Помощь в написании студенческих работ
Антистрессовый сервис

Импульсное осаждение пироуглерода на углеродные матрицы

ДиссертацияПомощь в написанииУзнать стоимостьмоей работы

Несмотря на то, что процесс осаждения пироуглерода на углеродных волокнах активно изучается в течение последних десятилетий, многие вопросы, такие как механизм образования пироуглерода, взаимосвязь условий процесса и природы матрицы со структурой и свойствами пироуглерода и углерод-углеродных материалов, не имеют ответов и трудно прогнозируются. В этой связи исследование закономерностей… Читать ещё >

Импульсное осаждение пироуглерода на углеродные матрицы (реферат, курсовая, диплом, контрольная)

Содержание

  • 1. Список основных сокращений
  • 2. Список основных обозначений
  • 3. Введение
  • 4. Обзор литературы
    • 4. 1. Классификация углеродных материалов
    • 4. 2. Углеродные волокна
    • 4. 3. Графит и его соединения
      • 4. 3. 1. Интеркалированные соединения графита
      • 4. 3. 2. Окисленный графит
      • 4. 3. 3. Оксид графита
    • 4. 4. Пенографит
      • 4. 4. 1. Особенности морфологии пенографита. Пористая структура
      • 4. 4. 2. Физико-химические и механо-прочностные свойства
      • 4. 4. 3. Применение пенографита
    • 4. 5. Пироуглерод
      • 4. 5. 1. Общие определения
      • 4. 5. 2. Классификация пироуглерода
      • 4. 5. 3. Кинетика осаждения
      • 4. 5. 4. Модели образования пироуглерода
      • 4. 5. 5. Структура, морфология и свойства пироуглерода в зависимости от условий осаждения
    • 4. 6. CVD и CVI методики. Преимущества и недостатки
    • 4. 7. Углерод-углеродные композиционные материалы
  • 5. М етодич е екая ча сть
    • 5. 1. Исходные вещества
    • 5. 2. Методика получения нитрата графита
    • 5. 3. Методика электрохимического окисления
    • 5. 4. Методика получения пенографита из окисленного графита
    • 5. 5. Методика определения насыпной плотности
    • 5. 6. Методика осаждения пиролитического углерода методом импульсного пиролиза метана
    • 5. 7. Методы исследования
  • Рентгенофазовый анализ
  • Сканирующая электронная микроскопия
  • Определение удельной поверхности и объема пор
  • Спектроскопия комбинационного рассеяния
  • Термогравиметрический анализ
  • ИК-спектроскопия
  • Элементный анализ. ty t< tt h
  • Определение коэффициента линейного термического расширения
  • Определение модуля Юнга
  • Методика определения теплоемкости, температуро- и теплопроводности
  • 6. Результаты и их обсуждение
    • 6. 1. Получение углеродных матриц
      • 6. 1. 1. Получение нитратного пенографита
      • 6. 1. 2. Получение электрохимического пенографита
      • 6. 1. 3. Модифицирование углеродного волокна
      • 6. 1. 4. Сравнительная характеристика углеродных матриц
    • 6. 2. Импульсное осаждение пироуглерода на углеродные матрицы
      • 6. 2. 1. Возможности метода импульсного пиролиза
      • 6. 2. 2. Осаждение пироуглерода на углеродных волокнах
      • 6. 2. 3. Морфологические закономерности осаждения пироуглерода на различные матрицы
  • Характер осаждения пироуглерода
    • 6. 3. Основные закономерности осаждения пироуглерода
      • 6. 3. 1. Влияние природы матрицы
      • 6. 3. 2. Влияние общего времени
      • 6. 3. 3. Влияние температуры
      • 6. 3. 4. Влияние давления
      • 6. 3. 5. Влияние времени импульса
      • 6. 3. 6. Распределение пироуглерода в пористых матрицах пенографита
    • 6. 4. Физико-химические свойства углерод-углеродных материалов
      • 6. 4. 1. Устойчивость к окислению
      • 6. 4. 2. Коэффициент линейного термического расширения
      • 6. 4. 3. Теплопроводные характеристики
      • 6. 4. 4. Механо-прочностные характеристики
  • 7. Выводы

Актуальность темы

.

Перспективность использования материалов на основе пенографита, обладающего высокой пористостью, развитой поверхностью и способностью к компактированию без связующего, связана с рекордной стабильностью до 3000 °C в инертной атмосфере, малыми значениями коэффициента линейного расширения при нагревании, варьируемой теплопроводностью, безопасностью для человека и окружающей природы и др. Вместе с тем, серьезными недостатками материалов из пенографита являются их низкие механо-прочностные характеристики и невысокая температура начала окисления.

Наиболее распространенными способами улучшения прочностных характеристик материалов являются введение армирующего компонента, использование связующих и др. Для увеличения прочности углеродных материалов применяется осаждение из газовой фазы пироуглерода, образующегося при термическом разложении углеводородов.

Несмотря на то, что процесс осаждения пироуглерода на углеродных волокнах активно изучается в течение последних десятилетий, многие вопросы, такие как механизм образования пироуглерода, взаимосвязь условий процесса и природы матрицы со структурой и свойствами пироуглерода и углерод-углеродных материалов, не имеют ответов и трудно прогнозируются. В этой связи исследование закономерностей и особенностей осаждения пироуглерода на разные матрицы и изучение физико-химических свойств углерод-углеродных материалов имеет фундаментальный и практический интерес.

Работа выполнена на кафедре химической технологии и новых материалов химического факультета МГУ имени М. В. Ломоносова и является частью планового исследования кафедры по теме «Наноматериалы и технологии для обеспечения энергоэффективности, безопасности и надежности» (номер Государственной регистрации 1 201 168 316).

Цель работы.

Установление взаимосвязи физико-химических свойств углерод-углеродных материалов с природой матрицы и условиями осаждения пироуглерода, полученного методом импульсного пиролиза метана.

