, применяемые в настоящее время для определения пропанида, имеют ряд недостатков, в частности, они характеризуются высокой стоимостью анализа, длительностью проведения и требуют сложной и трудоемкой пробоподготовки. Поэтому актуальной является разработка высокоспецифичных, чувствительных, надежных, точных и, одновременно быстрых и недорогих методов анализа. Этим требованиям удовлетворяют методы иммунохимического анализа — гомогенный поляризационный флуоресцентный иммуноанализ (ПФИА) и твердофазный иммуноферментный анализ (ИФА), которые широко используются для мониторинга различных объектов окружающей среды. Метод ПФИА обеспечивает высокую точность определения и экспрессность анализа, а твердофазный ИФА является более чувствительным методом анализа. Другим перспективным направлением биоаналитической химии является метод иммуноаффинной экстракции, который позволяет повысить чувствительность и селективность различных методов определения пестицидов, а также эффективно устранить влияние компонентов образца на результаты анализа. Для всех этих методов ключевым реагентом являются антитела. В литературе ранее не сообщалось о получении антител, специфичных к пропаниду. Также отсутствует информация по поводу разработки иммунохимических методов определения гербицида.

Целью настоящего исследования явилась разработка поляризационного флуоресцентного иммуноанализа и твердофазного иммуноферментного анализа пропанида и создание на их основе аналитических систем для количественного определения гербицида в различных природных объектах, а также разработка иммуноаффинного метода пробоподготовки образцов, основаннойна принципах аффинной хроматографии, для селективной экстракции следовых количеств пропанида из образцов со сложным составом.

Для достижения поставленной цели было необходимо решить следующие задачи:

— осуществить синтез иммунохимических реагентов — конъюгатов пропанида с белками и меченных флуоресцеином производных гербицида;

— получить высокоспецифические политональные антисыворотки к пропаниду и провести их тестирование;

— изучить влияние структуры флуоресцентных производных пропанида на основные характеристики метода ПФИА;

— исследовать влияние различных факторов на результаты анализа и с учетом полученных данных выбрать наиболее оптимальные методики ПФИА и ИФА, предназначенные для количественного определения пропанида в объектах окружающей среды;

— определить аналитические характеристики разработанных методик и провести корреляционные испытания результатов определения пропанида в реальных объектах с физико-химическими методами анализа;

— осуществить синтез иммуноаффинного сорбента, изучить его экстракционные свойства, провести разработку метода аффинной экстракции пропанида с последующим хроматографическим разделением и детекцией с помощью детектора с диодной матрицей в режиме реального времени и апробировать систему для анализа реальных объектов;

— провести сравнительное изучение аффинности полученных антител против пропанида на основе результатов изучения специфичности иммуноанализа и экстракционных свойств иммуносорбента.

ОБЗОР ЛИТЕРАТУРЫ.

выводы.

1. Впервые получены нммунореагенты для определения пропанида: синтезированы конъюгаты пропанида с белками — бычьим сывороточным альбумином (иммуноген) и желатином (конъюгат для сорбции на твердой фазе) — получены и охарактеризованы методом ПФИА поликлональные антисыворотки, специфичные к пропанидуа также синтезированы конъюгаты гербицида с флуоресцеином (трейсеры), различающиеся длиной и природой химической «ножки». Подобран трейсер, обеспечивающий высокочувствительный анализ.

2. Впервые разработаны иммунохимические методы определения пропанидаполяризационный флуоресцентный иммуноанализ и твердофазный иммуноферментный анализ. Предел обнаружения метода ПФИА составил 0,5 нг/мл, метода ИФА — 0,1 нг/мла диапазоны определяемых концентраций 1−100 и 1−1000 нг/мл, соответственно.

3. Проведено исследование влияния матрикса различных объектов на результаты поляризационного флуоресцентного иммуноанализа пропанида. Подобраны и оптимизированы условия проведения анализа остаточных количеств гербицида в питьевой воде и продуктах питания (рис, лимонный сок). Корреляционными испытаниями подтверждено, что разработанный метод позволяет надежно определять пропанид в концентрациях, соответствующих максимально допустимому уровню.

4. Разработан и оптимизирован метод твердофазного иммуноферментного анализа для количественного определения пропанида в рисе. Предел обнаружения метода в данном объекте составил 1 нг/мл, диапазон линейных концентраций 5500 нг/мл в экстракте риса, разведенном в 20 раз. Проведена корреляция результатов определения концентрации пропанида в зернах риса методами ИФА и ГХ-МС. Коэффициент корреляции с методом газовой хроматографии составил 0,965.

5. Разработан и оптимизирован метод пробоподготовки, основанный на принципах аффинной хроматографии. Синтезирован иммуносорбент, селективный к пропаниду, изучены его экстракционные свойства, проведена его интеграция в систему ВЭЖХ-ДДМ. Показано, что метод позволяет проводить.

