Π₯Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊΠ° Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΡ ΠΠΠ-ΡΠ·Π½Π°ΡΡΠ΅Π³ΠΎ ΡΡΠ°ΡΡΠΊΠ° Π±Π΅Π»ΠΊΠ° ΠΈ ΠΠΠ ΠΏΠΎ Π±ΠΎΠ»ΡΡΠΎΠΉ Π±ΠΎΡΠΎΠ·Π΄ΠΊΠ΅
Π‘ΠΎΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠ΅ ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»Π΅ΠΉ Π²ΠΎΠ΄ΠΎΡΠΎΠ΄Π½ΡΡ ΡΠ²ΡΠ·Π΅ΠΉ ΠΈ ΠΏΠ°ΡΠ½ΠΎΠ³ΠΎ Π³ΠΈΠ΄ΡΠΎΡΠΎΠ±Π½ΠΎΠ³ΠΎ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΡ ΠΈ ΡΠ°ΠΌΠΈ Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΡΡΠΈΡ ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»Π΅ΠΉ Ρ ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ ΡΠΈΠΏΠΎΠ² ΠΠΠ-ΡΠ·Π½Π°ΡΡΠΈΡ Π΄ΠΎΠΌΠ΅Π½ΠΎΠ² ΡΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎ ΡΠ°Π·Π»ΠΈΡΠ½Ρ. Povey J.F., Diakun G.P., Garner C.D., Wilson S.P., Laue E.D. Metal ion co-ordination in the DNA binding domain of the yeast transcriptional activator GAL4. // FEBS Lett… Π§ΠΈΡΠ°ΡΡ Π΅ΡΡ >
Π₯Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊΠ° Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΡ ΠΠΠ-ΡΠ·Π½Π°ΡΡΠ΅Π³ΠΎ ΡΡΠ°ΡΡΠΊΠ° Π±Π΅Π»ΠΊΠ° ΠΈ ΠΠΠ ΠΏΠΎ Π±ΠΎΠ»ΡΡΠΎΠΉ Π±ΠΎΡΠΎΠ·Π΄ΠΊΠ΅ (ΡΠ΅ΡΠ΅ΡΠ°Ρ, ΠΊΡΡΡΠΎΠ²Π°Ρ, Π΄ΠΈΠΏΠ»ΠΎΠΌ, ΠΊΠΎΠ½ΡΡΠΎΠ»ΡΠ½Π°Ρ)
Π‘ΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΠ΅
- Π‘ΠΏΠΈΡΠΎΠΊ ΠΏΡΠΈΠ½ΡΡΡΡ ΡΠΎΠΊΡΠ°ΡΠ΅Π½ΠΈΠΉ
- 1. ΠΠ²Π΅Π΄Π΅Π½ΠΈΠ΅
- 2. Π¦Π΅Π»Ρ ΠΈ Π·Π°Π΄Π°ΡΠΈ ΡΠ°Π±ΠΎΡΡ
- 3. ΠΠ°ΡΡΠ½Π°Ρ Π½ΠΎΠ²ΠΈΠ·Π½Π°
- 4. ΠΠ±Π·ΠΎΡ Π»ΠΈΡΠ΅ΡΠ°ΡΡΡΡ
- 4. 1. ΠΡΠΈΠ½ΡΠΈΠΏΡ ΡΠ·Π½Π°Π²Π°Π½ΠΈΡ ΠΠΠ Π±Π΅Π»ΠΊΠΎΠΌ
- 4. 2. ΠΡΠΎΠ±Π΅Π½Π½ΠΎΡΡΠΈ ΡΡΡΡΠΊΡΡΡΡ ΠΠΠ
- 4. 3. Π ΠΎΠ»Ρ Π°-ΡΠΏΠΈΡΠ°Π»ΠΈ ΠΈ-ΡΡΡΡΠΊΡΡΡΡ Π² ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠΈ ΠΠΠ-Π±Π΅Π»ΠΊΠΎΠ²ΡΡ ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠΎΠ²