Для достижения поставленной цели необходимо решить следующие задачи:

1. разработать методику осаждения пироуглерода методом импульсного пиролиза метана на углеродные матрицы и получения композиционных материалов с высокой степенью насыщения а (ПУ) (долей пироуглерода);

2. изучить закономерности осаждения пироуглерода из газовой фазы на различные матрицы (углеродное волокно, компактированный пенографит (КПГ), высокоориентированный графит);

3. установить корреляцию степени и скорости насыщения матрицы пироуглеродом от условий импульсного осаждения (давление, температура, время импульса, природа матрицы);

4. исследовать морфологию и физико-химические свойства углерод-углеродных материалов в зависимости от природы матрицы и соотношения пенографит-пироуглерод.

Объекты исследования: высокоориентированный пиролитический графит УПВ-1-ТМО, углеродное волокно, пенографит, пироуглерод, композиционные материалы с пироуглеродом.

Методы исследования: РФА (дифрактометр ARL X’TRA), термический анализ (термоанализатор NETZSCH STA 449С Jupiter), сканирующая электронная микроскопия, спектроскопия комбинационного рассеяния (микроскоп Renishaw InVia, длина волны лазера 514 нм), ИК-спектроскопия (Фурье-ИК спектрометр Bruker Tensor-27), элементный анализ (лазерный масс-спектрометр ЭМАЛ 2), низкотемпературная адсорбция азота (Qsurf Surface Area Analyzer 9600 и Sorptomaticl990), механические испытания (универсальная испытательная машина Hounsfield H5K-S), метод лазерной вспышки (LFA 457/2/G MicroFlash установка лазерной вспышки для определения температуропроводности и теплоемкости) и др.

Научная новизна и положения, выносимые на защиту.

Разработанная методика импульсного осаждения пироуглерода на углеродные матрицы с высокоразвитой поверхностью и пористостью обеспечивает получение композиционных материалов со степенью насыщения а (ПУ) до 0,8.

Установлено, что пироуглерод, образующийся на горячих некаталитических поверхностях исследуемых углеродных матриц, является низкоупорядоченным, причем размер его кристаллитов Lc увеличивается от 3 до 25 нм с ростом Lc углеродной матрицы.

Установлено, что скорость осаждения пироуглерода на разные углеродные матрицы в условиях импульсного пиролиза метана определяется морфологией матрицы. Показано, что электрохимическая функционализация поверхности матрицы (создание гидроксильных, карбонильных, эфирных и др. поверхностных функциональных групп) и образование новых активных центров для роста пироуглерода значительно увеличивают скорость осаждения.

Впервые изучены закономерности импульсного осаждения пироуглерода на пористых углеродных матрицах с развитой поверхностью: пенографите, синтезированном через нитрат графита (нитратный пенографит ПГ (Н)), и пенографите, полученном анодным окислением графита (электрохимический пенографит ПГ (Э)). Установлено, что степень насыщения а (ПУ) возрастает с увеличением удельной поверхности матрицы, а также с ростом давления метана и температуры. Время импульса не оказывает значительного влияния на степень насыщения.

Установлен характер осаждения пироуглерода на компактированный пенографит: на начальной стадии происходит преимущественно образование слоя пироуглерода. Затем по мере насыщения начинает преобладать образование сферических частиц в макропорах пенографита и осаждение пироуглерода уже на эти частицы, происходит закупоривание открытых пор, отмечается снижение скорости осаждения.

Показано, что с увеличением степени насыщения матрицы пироуглеродом возрастает температура начала окисления, плотность, теплопроводность, снижается коэффициент теплового расширения, растет модуль Юнга (Е) композиционных материалом с пироуглеродом. Максимальное значение Е наблюдается для композита с содержанием пироуглерода 10−15 масс.%.

Достоверность основных выводов диссертации подтверждается большим статистическим объемом экспериментальных данных, их хорошей воспроизводимостью, выбором апробированных экспериментальных методик и применением современного научно-исследовательского оборудования.

Практическая значимость работы.

В работе впервые исследованы и проанализированы основные закономерности насыщения высокопористых образцов пенографита пироуглеродом, полученным импульсным пиролизом метана. Экспериментальные результаты можно использовать для оптимизации имеющихся или создания новых производственных процессов получения углерод-углеродных материалов.

Синтезированы новые углерод-углеродные материалы на основе пенографита с различной стойкостью к окислению, теплопроводностью и механо-прочностными характеристикам и.

Сформулированы принципы получения теплоизолирующего материала с улучшенными механо-прочностными свойствами и устойчивостью к окислению. Наиболее перспективным способом получения ю.

1 > V теплоизолирующего материала является осаждение низкоупорядоченного пироуглерода на высокопористую матрицу электрохимического пенографита.

Апробация работы.

Основные результаты работы доложены на 6-й, 7-й международных конференциях «Углерод: фундаментальные проблемы науки, материаловедение, технология» (Троицк, 2009 г.- Суздаль, 2010 г.), 15-м и 16-м международных симпозиумах по интеркалированным соединениям (ISIC-15, Пекин, Китай, 2009 г., ISIC-16, Пардубице, Чехия, 2011 г.), XVI и XVIII международных научных конференциях студентов, аспирантов и молодых ученых «Ломоносов» (Москва, 2009 г.- 2011 г.), 2-м и 3-м Международных форумах по нанотехнологиям Роснанофорум (Москва, 2009 г., Москва 2010 г.), международных конференциях по углероду «Carbon» (Клемсон, США, 2010 г., Краков, Польша, 2012 г.), «Diamond and Related Materials» (Гранада, Испания, 2012 г.).

Публикации.

По теме диссертации опубликовано 3 статьи в журналах из перечня ВАК РФ, 12 тезисов докладов, получено 3 патента РФ, подготовлено 1 методическое пособие для слушателей магистерской программы химического факультета МГУ.

Личный вклад автора.

Автором лично выполнены синтетическая часть работы — от получения углеродных матриц с заданными характеристиками до осаждения пироуглерода методом импульсного пиролиза метанаразработка методики насыщения высокопористых матрицизмерение температуропроводности образцовисследование с помощью микроскопиипроведены обобщение и анализ полученных данных.