Показать весь текст

Список литературы

  1. Л.К. Справочник по пестицидам. К.: Урожай. 1986.
  2. Huffman C.W., Allen S.E., Molecular size vs. Herbicidal activity of Anilides, J. Agric. Food Chemistry, 1960, 8 (4), 298−302.
  3. Worrall F., Wooff D.A., Seheult A.H., Coolen F.P.A., New approaches to assessing the risk of groundwater contamination by pesticides, J. Geol. Soc., 2000, 157 (4), 877 884.
  4. Moore M.T., Farris J.L., Acute and chronic toxicity of the herbicide Stam M-4 in field and laboratory exposures, Arch. Environ. Contam. Toxicol., 1997, 33(2), 199−202.
  5. Di Muccio A., Camoni I., Dommarco R., 3,3', 4,4'-Tetrachloroazobenzene and 3,3', 4,4'-tetrachloroazoxybenzene in technical grade herbicides: propanil, diuron, linuron andneburon, Ecotoxicol. Environ. Saf., 1984, 8(6), 511−515.
  6. Weisburger J.H., Weisburger E.K. Chemicals as causes of cancer. C&EN, 1966, 124−142.
  7. Singh J., Bingley R., Levels of 3,3', 4,4'-tetrachloroazobenzene in propanil herbicide, Bull. Environ. Contam Toxicol., 1991, 47(6), 822−826.
  8. McMillan D.C., Freeman J.P., Hinson J. A., Metabolism of the arylamide herbicide propanil. I. Microsomal metabolism and in vitro methemoglobinemia, Toxicol. Appl. Pharmacol., 1990, 103(1), 90−101.
  9. Hong S.K., Anestis D.K., Henderson T.T., Rankin G.O., Haloaniline-induced in vitro nephrotoxicity: effects of 4-haloanilines and 3.5-dihaloanilines, Toxicol. Lett., 2000, 114, 125−133.
  10. Barnett J.B., Gandy J., Wilbourn D., Theus S.A., Comparison of the immunotoxicity of propanil and its metabolite, 3,4-dichloroaniline, in C57B1/6 mice, Fundam. Appl. Toxicol., 1992, 18(4), 628−31.
  11. Zhao W., Schafer R., Cuff C.F., Gandy J., Barnett J.B., Changes in primary and secondary lymphoid organ T-cell subpopulations resulting from acute in vivo exposure to propanil, J. Toxicol. Environ. Health, 1995,46(2), 171−181.
  12. C.F., Zhao W., Nukui Т., Schafer R., Barnett J.B., 3,4-Dichloropropionanilide-induced atrophy of the thymus: mechanisms of toxicity and recovery, Fundam. Appl. Toxicol, 1996, 33(1), 83−90.
  13. Perschbacher P.W., Stone N, Ludwig G.M., Guy Jr. C. B, Evaluation of effects of common aerially-applied soybean herbicides and propanil on the plankton communities of aquaculture ponds, Aquaculture, 1997, 157, 117−122.
  14. Schlenk D, Moore C. T, Distribution and elimination of the herbicide propanil in the channel catfish (Ictalurus punctatus), Xenobiotica, 1993, 23(9), 1017−1024.
  15. Moore M. T, Pierce J. R, Milam C. D, Farris J. L, Winchester E. L, Responses of non-target aquatic organisms to aqueous propanil exposure, Bull. Environ. Contam. Toxicol, 1998, 61(2), 169−174.
  16. Call D. J, Brooke L. T, Kent R. J, Knuth M. L, Anderson C, Moriarity C, Toxicity, bioconcentration, and metabolism of the herbicide propanil (3 ', 4'-dichloropropionanilide) in freshwater fish, Arch. Environ. Contam. Toxicol, 1983, 12(2), 175−182.130
  17. Kosanke G.J., Schwippert W.W., Beneke T.W., The impairment of mobility and development in freshwater snails (Physa fontinalis and Lymnaea stagnalis) caused by herbicides, Сотр. Biochem. Physiol. C., 1988, 90(2), 373−379.
  18. Tucker C.S., Short-term effects of propanil on oxygen production by plankton communities from catfish ponds, Bull. Environ. Contam. Toxicol., 1987, 39(2), 245−250.
  19. Spradley J.P., Toxicity of pesticides to fish, publication MP330−3M-7−91, Arkansas cooperative extension service, Fayetville, AR, 1991.
  20. De Silva W.A., Bodinayake C.K., Propanil poisoning, J. Ceylon. Med., 1997, 42(2), 81−84.
  21. Strateva A., Novakova S., Dinoeva S., Danon S., Experimental study and stardantization of propanide in water, Probl. Khig., 1987, 12, 37−43.
  22. Santos T.C.R., Rocha J.C., Alonso R.M., Martinez E., Ibanez C., Barcelo D., Rapid degradation of propanil in rice crop fields, Envir. Sci. Technol., 1998, 32, 3479−3484.
  23. Pairis G.E., Environmental and metabolic transformations of primary aromatic amines and related compounds, Residue Rev., 1980, 76, 1−30.
  24. Cetkauskaite A., Grigonis U., Berzinskiene J., Biodegradation: Selection of Suitable Model, Ecotoxicol. Environ. Saf., 1998 40(½), 19−28.
  25. Saxena A., Bartha R., Modeling of the covalent attachment of chloroaniline residues to quinoidal sites of soil humus, Bull. Environ. Contam. Toxicol., 1983, 30(4), 485−91.
  26. Corcia A., Constantino A., Crescenzi C., Sampeli R. Quantification of phenylurea herbicides and their free and humic acid-associated metabolites in natural waters, J Chromatogr. A., 1999, 852, 465−474.
  27. Konstantinou I.K., Albanis T.A., Adsorption-desorption studies of selected herbicides in soil-Fly ash mixtures, J. Agric. Food Chem., 2000,48(10), 4780−4790.
  28. Bartha R., Altered propanil biodegradation in temporarily air-dried soil, J. Agric. Food Chem., 1971, 19(2), 394−395.
  29. Correa I.E., Steen W.C., Degradation of propanil by bacterial isolates and mixed populations from a Pristine lake, Chemoshere, 1995, 30, 103−116.
  30. Steen W.C., Vasilyeva G.K., Anan’eva N.D., Microbial degradation of propanil in aquatic systems, Chemosphere, 1986, 15,917−922.
  31. Sturini M., Fasani E., Prandi C., Albini A., Titanium dioxide photocatalysed degradation of some anilides, Chemosphere, 1997, 35, 931−937.131
  32. Huang C.H., Stone A.T., Hydrolysis of naptalam and structurally related amides: inhibition by dissolved metal ions and metal (hydr)oxide surfaces, J. Agric. Food Chem., 1999, 47(10), 4425−4434.
  33. .П., Механическое действие гербицидов синтетических регуляторов роста растений. Их судьба в биосфере, Соколов М. С. 10-ый симпозиум стран-членов СЭВ. 1975, 2, 93−96.
  34. Dahchour A., Bitton G., Coste С.М., Bastide J., Degradation of the herbicide propanil in distilled water, Bull. Environ. Contam. Toxicol., 1986,36(4), 556−562.
  35. Lekevicius R., Sabaliunas D., Knabikas A., Jankauskas V., Int. J. Environ. Anal. Chem., 1992,46, 141−147.
  36. Kello D., WHO drinking water quality guidelines for selected herbicides, Food Addit. Contam., 1989, 6, Suppl 1: S79−85.
  37. Natangelo M., Tavazzi S., Benfenati E., Analysis of some pesticides in water samples using solid-phase microextraction-gas chromatography with different mass spectrometric techniques, J. Chromatogr. A, 1999, 859 (2), 193−201.
  38. Lacorte S., Guilford I., Fraisse D., Barcelo D., Broad spectrum analysis of 109 priority compounds listed in the 76/464/CEE Council Directive using solid-phase extraction and GC/EI/MS, Anal. Chem., 2000, 72 (7), 1430- 1440.
  39. Bradway D.E., Shafik Т., Electron capture gas chromatographic analysis of the amine metabolites of pesticides: derivatization of anilines, J. Chromatogr. Sci., 1977, 15(8), 322−328.
  40. Ferrer M., Barcelo D., Determination and stability of pesticides in freezed-dried water samples by automated on-line solid-phase extraction followed by liquid chromatography with diode-array detection, J. Chromatogr. A, 1996, 737, 93−99.
  41. Cabras P., Diana P., Meloni M., Pirisi F.M., Reversed-phase high-performance liquid chromatography of pesticides. VI. Separation and quantitative determination of some rice-field herbicides, J. Chromatogr., 1982, 234(1), 249−254.
  42. Martin-Esteban A., Fernandez P., Camera C., Baker’s yeast biomass (Saccharomyces cerevisae) for selective on-line trace enrichment and liquid chromatography of polar pesticides in water, Anal. Chem., 1997, 69(16), 3267−3271.
  43. Priyantha N., Weerabahu D., Amperometric sensor for propanil, Anal. Chim. Acta, 1996, 320, 263−268.
  44. Kaufman B.M., Clower M.Jr., Immunoassay of pesticides: an update, J. AOAC Int., 1995, 78(4), 1079−1090.
  45. Gabaldon J.A., Maquieira A., Puchades R., Current trends in immunoassay-based kits for pesticide analysis, Crit. Rev. Food Sci. Nutr., 1999, 39(6), 519−538.
  46. Гигиенические нормативы содержания пестицидов в объектах окружающей среды. ГН 1.1546−96. Госкомэпиднадзор России, Москва, 1997.
  47. Italian allowed pesticide residue levels in environment, Milano, 1992.
  48. Fielding, M. Pesticides in ground and drinking water, Water pollution research report, 1992,27.
  49. Code of federal regulations. Protection of environment, 1994, July, 40, parts 150 189.
  50. Delauney N., Pichon V., Hennion M.-C., Immunoaffmity solid-phase extraction for tiie trace-analysis of low-molecular-mass analytes in complex sample matrices, J. Chromatrogr. B, 2000, 745, 15−37.
  51. Hock В., Antibodies for immunosensors, Anal. Chim. Acta, 1997, 347, 177−186.
  52. Marco M.-P., Gee S., Hammock B.D., Immunochemical techniques for environmental analysis I. Immunosensors, Trends Anal. Chem., 1995, 14, 341−350.
  53. Hennion M.-C., Barcelo D., Strengths and limitations of immunoassays for effective and efficient use for pesticide analysis in water samples: A review, Anal. Chim. Acta, 1998, 362, 3−34.
  54. Knopp D., Application of immunological methods for the detennination of environmental pollutants in human biomonitoring. A review, Anal. Chim. Acta, 1995, 311,383−392.