Объем и структура работы.

Диссертация состоит из введения, обзора литературы, экспериментальной части, результатов и обсуждения, выводов, списка литературы (170 наименований). Работа изложена на 158 страницах печатного текста и содержит 79 рисунков и 18 таблиц.

7. Выводы.

1. Установлены морфологические закономерности импульсного осаждения пироуглерода на различные углеродные матрицы (углеродное волокно — пенографит — высокоориентированный графит). Пироуглерод, образующийся на горячих некаталитических поверхностях исследуемых углеродных матриц, является низкоупорядоченным с Ьс от 3 до 25 нм. Установлено, что скорость образования пироуглерода определяется природой матрицы и условиями осаждения.

2. Показано, что образование слоя пироуглерода или сферических частиц на пенографите определяется степенью насыщения: при малых степенях пиронасыщения а (ПУ) до 0,1 преобладает образование слоя пироуглерода толщиной до 50 нм. При увеличении а (ПУ) до 0,15−0,30 преобладает рост сферических частиц в макропорах графитовой матрицы. При степенях насыщения более 0,3 — образование агломератов до 10−20 мкм.

3. Установлено, что степень насыщения а (ПУ) углеродной матрицы пироуглеродом увеличивается с ростом пористости и удельной поверхности матрицы, ростом давления метана и температуры осаждения. Время импульса не оказывает значительного влияния на степень насыщения. Установлено, что условия импульсного осаждения определяют характер распределения пироуглерода в пористых матрицах.

4. Показано, что с увеличением степени насыщения пенографитовой матрицы пироуглеродом возрастает теплопроводность, температура начала окисления, снижается коэффициент линейного теплового расширения углерод-углеродного материала. В исследуемом диапазоне соотношений пенографит-пироуглерод наблюдается увеличение механо-прочностных характеристик, причем максимум модуля Юнга (Е) находится в интервале а (ПУ)=0,10−0,15.

5. Впервые с использованием разработанной методики получены высокопористые углерод-углеродные материалы с содержанием пироуглерода 10 масс.%, характеризующиеся повышенной на 150 °C температурой начала окисления, улучшенными механо-прочностными характеристиками (модуль Юнга до 19 МПа, КТЛР до 2* 10″ 6 К" 1) в сочетании с низкой теплопроводностью на уровне ^(900°С)=0,8−1,7 Вт/(м-К).? «11 | ' / > ^ 1,1 и 1 < ^ ^I.