  55. Van Emon J.M., Gerlach C.L., Bowman K., Bioseparation and bioanalytical techniques in environmental monitoring, J. Chromatogr. B, 1998, 715,211−218.
  56. Van Emon J.M., Gerlach C.L., Environmental monitoring and human exposure assessment using immunochemical techniques, J. Microbiol. Meth., 32 (2), 1998, 121 131.
  57. Pichon V., Hennion M.-C., Bioanalytical methods, In Encyclopedia of environmental analysis and remediation, Editor Meyers A., John Wiley & Sons, Inc., 1998, 621−641.
  58. Killard A.J., Deasy В., O’Kennedy R., Smith M.R., Antibodies: Production, functions and applications in biosensors. Trends Anal. Chem., 1995, 14(6), 257- 266.
  59. A.M., Осипов А. П., Дзантиев Б. Б., Гаврилова Е. М., Теория и практика иммуноферментного анализа, 1991, Москва: Высшая школа.
  60. Fitzpatrick J., Fanning L., Hearty S., Leonard P., Manning B.M., Quinn J.G., R. O’Kennedy, Application and recent development in the use of antibodies for analysis, Anal. Lett., 2000. 33(13), 2563−2609.
  61. Chard T. An introduction to radioimmunoassay and related techniques. In: Laboratory techniques in biochemistry and molecular biology. V. 6. Part 2. Eds. R.H. Burdon, P.H. van Knippenberg. Amsterdam, Elsevier. 1990. 290 p.
  62. E.A., Мельниченко O.A., Туманов A.A., Иммунохимические методы определения пестицидов при экологическом контроле, ЖАХ, 1991, 46, 12, 2314−2321.
  63. Иммунология. Ред. У. Пол. М. Мир. 1989.Т. 3. 360 с.
  64. Nakata М., Ohkawa Н., Enzyme immunoassay with monoclonal antibody for environmental contaminants, Tanpakushitsu Kakusan Koso, 1996,41(14), 2132−2138.
  65. Morimune K., Yamaguchi Y., Beppu Y., Miyake S., Takewaki S., Kawata M., Yuasa Y., Easy-to-use immunoassay for the residue analysis of 2,4,5-T, Anal. Chim. Acta, 1998, 376, 37−40.
  66. Miake S., Ito S., Yamaguchi Y., Beppu Y., Takewaki S., Yuasa Y., Immunochemical approach for assay of herbicide thiobencarb, Anal. Chim. Acta, 1998, 376, 97−101.
  67. Watanabe E., Tsuda Y., Watanabe S., Ito S., Hayashi M., Watanabe Т., Yuasa Y., Nakazawa H., Development of an enzyme immunoassay for the detection of plant growth regulator inabenfide in rice, Anal. Chim. Acta, 2000, 424, 149−160.
  68. Watanabe S., Ito S., Omoda N., Munakata H., Hayashi M., Yuasa Y., Development of a competitive enzyme-linked immunosorbent assay based on a monoclonal antibody for fungicide flutolanil, Anal. Chim. Acta, 1998, 376, 93−96.
  69. Alcocer M.J., Doyen C., Lee H.A., Morgan M.R., Properties of polyclonal, monoclonal, and recombinant antibodies recognizing the organophosphorus pesticide chlorpyrifos-ethyl, J. Agric. Food Chem., 2000, 48(9), 4053−4059.
  70. Hock В., Dankwardt A., Kramer K., Marx A., Immunochemical techniques: antibody production for pesticide analysis. A review, Anal. Chim. Acta, 1995, 311, 393−405.
  71. Leickt L., Grubb A., Ohlson S., Affinity screening for weak monoclonal antibodies, J. Immunol. Meth., 1998, 220(1−2), 19−24.
  72. Miyake S., Hayashi A., Kumeta Т., Kitajima K., Kita H., Ohkawa H., Effectiveness of polyclonal and monoclonal antibodies prepared for an immunoassay of the etofenprox insecticide, Biosci. Biotechnol. Biochem., 1998, 62(5), 1001−1004.
  73. Ward V.K., Schneider P.G., Kreissig S.B., Hammock B.D., Choudary P.V., Cloning, sequencing and expression of the Fab fragment of a monoclonal antibody to the herbicide atrazine, Protein Eng., 1993, 6(8), 981−988.
  74. Bell C.W., Scholthof K.B., Zhang G., Karu A.E., Sequences of the cDNAs encoding the heavy- and light-chain Fab region of an antibody to the phenylurea herbicide diuron, Gene, 1995, 165(2), 323−324.
  75. Strachan G., Williams S., Moyle S.P., Harris W.J., Porter A.J., Reduced toxicity of expression, in Escherichia coli, of antipollutant antibody fragments and their use as sensitive diagnostic molecules, J. Appl. Microbiol., 1999, 87(3), 410−417.
  76. Dhillon J.K., Drew P.D., Porter A.J., Bacterial surface display of an anti-pollutant antibody fragment, Lett. Appl. Microbiol., 1999, 28(5), 350−354.
  77. Davies J., Riechmann L., Affinity improvement of single antibody VH domains: residues in all three hypervariable regions affect antigen binding, Immunotechnol., 1996, 2(3), 169−179.
  78. Ohlin M., Owman H., Mach M., Borrebaeck C.A., Light chain shuffling of a high affinity antibody results in a drift in epitope recognition, Mol. Immunol. 1996, 33(1), 4756.
  79. Grant S.D., Porter A.J., Harris W.J., Comparative sensitivity of immunoassays for haptens using monomeric and dimeric antibody fragments, J. Agric. Food Chem., 1999, 47(1), 340−345.
  80. Dooley H., Grant S.D., Harris W.J., Porter A. J., Stabilization of antibody fragments in adverse environments, Biotechnol. Appl. Biochem., 1998,28, 77−83.
  81. Ansell R.J., Kriz D., Mosbach K., Molecularly imprinted polymers for bioanalysis: chromatography, binding assays and biomimetic sensors, Curr. Opin. Biotechnol., 1996, 7(1), 89−94.
  82. Mosbach K., Haupt K., Some new developments and challenges in non-covalent molecular imprinting technology, J. Mol. Recognit., 1998, 11(1−6), 62−68.
  83. Surugiu I., Danielsson В., Ye L., Mosbach K., Haupt K., Chemiluminescence imaging ELISA using an imprinted polymer as the recognition element instead of an antibody, Anal. Chem., 2001,73(3), 487−491.
  84. Mosbach K., Toward the next generation of molecular imprinting with emphasis on the formation, by direct molding, of compounds with biological activity (biomimetics), Anal. Chim. Acta, 2001, 435(1), 3−8.
  85. He F., Biological monitoring of exposure to pesticides: current issues, 1999, Toxicol. Lett., 108, 277−283.
  86. Striley C.A.F., Biagmi R.E., Mastin J.P., MscKenzie B.A., Robertson S.K., Development and validation of an ELISA for metolachlor mercapturate, Anal. Chim. Acta, 1999, 399, 109−114.
  87. Goodrow M.H., Hammock B.D., Hapten Design for compound-selective antibodies: ELISAs for environmentally deleterious small molecules, Anal. Chim. Acta, 1998, 376, 83−91.
  88. Tessier D. M, Clark J. M, Hapten design in the development of competitive enzyme linked immunosorbent assays for genotoxic metabolites of alachlor, J. Agric. Food Chem., 1999, 47(9), 3925−3933.
  89. Gallacher G, Ruth E, Coxon R. E, Landon J, Rae C, Design of the hnmunogen and Label for Use in a Fluoroimmunoassay for Paracetamol, Ann. Clin. Biochem, 1988, 25(1), 42−48.
  90. Marco M.-P, Gee S, Hammock B. D, Immunochemical techniques for environmental analysis II. Antibody production and immunoassay development, Trends Anal. Chem, 1995, 14, 415−425.
  91. Ballesteros B, Barcelo D, Sanchez-Baeza F, Camps F, Marco M. P, Influence of the hapten design on the development of a competitive ELISA for the determination of the antifouling agent Irgarol 1051 at trace levels, Anal. Chem, 1998, 70(19), 4004−4014.
  92. Lee N, McAdam D. P, Skerritt J. H, Development of Immunoassays for Type II Synthetic Pyrethroids. 1. Hapten Design and Application to Heterologous and Homologous Assays, J. Agric. Food Chem. 1998, 46(2), 520−534.
  93. Smith D. S, Hassan M, Nargessi R. D, Principles and practice of fluoroimmunoassay procedures. In: Modern Fluorescence spectroscopy, Ed. L. Wehry, 1981,3, 143−191.
  94. Holland G. P, Steward M. W, The influence of epitope density on the estimation of the affinity of antibody for complex antigens, J. Immunol. Meth, 1991, 138(2), 245 255.
  95. Worterg M, Camman K, Strupat K, Hillenkamp F, Fresenius J. Anal. Chem, 1994, 348, 240−245.
  96. Самсонова Ж. В, Еремин C. A, Егоров A.M., Франек M, Проблема выбора структуры меченого антигена при разработке поляризационного флуороиммуноанализа атразина, Биоорганическая химия, 1994, 20(12), 1359−1364.
  97. Sittampalam G. S, Smith W. C, Miyakawa T. W, Smith D. R, McMorris C, Application of experimental design techniques to optimize a competitive ELISA, J. Immunol. Meth, 1996, 190(2), 151−161.
  98. Miller J.J., Valdes R., Methods for calculating cross-reactivity in immunoassays, J. Clin. Chem., 1992, 15(2), 97−107.
  99. Keuchel C., Weil L., Niessner R., Enzyme-linked immunosorbent assay for the determination of 2,4,6-trinitrotoluene and related nitroaromatic compounds, Anal. Sci., 1992, 8, 9−12.
  100. C.A., Самсонова Ж. В., Егоров A.M., Иммунохимические методы анализа гербицидов группы сим-1,3,5-триазинов, Успехи химии, 1994, 63 (7), 638 649.
  101. Dankwardt A., Hock В., Simon R., Freitag D., Kettrup A., Determination of non-extractable triazine residues by enzyme immunoassay: Investigation of model compounds and soil fulvic and humic acids, Environ., Sci., technol., 1996, 30, 34 933 500.
  102. Dandliker W.B., Kelley R.J., Dandliker J., Farquhar J., Levin J., Fleorescence polarization immunoassay. Theory and experimental method, Immunochem., 1973, 10, 219−227.
  103. Dandliker W.B., Schapiro H.C., Mduski Y.W., Alonso R., Feigent G., Hamrick Y.R., Application of fluorescence polarization of the antigen-antibody reaction, Immunochem., 1964, 1, 165−191.