Показать весь текст

Список литературы

  1. А.С. Углерод, межслоевые соединения на его основе. -Москва: Аспект Пресс. 1997. — 718 с.
  2. . Химия новых материалов и нанотехнологий. -Долгопрудный: ИД «Интеллект». 2011. — 464 с.
  3. А.И., Половников С. П. Углерод, углеродные волокна, углеродные композиты. Москва: Сайнс-Пресс. — 2007. — 192 с.
  4. JI.M., Трунов В. К. Рентгенофазовый анализ. Москва: Издательство Московского университета. — 1976. — 184 с.
  5. П.А. Образование углерода из углеводородов газовой фазы. Москва: Химия. — 1972. — 137 с.
  6. В.Б. Пористый углерод. Новосибирск: Институт катализа. — 1995. — 518 с.
  7. Piat R., Reznik В., Schnaek Е., Gerthsen D. Modeling the effect of microstructure on the elastic properties of pyrolytic carbon // Carbon. 2003. — V. 41. — № 9. — P. 1858−1862.
  8. Morgan P. Carbon fibers and their composites. London: Taylor and Francis.-2005.- 1134 p.
  9. Heimann R.B., Evsykov S.E., Koga Y. Carbon allotropes: a suggested classification scheme based on valence orbital hydridization // Carbon. 1997. -V. 35.-№ 10−11.-P. 1654−1658.
  10. Chung D.D.L. Review graphite // J. Mater. Sci. 2002. — V. 37 — P. 1475−1489.
  11. И.JI. Химическая энциклопедия. Москва: Советская энциклопедия. — 1988.
  12. Mermoux М., Chabre Y. Formation of graphite oxide // Synth.Met. -1989.-V. 34.-P. 157−162.
  13. Selig H., Ebert L.B. Graphite intercalation compounds // Adv. Inorg. Chem. Radiochem. 1980. — V. 23. — P. 281−327.t
  14. И.Г., Карпов И. И., Приходько В. П., Шай В. Физико-химические свойства графита и его соединений. Киев: Наукова Думка. -1990.-200 с.
  15. Herold A. Synthesis of graphite intercalation compounds / A. Herold // NATO ASY Ser. 1987. — V. 172. — Ser.B. — P. 3−45.
  16. Herold A., Furdin G., Guerard D., Hachim L., Nadi N.E., Vangelisti R. Some aspects of graphite intercalation compounds // Annales de Physique. 1986. -V. 11. -№ 2. — P. 3−11.
  17. Dzurus N.L., Hennig G.R. Graphite compounds // J. Am. Chem. Soc. -1957.-V. 79.-P. 1051−1054.
  18. Rudorff U. Graphite intercalation compounds // Adv. Inorg. Chem. Radiochem. 1959. — V. 1. — P. 223−266.
  19. Daumas N. M, Herold A.M. Sur les relations entre la notion de stade et les mecanismes reactionnels dans les composes d’insertion du graphite // C.R. Acad. Sci. 1969. — V. 268. — P. 373−375.
  20. Ebert L.B. Intercalation compounds of graphite // Ann. Rev. Mater. Sci. 1976. — V. 6.-P. 181−211.
  21. Metrot A., Fisher J.E. Charge-transfer reactions during anodic oxidation of graphite in H2S04 // Synth. Met. 1981. — V. 3. — P. 201−207.
  22. B.B., Сорокина H.E., Тверезовская O.A, Мартынов И. Ю., Сеземин А. В. Синтез соединений внедрения графита с HN03 // Вест. Моск. Ун-та. Серия 2 Химия. 1999. — Т. 40. — № 6. — С. 422−425.
  23. Besenhard J.O., Wudy Е., Mohwald H., Nickl J.J., Biberacher W., Foag W. Anodic oxidation of graphite in H2S04 dilatometry in situ X-ray diffraction -Impedance spectroscopy // Synth. Met. — 1983. — V. 7. — № 3−4. — P. 185−192.
  24. Sorokina N.E., Maksimova N.V., Avdeev V.V. Anodic oxidation of graphite in 10 to 98% HN03 // Inorg. Mater. 2001. — V. 37. — № 4. — P. 360−365.
  25. Enoki T., Suzuki M., Endo M. Graphite intercalation compounds and applications. Oxford: University Press. — 2003. — 440 p.
  26. Hummers W.S., Offeman R.E. Preparation of graphitic oxide // J. Am. Chem. Soc. 1958. — V. 80. — № 6. — P. 1339.
  27. Sorokina N.E., Nikol’skaya I.V., Ionov S.G., Avdeev V.V. Acceptor-type graphite intercalation compounds and new carbon materials based on them // Russ. Chem. Bull., Int. Ed. 2005. — V. 54. — № 8. — P. 1749−1767.
  28. Frackowiak E., Beguin F. Carbon materials for the electrochemical storage of energy in capacitors // Carbon. 2001. — V. 39. — № 6. — P. 937−950.
  29. Evans E.L., Lopez-Gonzalez D., Martin-Rodrigez E.S. Kinetics of the formation of the graphite oxide // Carbon. 1975. — V. 13. — P. 461−464.
  30. Brodie B.C. On the atomic weigth of graphite // J. Phil. Trans. Roy. Soc.- 1859.-P. 249−259.
  31. He H., Klinowski J., Forster M., Lerf A. A new structural model for graphite oxide // Chem. Phys. Lett. 1998. — V. 287. — № 1−2. — P. 53−56.
  32. A.C., Лисица B.B., Яковлев И. И. Исследование окисления графита растворами хлората натрия в безводной азотной кислоте // Ж. Неорг. X. 1976. — Т. 21. — № 10. — С. 2847−2849.
  33. Dikin D.A., Stankovich S., Zimney E.J., Piner R.D., Dommett G.H.B., Evmenenko G. Preparation and characterization of graphene oxide paper // Nature.- 2007. V. 448. — № 7152. — P.457−460.
  34. Boukhvalov D.W., Katsnelson M.I. Modeling of graphite oxide // J. Am. Chem. Soc.-2008.-V. 130.-№ 32.-P. 10 697−10 701.
  35. Dreyer D.R., Park S., Bielawski Ch.W., Ruoff R.S. The chemistry of graphene oxide // Chem. Soc. Rev. 2010. — V. 39. — P. 228−240.
  36. Lerf A., He H., Forster M., Klinowski J. Structure of Graphite Oxide Revisited // J. Phys. Chem. B. 1998. — V. 102. — P. 4477−4482.
  37. Szabo T., Berkesi O., Forgo P., Josepovits K., Sanakis Y., Petridis D., Dekany I. Evolution of surface functional groups in a series of progressively oxidized graphite oxides // Chem. Mater. 2006. — V. 18. — № 11. — P. 2740−2749.
  38. Nakajima T., Mabuchi A., Nagiwara R. A new structure model of graphite oxide // Carbon. 1988. — V. 26. — № 3. — P. 357−361.
  39. Lee J., Kim J., Hyeon T. Recent progress in the synthesis of porous carbon materials // Adv. Mater. 2006. — V. 18. — № 16. — P. 2073−2094.
  40. Afanasov I.M., Morozov V.A., Kepman A.V., Ionov S.G., Seleznev A.N., Tendeloo G.V., Avdeev V.V. Preparation, electrical and thermal properties of new exfoliated graphite-based composites // Carbon. 2009. — V. 27. — № 1. -P. 263−270.
  41. Furdin G. Exfoliation process and elaboration of new carbonaceous materials // Fuel. 1998. — V. 77. — № 6. — P. 479−485.
  42. Inagaki M., Kang F., Toyoda M. Exfoliation of graphite via intercalation compound // Chem. Phys. Carbon. 2004. — V. 29. — P. 1−69.
  43. Afanasov I.M., Shornikova O.N., Kirilenko D.A., Avdeev V.V., Tendeloo G.V. Graphite structural transformations during intercalation by HN03 and exfoliation // Carbon. 2010. — V. 48. — № 6. — P. 1862−1865.
  44. Wei X.H., Liu L., Zhang J.X., Shi J.L., Guo Q.G. HC104-graphite intercalation compound and its thermally exfoliated graphite // Mater. Lett. 2009. -V. 63.-№ 18−19.-P. 1618−1620.
  45. Kang F., Zheng Y.P., Wang H.N., Nishi Y., Inagaki M. Effect of preparation conditions on the characteristics of exfoliated graphite // Carbon. -2002.-V. 40.-№ 9.-P. 1575−1581.
  46. Celzard A., Mareche J.F., Furdin G. Modelling of exfoliated graphite // Prog. Mater Sci. 2005. — V. 50. — P. 93−179.
  47. Dowell M.B. Exfoliation of Intercalated Graphite. Part 2. Structure, Porosity, and the Mechanism of Exfoliation. In: Society AC, editor. Extended Abstracts, 12th biennial conf. on carbon. 1975. — Pennsylvania. USA. — P, 35−36.
  48. Chung D.D.L., Wong L.W. Measurement of thermal stress in graphite intercalated with bromine // Int. J. Thermophys. 1988. — V. 9. — № 2. — P. 279 282.
  49. Chung D.D.L. Review Exfoliation of Graphite // J. Mater. Sci. 1987. -P. 4190−4198.
  50. Celzard A., Krzesinka M., Mareche J.F., Puricellia S. Scalar and vectorial percolation in compressed expanded graphite // Physica A. 2001. — V. 294.-P. 283−294.
  51. Celzard A., Mareche J.F., Furdin G. Surface area of compressed expanded graphite // Carbon. 2002. — V. 40. — P. 2713−2718.
  52. Inagaki M., Suwa T. Pore structure analysis of exfoliated graphite using image processing of scanning electron micrographs // Carbon. 2001. — V. 39. -№ 6.-P. 915−920.
  53. Inagaki M. Pores in carbon materials Importance of their control // New Carbon Mater. — 2009. — V. 24. — № 3. — P. 193−222.
  54. Dowell M.B., Howard R.A. Tensile and compressive properties of flexible graphite foils // Carbon. 1986. — V. 24. — № 3. — P. 311−323.
  55. Celzard A., Schneider S., Mareche J.F. Densification of expanded graphite // Carbon. V. 2002. — V. 40. — P. 2185−2191.
  56. Biloe S., Mauran S. Gas flow through highly porous graphite matrices // Carbon. 2003. — V. 41. — P. 525−537.
  57. H.B., Кузнецов Б. Н., Микова M.M., Дроздов В. А. Сорбционные свойства композитов на основе терморасширенных графитов // РЖХ. 2006. — Т. L. — № 1. — С. 75−78.
  58. Celzard A. Preparation, electrical and elastic properties of new anisotropic expanded graphite-based composites // Carbon. 2002. — V. 40. -P. 557−566.
  59. Olives R., Mauran S. A highly conductive porous medium for solid-gas reactions: Effect of the dispersed phase on the thermal tortuosity // Transp. Porous Media. 2001. — V. 41. — P. 377−394.
  60. C.B., Сорокина H.E., Ященко H.B., Малахо А. П., Авдеев В. В. Теплофизические свойства высокопористых монолитов на основе пенографита // Неорг. Матер. 2013. — Т. 4. — Принято в печать.
  61. Wang G., Sun Q., Zhang Y., Fan J., Ma L. Sorption and regeneration of magnetic exfoliated graphite as a new sorbent for oil pollution // Desalination. -2010. V. 263. — № 1−3. — P. 183−188.
  62. Toyoda M., Inagaki M. Heavy oil sorption using exfoliated graphite new application of exfoliated graphite to protect heavy oil pollution // Carbon. 2000. — V. 38.-№ 2.-P. 199−210.
  63. Mareche J.F., Begin D., Furdin G., Puricelli S., Pajack J., Albiniak A. Monolithic activated carbons from resin impregnated expanded graphite // Carbon. -2001.-V. 39.-P. 771−785.
  64. Chen X., Zheng P., Kang F., Shen W.C. Preparation and structure analysis of carbon/carbon composite made from phenolic resin impregnation into exfoliated graphite // J. Phys. Chem. Sol. 2006. — V. 67. — P. 1141−1144.
  65. Afanasov I.M., Lebedev O.I., Kolozhvary B.A., Smirnov A.V., Tendeloo G.V. Nickel/Carbon composite materials based on expanded graphite // New Carbon Mater. 2011. — V. 26. — № 5. — P. 335−340.
  66. B.B. Новое поколение высокоэффективных уплотнений: опыт применения в нефтехимии и арматуростроении // Химическое и нефтехимическое машиностроение. 2002. — Т. 1. — С. 17−18.
  67. Reynolds R.A., Greinke R.A. Influence of expansion volume of intercalated graphite on tensile properties of flexible graphite // Carbon. Letters to the Editor. 2001. — V. 39. — P. 473−481.
  68. Sorokina N.E., Redchitz A.V., Ionov S.G., Avdeev V.V. Different exfoliated graphite as a base of sealing materials // J. Phys. Chem. Solids. 2006. -V. 67.-P. 1202−1204.
  69. Rutherford R.B., Dudman. R.L. Ultra-thin flexible expanded graphite resistance heater. // Patent US 2 004 086 449. 6.05.2004.
  70. Ellacott S.D. Insulation material. // Patent US 2 269 394. 9.02.1994.
  71. Miller D., Griffin Y., Segger M. Carbon foam structural insulated panel. // Patent US 2 007 073 530. 28.06.2007.