  104. Gutierrez M.C., Gomez-Hens A., Perez-Bendito D., Immunoassay methods based on fluorescence polarization, Talanta, 1989, 12, 1187−1201.
  105. Williams A.T.R., Smith D.S. Fluorescence Polarization Immunoassay, In: Methods of Immunological Analysis, Albert W.H.W., Staines N.A. Eds. Wolnheim: VCH, 1991, 1
  106. Eremin S.A., Fluorescence Polarisation Immunoassays for Determination of Pesticides and Biologically Active Compounds in Food Safety and Environmental monitoring, Food Technol. Biotechnol., 1998, 36 (3), 235−243.138
  107. Tayeb O.S., el-Tahawy A.T., Islam S.I., Comparison of the fluorescence polarization immunoassay and the microbiological assay methods for the determination of gentamicin concentration in human serum, Ther. Drug Monit., 1986, 8(2), 232−235.
  108. Fluorescence Polarization Application Guide, Pan vera Corporation, Madison, 1998, USA
  109. Новые методы иммуноанализа. Ред. У. Коллинз. М. 1991. 256 с.
  110. С.А., Иммунохимический анализ лекарств и органических соединений, ЖВХО, 1989, 34, 1, 46−51.
  111. Eremin S.A., Gallacher G., Lotey H., Smith D.S., Landon J., Single-reagent Polarization Fluoroimmunoassay of Methamphetamine in urine, Clin. Chem., 1987, 33(10), 1903−1906.
  112. Eremin S.A., Smirnov A.V., Gallacher G., Smith D.S., Colbert D.L., Detection of Ephedrine and Phenylpropanolamine in Urine Using a Polarization Fluoroimmunoassay, Analyst, 1993, 118, 1325−1328.
  113. Colbert D.L., Eremin S.A., Landon J., The effect of fluorescein labels on the affinity of antisera to small haptens, J. Immunol. Methods, 1991, 140, 227−233.
  114. C.A., Лунская И. М., Егоров A.M. Влияние структуры трейсера на чувствительность и специфичность поляризационного флуороиммуноанализа 2,4-дихлорфеноксиуксусной кислоты, Биоорганич. химия, 1993, 19(8), 836−843.
  115. Eremin S.A., Schiavetta D.E., Lotey Н., Smith D.S., Landon J., Design and development of a single-reagent polarization fluoroimmunoassay for methamphetamine, Ther. Drug Monit., 1988, 10(3), 327−332.
  116. Sidki A.M., Al-Abdulla I.H., Rowell F.J., Quinine Directly Determined in Serum or Urine by Separation Fhioroimmunoassay, Clin. Chem., 1987, 33(1), 463−467.
  117. Gallacher G., Ruth E., Coxon R.E., Landon J., Rae C., Design of the Immunogen and Label for Use in a Fluoroimmunoassay for Paracetamol, Ann. Clin. Biochem., 1988, 25(1), 42−48.
  118. Colbert D.L., Coxon R.E., Paraquat Measured in Serum with the Abbott TDx, Clin. Chem., 1988, 34(9), 1948−1949.
  119. Knopp D., Eremin S.A., Yakovleva J.N., Schedl H., Niessner R., The development of polarisation fluoroimmunoassay for metsulfuron-methyl. Abstracts of 5th1. ternational Conference Agri-Food Antibodies, Norwich, UK, September14−17 1999, p. 77.
  120. O.A., Еремин C.A., Поляризационный флуороиммуноанализ гербицида изопротурона. Агрохимия, 1994, 10, 126−130.
  121. С.А., Дыхал Ю. И., Крапивин А. С., Таранченко В. Ф., Поляризационный флуороиммуноанализ азинофос-метила, Агрохимия (в печати)
  122. И.М., Еремин С. А., Егоров А. М., Колар В., Франек М. Разработка поляризационного флуороиммуноанализа 2,4- дихлорфеноксиуксусной кислоты с использованием моноклональных антител, Агрохимия, 1993,2, 113−118.
  123. С.А., Егоров А. М., Мельниченко О. А., Туманов А. А., Определение пестицида 2,4,5-трихлорфеноксиуксусной кислоты методом поляризационного флуороиммуноанализа, ЖАХ, 1995, 50(2), 215−218.
  124. Lukin Yu., V., Dokuchaev I.M., Polyak I.M., Eremin S.A., Detection of 2,4-dichlorophenoxyacetic acid by microtiter particle agglutination inhibition test and polarisation fluoroimmunoassay Anal. Lett., 27 (15), 2973−2982, 1994.
  125. И.М., Еремин С. А., Вильмер М., Ренеберг Р., Спенер Ф., Экспересс-определение 2-метил-4-хлорфеноксимасляной кислоты методом поляризационного флюороиммуноанализа с использованием моноклональных антител, Агрохимия, 1994, 9, 131−136.
  126. И.М., Еремин С. А., Егоров A.M., Колар В., Франек М., Проблемы получения высокоспецифичных антител к 2-метил-4-хлорфеноксимасляной кислоте и разработка поляризационного флуороиммуноанализа, Иммунология, 1995, 1, 17−21.
  127. С.А., Мельниченко О. А., Туманов А. А., Сорокина Н. В., Молокова Е. В., Егоров A.M. Разработка поляризационного флуороиммуноанализа гербицида 2,4,5-трихлорфеноксиуксусной кислоты. Вопросы мед. химии, 1994,40(4), 57−60.
  128. С.А., Крикунова B.C., Краснова А. И., Попова В. А., Оннерфиорд П., Разработка метода экспрессного определения пестицида 2,4,5-Т, предшественника диоксинов, Агрохимия, 1998, 6, 80−85.