  72. И.А., Авдеев B.B., Кузнецов Н. Г., Яковлев Н. Н., Овчинников В. Н., Сорокина Н. Е., Тверезовская О. А., Серебряников Н. И., Воронин В. П., Горюнов И. Т. Состав для получения огнезащитного материала. // Патент RU 2 130 953 от 27.05.1999.
  73. Wang Z., Han Е., Ке W. Influence of expandable graphite on fire resistance and water resistance of flame-retardant coatings // Corros. Sci. 2007. -V. 49.-P. 2237−2253.
  74. Zatorski W., Brzozowski Z.K., Kolbrecki A. New developments in chemical modification of fire-safe rigid polyurethane foams // Polym. Degrad. Stab. 2008. — V. 93. — № 11. — P. 2071−2076.
  75. Oberlin A. Pyrocarbons. Review // Carbon. 2002. — V. 40. — P. 7−24.
  76. Bourrat X., Langlais F., Chollon G., Vignoles G.L. Low temperature Pyrocarbons. Review // J. Braz. Chem. Soc. 2006. — V. 17. — № 6. — P. 10 901 095.
  77. Delhaes P. Review: Chemical vapor deposition and infiltration processes of carbon materials // Carbon. 2002. — V. 40. — № 5. — P. 641−657.
  78. Meadows P.J., Lopez-Honorato E., Xiao P. Fluidized bed chemical vapor deposition of pyrolytic carbon II. Effect of deposition conditions on anisotropy // Carbon. — 2009. — V. 47. — № 1. — P. 251−262.
  79. Xu H.J., Huang B.Y., Yi M.Z., Xiong X. Influence of matrix carbon texture on the temperature field of carbon/carbon composites during braking // Tribol. Int.-2011.-V. 44.-№ l.-P. 18−24.
  80. Wang Y., Lei В., He L., Yi M. Study on the microstructure of C/C composite brakes worn surface // Cailiao Yanjiu Xuebao/Chin. J. Mater. Res. -2010. V. 24. — № 5. — P. 471−477.
  81. Xiong X., Huang B.Y., Li J.H., Xu H.J. Friction behaviors of carbon/carbon composites with different pyrolytic carbon textures // Carbon. -2006. V. 44. — № 3. — P. 463−467.
  82. Okpalugo T.I.T., Ogwu A.A., Maguire P.D., McLaughlin J.A.D., Hirst D.G. In-vitro blood compatibility of a-C:H:Si and a-C:H thin films // Diamond Relat. Mater. 2004. — V. 13. — № 4−8. — P. 1088−1092.
  83. Olcott E.L. Pyrolytic biocarbon materials // Journal of Biomedical Materials Research. 1974. — V. 8. — № 3. — P. 209−217.
  84. Pesakova V., Klezl Z., Balik K., Adam M. Biomechanical and biological properties of the implant material carbon-carbon composite covered with pyrolytic carbon // J. Mater. Sci. Mater. Med. — 2000. — V. 11. — № 12. — P. 793−798.
  85. Hench L.L. Bioceramics // J. Am. Ceram. Soc. 1998. — V. 81. — № 7. -P. 1705−1727.
  86. Stinton D.P., Angelini P., Caputo A.J., Lackey W.J. Coating of Cristalline Nuclear Waste Forms to Improve Inertness // J. Am. Ceram. Soc. -1982. V. 65. — № 8. — P. 394−398.
  87. Keeley G.P., McEvoy N., Kumar S., Peltekis N., Mausser M., Duesberg G.S. Thin film pyrolytic carbon electrodes: A new class of carbon electrode for electroanalytical sensing applications // Electrochem. Commun. 2010. — V. 12. -№ 8.-P. 1034−1036.
  88. Hadi M., Rouhollahi A., Yousefi M. Application of nanocrystalline graphite-like pyrolytic carbon film electrode for voltammetric sensing of lead // J. Appl. Electrochem. 2012. — V. 42. — № 3. — P. 179−187.
  89. McEvoy N., Peltekis N., Kumar S., Rezvani E., Nolan H., Keeley G.P., Blau W.J., Duesberg G.S. Synthesis and analysis of thin conducting pyrolytic carbon films // Carbon. 2012. — V. 50. — № 3. — P. 1216−1226.
  90. Lieberman M.L., Pierson H.O. Effect of gas phase conditions on resultant matrix pyrocarbons in carbon/carbon composites // Carbon. 1974. — V. 12. — № 3. — P. 233−241.
  91. Lieberman M.L., Pierson H.O. The chemical vapor deposition of carbon on carbon fibers// Carbon. 1975. -V. 13. -№ 3. — P. 159−166.
  92. Reznik В., Huttinger K.J. On the terminology for pyrolytic carbon. Letter to the editor // Carbon. 2002. — V. 40. — P. 617−636.
  93. Sauder C., Lamon J., Pailler R. The tensile properties of carbon matrices at temperatures up to 2200 °C // Carbon. 2005. — V. 43. — P. 2054−2065.
  94. Gray R.J., Cathcart J.V. Polarized light microscopy of pyrolytic carbon deposits // J. Nucl. Mater. 1966. — V. 19. — P. 81−89.
  95. Rosas J.M., Bedia-Matamoros J., Rodriguez-Mirasol J., Cordero Т. Kinetics of pyrolytic carbon infiltration for the preparation of ceramic/carbon and carbon/carbon composites // Carbon. 2004. — V. 42. — № 7. — P. 1285−1290.
  96. Benzinger W., Huttinger K.J. Chemical Vapour Infiltration of Pyrocarbon: I. Some Kinetic Considerations // Carbon. 1996. — V. 34. — № 3. -P. 1465−1471.
  97. Д., Томас У. Гетерогенный катализ. Москва: Мир. — 1969. -452 с.
  98. Я.И. Курс физической химии. Т. 2. Москва: Химия. -1973.-624 с.
  99. Becker A., Huttinger K.J. Chemistry and kinetics of chemical vapor deposition of pyrocarbon—IV. Pyrocarbon deposition from methane in the low temperature regime // Carbon. 1998. — V. 36. — № 3. — P. 213−24.
  100. Becker A., Huttinger K.J. Chemistry and kinetics of chemical vapor deposition of pyrocarbon—II. Pyrocarbon deposition from ethylene, acetylene, and1,3-butadiene in the low temperature regime // Carbon. 1998. — V. 36. — № 3. -P. 177−199.
  101. Hu Z.J., Zhang W.G., Huttinger K.J., Reznik B., Gerthsen D. Influence of pressure, temperature and surface area /volume ratio on the texture of pyrolytic carbon deposited from methane // Carbon. 2003. — V. 41. — P. 749−758.
  102. Benzinger W., Becker A., Huttinger K.J. Chemistry and kinetic of chemical vapour deposition of pyrocarbon: I. Fundamentals of kinetics and chemical reaction engineering // Carbon. 1996. — V. 34. — № 8. — P. 957−966.
  103. Delhaes P. Fibers and Composites. World of Carbon. London: Taylor&Francis. — 2003. -245 p.
  104. Frenklach M., Wang H. Detailed mechanism and modeling of soot particle formation // Springer Ser. Chem. Phys. 1994. — V. 59. — P. 162−190.
  105. Marinov H., Pitz W., Westbrook C.K., Castaldi M.J., Senkan S.M. Modeling of aromatic and polycyclic aromatic hydrocarbon formation in premixedmethane and ethane flames // Combustion Sci. and Tech. 1996. -V.l 16−117. — P. 211−218.
  106. Sarofim A.F., Longwell J.P., Wornat M.J., Makherjee J. The role of biaryl reactions in PAH and soot formation // Springer Ser. Chem. Phys. 1994. -V. 59.-P.485−500.
  107. Dagaut P., Boettner J.C., Cathonnet M. Ethylene pyrolysis and oxidation—a kinetic modeling study // Int J Chem Kin. 1990. — V. 22. — № 6. -P. 641−664.
  108. Benson S.W., Haugen G.R. Mechanisms for some high-temperature gasphase reactions of ethylene acetylene and butadiene // J. Phys Chem. 1967. — V. 71.-№ 6.-p. 1735−1746.
  109. Krestinin A.V. Detailed modeling of soot formation in hydrocarbon pyrolysis // Combust Flame. 2000. — V. 121. -№ 3. — P. 513−524.
  110. Dimitrijevic S.T., Paterson S., Pacey P.D. Pyrolysis of acetylene during viscous flow at low conversions- influence of acetone // J. Anal. Appl. Pyrol. -2000.-V. 53. № 1. — P. 107−122.
  111. Xu X., Pacey P.D. Oligomerization and cyclization reactions of acetylene // Phys Chem Chem Phys. 2005. — V. 7. — № 2. — P. 326−333.
  112. Vlasov P.A., Warnatz J. Detailed kinetic modeling of soot formation in hydrocarbon pyrolysis behind shock waves // Proc. Combust. Inst. 2003. — V. 29. -P. 2335−2341.
  113. Gerard L., Vignoles A., Landlaisa F., Descampsa C., Mouchona A., Pochea H.L., Reagea N., Bertranda N. CVD and CVI of pyrocarbon from various precursors // Surf. Coat. Technol. 2004. — V. 188−189. ~ P. 241−249.
  114. Hu J., Huttinger K.J. Chemistry and kinetics of chemical vapor deposition of pyrocarbon—VIII. Carbon deposition from methane at low pressures // Carbon. 2001. — V. 39. — № 3. — P. 433−441.
  115. Lacroix R., Fournet I., Ziegler-Devin I., Marquaire P.M. Kinetic modelling of surface reactions involved in CVI of pyrocarbon obtained by propane pyrolysis // Carbon. 2010. — V. 48. — P. 132−144.
  116. Norinaga K., Deutschmann O., Huttinger K.J. Analysis of gas phase compounds in chemical vapor deposition of carbon from light hydrocarbons // Carbon. 2006. — V. 44. — № 9. — P. 1790−1800.
  117. Hu Z.J., Huttinger K.J. Mechanisms of carbon deposition—A kinetic approach // Carbon. 2002. — V. 40. — № 4. — P. 624−628.
  118. Dong G.L., Huttinger K.J. Consideration of reaction mechanisms leading to pyrolytic carbon of different textures // Carbon. 2002. — V. 40. — P. 25 152 528.
  119. Tong J.B., Pareja P., Back M.H. Correlation of the reactivity, the active surface area and the total surface area of thin films of pyrolytic carbon // Carbon. -1982.-V. 20. -№ 3. -P. 191−194.
  120. Hoffman W.P., Vastola F.J., Walker P.L. Pyrolysis of propylene over carbon active sites II. Pyrolysis products // Carbon. 1988. — V. 26. — № 4. — P. 485−499.
  121. Hoffman W.P., Vastola F.J., Walker P.L. Pyrolysis of propylene over carbon active sites-I. Kinetics // Carbon. 1985. -V. 23. -№ 2. — P. 151−161.
  122. Chen C.J., Back M.H. The simultaneous measurement of the rate of formation of carbon and hydrocarbon products in the pyrolysis of methane // Carbon. 1979.-V. 17.-P. 175−180.
  123. Linke J., Koizlik K., Nickel H. The physical properties of pyrocarbon and their relationship to the aglomerate model // 1st International Conference on Carbon. 1977. — Baden-Baden. — P. 800−810.
  124. Murdie N., Hyjazie A., Hippo E.J. The role of active sites in the inhibition of gas-carbon reactions // Carbon. 1989. — V. 27. — № 5. — P. 689−695.
  125. Chen Т., Reznik В., Gerthsen D., Zhang W., Huttinger K. Microscopical study of carbon/carbon composites obtained chemical vapor infitration of 0/0/90/90 carbon fiber performs // Carbon. 2005. — V. 43. — P. 3088−3098.
  126. Leyssale J.M., Costa J.P.D, Germain C., Weisbecker P., Vignoles G.L. Structural features of pyrocarbon atomistic models constructed from transmission electron microscopy images // Carbon. 2012. — V. 50. — № 12. — P. 4388−4400.
  127. Feron O., Langlais F., Naslain R., Thebault J. On kinetic and microstructural transitions in the CVD of pyrocarbon from propane // Carbon. -1999.-V. 37.-P. 1343−1353.
  128. Reznik В., Gerthsen D., Zhang W., Huttinger K.J. Texture changes in the matrix of an infiltrated carbon fiber felt studied by polarized light microscopy and selected area electron diffraction // Carbon. 2003. — V. 41. — P. 376−379.
  129. Zhang W.G., Huttinger K.J. Chemical vapor deposition of carbon from methane at various pressures, partial pressures and substrate area/reactor volume ratio // J. Mater. Sci. 2001. — V. 36. — № 14. — P. 3503−10.
  130. Choy K.L. Chemical vapour deposition of coatings // Prog. Mater. Sci. -2003. V. 48. — № 2. — P. 57−170.
  131. B.C., Виргильев Ю. С., Костиков В. И., Шипков H.H. Искусственный графит. Москва: Металлургия. — 1986. — 272 с.
  132. В.В., Тарновский Ю. М. Композиционные материалы. -Москва: Машиностроение. 1990. — 512 с.
  133. Moore A.W. Highly oriented pyrolytic graphite // Chem. Phys. of Carbon. 1973. — V. 11. — P.69−187.