  129. .В., Еремин СЛ., Егоров А. М., Поляризационный флюоресцентный иммуноанализ на гербициды класса сим-1,3,5 -триазинов, Вопросы мед. химии, 1994, 40(4), 53−56.
  130. .В., Егоров A.M., Еремин С. А., Разработка поляризационного флуороиммуноанализа хлорсодержащих гербицидов класса сим-1,3,5-триазинов, Агрохимия, 1994, 1, 95−100.
  131. А.Е., Попова В. А., Еремин С. А., Разработка метода экспрессного определения хлорорганического пестицида (ДДТ), Агрохимия, 2001 (в печати)
  132. Yakovleva J.N., Lobanova A.Yu., Panchenko O.N., Eremin. S.A., Production of Antibodies and Development of Specific Polarisation Fluoroimmunoassay for Acetochlor, Inter. J. Environ. Analytical Chem (Submitted), 2001
  133. C.A., Мельниченко O.A., Крейсиг С., Хок Б., Экспрессный иммунохимический метод определения гербицида метабензтиазурона, ЖАХ, 1995, 50(9), 971−978.
  134. Gabaldon J.A., Maquieira A., Puchades R, Current trends in immunoassay-based kits for pesticide analysis, Crit. Rev. Food Sci. Nutr., 1999, 39(6), 519−538.
  135. Kaufman B.M., Clower M. Jr., Immunoassay of pesticides: an update, J. AOAC Int., 1995, 78(4), 1079−1090.
  136. Bushway RJ, Hurst H. L, Perkins B, Tian L, Cabanillas C. G, Young B.E.S, Ferguson B. S, Jennings H. S, Atrazine, Alaclilor and Carbofuran Contamination of Well Water in Central Maine, Bull. Environ. Contam. Toxicol., 1992, 49(1), 1−9.
  137. Davies B.J., Kishore R., Sinou M.-N, Helmerson K, Phillips W. D, Weetall H. H, Optical tweezers-based immunosensor, Conference on Lasers and Electro-Optics Europe Technical Digest, 1998, Book of Abstracts, p. 204.
  138. Young D. L, Mihaliak C. A, West S.D., Hanselman K.A., Collins R.A., Phillips A.M., Robb C. K, Determination of spinosad and its metabolites in food and environmental matrices. 3. Immunoassay methods, J. Agric. Food Chem, 2000, 48(11), 5146−5153.
  139. Chuang J. C, Pollard M. A, Misita M, Van Emon J. M, Evaluation of analytical methods for determining pesticides in baby food, Anal.Chim. Acta, 1999, 399, 135−142.
  140. Lee N, Skerritt J. H, Thomas M, Korth W, Bowmer K. H, Larkin K. A, Ferguson B. S, Quantification of the urea herbicide, diuron, in water by enzyme immunoassay, Bull. Environ. Contam. Toxicol, 1995, 55(4), 479−486.
  141. Franek M, Kolar V, Eremin S. A, Enzyme immunoassays for s-triazine herbicides and their application in environmental and food analysis, Anal. Chim. Acta, 1995,311, 349−356.
  142. Lyubimov A. V, Garry V. F, Carlson R. E, Barr D. B, Baker S. E, Simplified urinary immunoassay for 2,4-D: validation and exposure assessment, J. Lab. Clin. Med, 2000, 136, 116−124.
  143. Dzgoev A. B, Gazaryan I. G, Lagrimini L. M, Ramanathan K, Danielsson B, High-sensitivity assay for pesticide using a peroxidase as chemiluminescent label, Anal. Chem, 1999, 71(22), 5258−5261.
  144. Zherdev A. V, Bizova N. A, Yaropolov A. I, Lyubimova N. V, Morozova B. B, Laccase from Corilus hirsutus as alternative label for enzyme immunoassay. Determination of pesticide 2,4-dichlorophenoxyacetic acid, Appl. Biochem. Biotechnol, 1999, 76(3), 206−215.
  145. .В., Влияние структуры реагентов на характеристики иммунохимических методов анализа гербицидов группы сим-1,3,5-триазинов, Дисс. канд.хим.наук, 1995, М., МГУ.
  146. Hennion М.-С., Scribe P. In Environmental Analysis. Techniques applications and quality assurance. Barcelo D., Ed. (Elsevire, Amsterdam, 1993).
  147. Barcelo D., Environmental Protection Agency and other methods for the determination of priority pesticides and their transformation products in water, J. Chromatogr 1993, 643, 117−143.
  148. Brinkman U.A., On-line sample treatment for or via column liquid chromatography, J Chromatogr. A, 1994, 665, 217−231.
  149. Hennion M.C., Solid-phase extraction: method development, sorbents, and coupling with liquid chromatography, J. Chromatogr. A, 1999, 856, 3−54.
  150. Martinez D., Cugat M. J., Borrull F., Calull M., Solid-phase extraction coupling to capillary electrophoresis with emphasis on environmental analysis, J. Chromatogr. A, 2000, 902, 65−68.
  151. Hiroyuki Kataoka, Heather L. Lord, Janusz Pawliszyn, Applications of solid-phase microextraction in food analysis, J. Chromatogr. A, 2000, 880, 35−62.
  152. Andersson L. I., Molecular imprinting: developments and applications in the analytical chemistry field, 2000, J. Chromatogr. B, 745, 3−13.
  153. Martin-Esteban A., Fernandez P., Camera C., Immunosorbents: a new tool for pesticide sample handing in environmental analysis, Fresenius J. Anal. Chem., 1997, 357, 927−933.