  134. Luo L., Bonnissel M., Tondeur D. Compacted exfoliated natural graphite as heat conduction medium // Carbon. 2001. — V. 39. — P. 2151−2161.
  135. П.Г. Промышленные полимерные композиционные материалы. Москва: Химия. — 1980. -472 с.
  136. Gross T.S., Nguyen Kh., Buck M., Timoshchuk N., Tsukrov I.I., Reznik В., Piat R., Bohlke T. Tension-compression anisotropy of in-plane elastic modulus for pyrolytic carbon // Carbon. 2011. — V. 49. — P. 2141 -2161.
  137. Luo R., Liu Т., Li J., Zhang H., Chen Z., Tian G. Thermophysical properties of carbon/carbon composites and physical mechanism of thermal expansion and thermal conductivity // Carbon. 2004. — V. 42. — № 14. — P. 28 872 895.
  138. Д.В., Ионов С. Г., Сизов А. И. Свойства углерод-углеродных композитов на основе терморасширенного графита // Неорг. Мат. -2010.-Т. 46.-№ 2.-С. 170−176.
  139. Savchenko D.V., Ionov S.G. Physical properties of carbon composite materials with low percolation threshold // J. Phys. Chem. Solids 2010. — V. 71. — № 4 — P. 548−550.
  140. В.Я. Углеродные волокна. Москва: Самиздат. — 2005. -467 с.
  141. Toyoda М., Katoh М., Inagaki М. Intercalation and exfoliation behavior of carbon fibers during electrolysis in H2S04 // J. Phys. Chem. Solids. 2004. — V. 65.-P. 257−261.
  142. Yue Z.R., Jiang W., Wang L., Gardner S.D., Pittman C.U. Surface characterization of electrochemically oxidized carbon fibers // Carbon. 1999. -V. 37.-№ 11.-P. 1785−1796.
  143. Maultzsch J., Thomsen C., Reich S. Double-resonant Raman scattering in graphite: Interference effects, selection rules, and phonon dispersion. // Phys. Rev. B. -2004. V.70. -№ 155 403. P. 1−9.
  144. Ferrari А.С., Robertson J. Interpretation of Raman spectra of disordered and amorphous carbon // Phys. Rev. B: Condens. Matter. Mater. Phys. 2000. — V. 63.-№ 20.-P. 14 095−14 107.
  145. Pfrang A., Reznik В., Gerthsen D., Schimmel T. Comparative study of differently textured pyrolytic carbon layers by atomic force, transmission electron and polarized light microscopy. Letters to the Editor // Carbon. 2003. — V. 41. -P. 179−198.
  146. Reznik В., Gerthsen D. Microscopic study of failure mechanisms in infiltrated carbon fiber felts // Carbon. 2003. — V. 41. — P. 57−69.
  147. Bourrat X., Fillion A., Naslain R., Chollon G., Brendle M. Regenerative laminar pyrocarbon // Carbon. 2002. — V. 40. — P. 2931 -2945.
  148. Reznik В., Fotouhi M., Gerthsen D. Structural analysis of pyrolytic carbon deposits on a planar cordierite substrate // Carbon. 2004. — V. 42. — P. 1311−1313.
  149. Tan P., Dimovski S., Gogotsi Y. Raman scattering of non-planar graphite: arched edges, polyhedral crystals, whiskers and cones // Raman Spectroscopy in Carbons: form Nanotubes to Diamond. 2004. P. 2289−2310.
  150. Casiraghi C., Ferrari A. C., Robertson J. Raman spectroscopy of hydrogenated amorphous carbons // Phys. Rev. B. 2005. — V. 72. — № 85 401. -P. 1−15.
  151. Li K., He Y., Li H., Wei J., Zhang L., Li S. Deposition model and microstructure of low temperature pyrocarbon produced by chemical vapor deposition//Carbon.-2012.-V. 50.-№ 10.-P, 3961.
  152. Kaae J.L. The mechanism of the deposition of pyrolytic carbons // Carbon. 1985. — V. 23. — № 6. — P. 665−673.
  153. Lee W.J., Li C., Gunning J., Burke N., Patel J. Is the structure of anisotropic pyrolytic carbon a consequence of growth by the Volmer-Weber island growth mechanism? // Carbon. 2012.- V. 50. — № 13. — P. 4773−4780.
  154. Ehrburger P., Louys F., Lahaye J. The concept of active sites applied to the study of carbon reactivity // Carbon. 1989. — V. 27. — № 3. — P. 389−393.
  155. Ziegler I., Fournet R., Marquaire P.M. Influence of surface on chemical kinetic of pyrocarbon deposition obtained by propane pyrolysis // J. Anal. Appl. Pyrolysis. 2005. — V. 73.-Xo l.-P. 107−115.
  156. Dupel P., Bourrat X., Pailler P. Structure of Pyrocarbon Infiltration by Pulse-CVI//Carbon. 1995,-V. 33.-P. 1193−1204.
  157. Han J.H., Cho K.W., Lee K.H., Kim H. Porous graphite matrix for chemical heat pumps // Carbon. 1998. — V. 36. — № 12. — P. 1801−1810.
  158. Ohzawa Y., Yamanaka Y., Naga K., Nakajima T. Pyrocarbon-coating on powdery hard-carbon using chemical vapor infiltration and its electrochemical characteristics // J. Power Sources. 2005. — V. 146. — № 1−2. — P. 125−128.
  159. Kujawski M., Pearse J.D., Smela E. Elastomers filled with exfoliated graphite as compliant electrodes // Carbon. 2010. — V. 48. — P. 2409−2417.
  160. Debelak B., Lafdi K. Use of exfoliated graphite filler to enhance polymer physical properties // Carbon. 2007. — V. 45. — P. 1727−1737.
  161. Ganguli S., Roy A.K., Anderson D.P. Improved thermal conductivity for chemically functionalized exfoliated graphite/epoxy composites // Carbon. 2008. -V. 46.-P. 806−817.
  162. Davies J., Rawlings R.D. Mechanical properties in compression of CVI-densified porous C/C composite // Compos. Sci. Technol. 1999. — V. 59. — № 1. -P. 97−104.
  163. Hu Y., Luo R., Zhang Y., Zhang J., Li J. Effect of preform density on densification rate and mechanical properties of C/C composites // Mater. Sci. Eng., A. 2010. — V. 527.-№ 3.-P. 797−801.
  164. Zhang W.G., Hu Z.J., Huttinger K.J. Chemical vapor infiltration of carbon fiber felt: optimization of densification and carbon microstructure // Carbon. 2002. — V. 40. — № 14. — P. 2529−2545.
Заполнить форму текущей работой