  154. Gonzalez-Martinez M.A., Puchadez R., Maquieira A., Reversibility in Heterogeneous Flow Immunosensing and Related Techniques. A brief overview. Food Technol Biotechnol., 1997, 35 (3), 193−204.
  155. Shahtaheri S.J., Katmeh M.F., Kwasowski P., Stevenson D., Development and optimization of an immunoaffinity-based solid-phase extraction for chlortoluron, J. Chromatogr. A, 1995, 697, 131−136.
  156. Shahtaheri S.J., Kwasowski P., Stevenson D., Highly selective antibody-mediated extraction of isoproturon from complex matrices, Chromatographia, 47 (7/8), 1998, 453−456.
  157. Marx A., Giersch Т., Hock В., Immunoaffinity chromatography of s-triazines, Anal. Lett., 1995, 28, 267−278.
  158. Pichon V., Chen L., Hennion M.-C., On-line preconcentration and liquid chromatographic analysis of phenylurea pesticides in environmental water using a silica-based immunosorbent, Anal. Chim. Acta, 1995, 311, 429−436.
  159. Pichon V., Chen L., Durand N., Le Goffic F., Hennion M.-C., Selective trace enrichment on immunosorbents for the multiresidue analysis of phenylurea and triazine pesticides, J. Chromatogr. A, 1996, 725, 107−119.
  160. Martin-Esteban A., Fernandez P., Stevenson D., Camera C., Mixed Immunosorbent for selective on-line trace enrichment and liquid chromatography of phenylurea herbicides in environmental waters, Analyst, 1997, 122, 1113−1117.
  161. Pichon V., Rogniaux H., Fisher-Durand N., Ben Rejeb S., Le Goffic F., Hennion M.-C., Characteristics of immunosorbents used as a new approach to selective solid-phase extraction in environmental analysis, Chromatographia, 1997, 45, 289−295.
  162. Rejeb S.B., Durand N.F., Mattel A., Poulennec В., Lawrence J.F., Hennion M.-C., Goffic F., Development of anti-phenylurea antibody purification techniques for improved environmental applications, Anal. Chim. Acta, 1998, 376, 41−48.
  163. Pichon V., Bouzige M., Hennion M.-C., New trends in environmental trace-analysis of organic pollutants: class-selective immunoextraction and clean-up in one step using immunosorbents, Anal. Chim. Acta, 1998, 376, 21−35.
  164. Phillips T.M., Krum J.M., Recycling immunoaffinity chromatography for multiple analyte analysis in biological samples J. Chromatogr. B, 1998, 715, 55−63.
  165. Yanagihara H., Sakata R., Minami H., Tanaka H., Shoyama Y., Murakami H., Immunoaffmity column chromatography against forskolin using an anti-forskolin monoclonal antibody and its application, Anal. Chim. Acta, 1996, 335, 63−70.
  166. Azcona J.I., Abouzied M.M., Pestka J.J., Detection of zearalenone by tandem immunoaffinity enzyme-linked immunosorbent assay and its application to milk, J. Food Protection, 1990, 53, 577−580.
  167. Ghildyal R, Kariofillis M., Determination of triasulfuron in soil: affinity chromatography as a soil extract cleanup procedure, J. Biochem. Biophys. Methods, 1995, 30, 207−215.
  168. Katmeh M.F., Godfrey A.J., Stevenson D., Aherne G.W., Enzyme immunoaffinity chromatography~a rapid semi-quantitative immunoassay technique for screening the presence of isoproturon in water samples, Analyst, 1997- 122(5), 481−486.
  169. Иммунологические методы, Ред. Г. Фримель, 1987, Москва: Медицина, 518 С.
  170. Long G.L., Winefordner J.D., A closer look at the IUPAC definition, Anal. Chem., 1983, 7, 712A-724A.
  171. Pichon V., Hennion M.-C., Determination of pesticides in environmental waters by automated on-line trace-enrichment and liquid chromatography, J. Chromatogr. A, 1994, 665, 269−281.
  172. Onnerfjord P., Barcelo D., Emneus J., Gorton L., Marko-Varga G., On-line solid-phase extraction on liquid chromatography using restricted access pre-column for the analysis of s-triazines in humic-containing waters, J. Chromatogr. A, 1996, 737, 3545.
  173. Е.Г., Самсонова Ж. В., Еремин С. А., Поляризационный флуоресцентный иммуноанализ пропазина в обращенных мицеллах аэрозоля ОТ в октане, Биорганич. Химия, 1996, 22(12), 931−937.146
  174. Matveeva E.G., Popova V.A., Eremin S.A., Detection of 2.4-Dichlorphenoxyacetic acid in reverse micelles AOT/n-octan by polarization an quenching fluoroimmunoassay, J. Fluorescence 1997, 7 (4), 251−256.
  175. Kolosova A.Au., Samsonova J.V., Egorov A.M.,. Competitive ELISA of Chloramphenicol: Influence of immunoreagent structure and application of the method for the inspection of food of animal origin, Food Agric Immunol., 2000, 12, 115−125.
Заполнить форму текущей работой