- 4. 4. Π‘ΡΡΠΎΠ΅Π½ΠΈΠ΅ ΠΠΠ-ΡΠ·Π½Π°ΡΡΠΈΡ ΠΎΠ±Π»Π°ΡΡΠ΅ΠΉ Π±Π΅Π»ΠΊΠ°
- 4. 5. Π ΠΎΠ»Ρ ΠΊΠΎΠ½ΡΠΎΡΠΌΠ°ΡΠΈΠΎΠ½Π½ΡΡ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠΉ ΠΠΠ Π² ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠΈ ΠΠΠ-Π±Π΅Π»ΠΊΠΎΠ²ΡΡ ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠΎΠ²
- 4. 6. ΠΠΠ-ΡΠ·Π½Π°ΡΡΠΈΠΉ Π΄ΠΎΠΌΠ΅Π½Ρ
- 4. 6. 1. ΠΠΠ-ΡΠ·Π½Π°ΡΡΠΈΠΉ Π΄ΠΎΠΌΠ΅Π½ ΠΠ’Π
- 4. 6. 2. Π¦ΠΈΠ½ΠΊ ΡΠΎΠ΄Π΅ΡΠΆΠ°ΡΠΈΠ΅ ΠΠΠ-ΡΠ·Π½Π°ΡΡΠΈΠ΅ Π΄ΠΎΠΌΠ΅Π½Ρ
- 4. 7. ΠΠΎΠ΄ ΠΠΠ-Π±Π΅Π»ΠΊΠΎΠ²ΠΎΠ³ΠΎ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΡ
- 4. 8. ΠΠ°Π·Ρ Π΄Π°Π½Π½ΡΡ , ΡΠΎΠ΄Π΅ΡΠΆΠ°ΡΠΈΠ΅ ΠΈΠ½ΡΠΎΡΠΌΠ°ΡΠΈΡ ΠΎ ΠΏΡΠΎΡΡΡΠ°Π½ΡΡΠ²Π΅Π½Π½ΠΎΠΉ ΡΡΡΡΠΊΡΡΡΠ΅ ΠΠΠ-Π±Π΅Π»ΠΊΠΎΠ²ΡΡ ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠΎΠ²
- 5. ΠΠ°ΡΠ΅ΡΠΈΠ°Π»Ρ ΠΈ ΠΌΠ΅ΡΠΎΠ΄Ρ
- 6. ΠΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΠΎΡΠ½ΠΎΠ²Π½ΡΡ ΠΎΠ±ΡΠ΅ΠΊΡΠΎΠ²
- 7. Π Π΅Π·ΡΠ»ΡΡΠ°ΡΡ
- 7. 1. Π€ΠΎΡΠΌΠ°Π»ΠΈΠ·ΠΎΠ²Π°Π½Π½ΠΎΠ΅ ΠΎΠΏΠΈΡΠ°Π½ΠΈΠ΅ Π·ΠΎΠ½Ρ ΠΊΠΎΠ½ΡΠ°ΠΊΡΠ°
- 7. 2. Π Π°ΡΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΠΠ-ΡΠ·Π½Π°ΡΡΠΈΡ Π±Π΅Π»ΠΊΠΎΠ²ΡΡ ΡΡΠ°ΡΡΠΊΠΎΠ² ΠΏΠΎ ΠΊΠ»Π°ΡΡΠ΅ΡΠ°ΠΌ
- 7. 3. ΠΠ»Π°ΡΡΠΈΡΠΈΠΊΠ°ΡΠΈΡ ΠΠΠ-ΡΠ·Π½Π°ΡΡΠΈΡ ΡΡΠ°ΡΡΠΊΠΎΠ² ΠΏΠΎ Π²ΡΠΎΡΠΈΡΠ½ΠΎΠΉ ΡΡΡΡΠΊΡΡΡΠ΅
- 7. 4. Π Π°ΡΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»Ρ Π²ΠΎΠ΄ΠΎΡΠΎΠ΄Π½ΡΡ ΡΠ²ΡΠ·Π΅ΠΉ
- 7. 5. Π Π°ΡΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»Ρ Π³ΠΈΠ΄ΡΠΎΡΠΎΠ±Π½ΠΎΠ³ΠΎ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΡ
- 7. 6. ΠΠ½Π°Π»ΠΈΠ· Π²ΠΊΠ»Π°Π΄Π° ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΠΉ ΠΠΠ Π² ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ Π³ΠΈΠ΄ΡΠΎΡΠΎΠ±Π½ΠΎΠ³ΠΎ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΡ
- 7. 7. Π ΠΎΠ»Ρ ΠΊΠΎΡΠΎΡΠΊΠΈΡ ΠΠΠ-ΡΠ·Π½Π°ΡΡΠΈΡ ΡΡΠ°ΡΡΠΊΠΎΠ²
- 7. 8. ΠΠ°ΡΠΈΠ°Π±Π΅Π»ΡΠ½ΠΎΡΡΡ ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»Π΅ΠΉ Π΄Π»Ρ
- ΠΠΠ-ΡΠ·Π½Π°ΡΡΠΈΡ
ΡΡΠ°ΡΡΠΊΠΎΠ²
- 7. 9. ΠΠΎΠΊΠ°Π·Π°ΡΠ΅Π»ΠΈ Ρ Π±Π΅Π»ΠΊΠΎΠ² Ρ ΠΌΠ°Π»ΠΎΠΉ ΡΠΏΠ΅ΡΠΈΡΠΈΡΠ½ΠΎΡΡΡΡ ΡΠ·Π½Π°Π²Π°Π½ΠΈΡ ΠΠΠ
- 7. 10. Π Π°ΡΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»Π΅ΠΉ ΠΏΠΎ ΡΠΈΠΏΠ°ΠΌ ΠΠΠ-ΡΠ·Π½Π°ΡΡΠΈΡ Π΄ΠΎΠΌΠ΅Π½ΠΎΠ²
- 7. 11. Π‘ΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Π΄Π²ΡΡ ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»Π΅ΠΉ
- 7. 12. ΠΠΎΡΡΡΠΎΠ΅Π½ΠΈΠ΅ ΡΠ°Π±Π»ΠΈΡ ΡΠΈΠ·ΠΈΠΊΠΎ-Ρ ΠΈΠΌΠΈΡΠ΅ΡΠΊΠΈΡ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΠΉ
- 7. 13. Π Π°ΡΡΠ΅Ρ ΠΌΠΎΠ΄Π΅Π»ΠΈ ΠΠΠ-Π±Π΅Π»ΠΊΠΎΠ²ΠΎΠ³ΠΎ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΡ
- 8. ΠΠ±ΡΡΠΆΠ΄Π΅Π½ΠΈΠ΅ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠΎΠ²
- 8. 1. ΠΡΠ³Π°Π½ΠΈΠ·Π°ΡΠΈΡ ΠΈΠ½ΡΠΎΡΠΌΠ°ΡΠΈΠΈ
- 8. 2. ΠΡΠ±ΠΎΡ ΠΊΡΠΈΡΠ΅ΡΠΈΡ ΠΎΡΠ±ΠΎΡΠ° ΠΠΠ-ΡΠ·Π½Π°ΡΡΠ΅Π³ΠΎ ΡΡΠ°ΡΡΠΊΠ° ΡΠΈΠ»ΡΡΡ 6Π45)
- 8. 3. Π ΠΎΠ»ΠΈ ΡΠΈΡΠΎΠ·ΠΈΠ½Π° ΠΈ Π³ΡΠ°Π½ΠΈΠ½Π° Π² Π³ΠΈΠ΄ΡΠΎΡΠΎΠ±Π½ΠΎΠΌ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΠΈ
- 8. 4. ΠΠΎΠΊΠ°Π·Π°ΡΠ΅Π»ΠΈ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΡ Π±Π΅Π»ΠΊΠ° Ρ Π±ΠΎΠ»ΡΡΠΎΠΉ Π±ΠΎΡΠΎΠ·Π΄ΠΊΠΎΠΉ ΠΠΠ
- 8. 5. ΠΠ½Π°ΡΠ΅Π½ΠΈΠ΅ ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»Π΅ΠΉ Ρ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΡΡ Π·ΠΎΠ½ ΠΊΠΎΠ½ΡΠ°ΠΊΡΠ°
- 8. 6. Π‘ΠΎΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠ΅ ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»Π΅ΠΉ Ρ ΡΠ°Π·Π½ΡΡ
- ΠΠΠ-ΡΠ·Π½Π°ΡΡΠΈΡ
Π΄ΠΎΠΌΠ΅Π½ΠΎΠ²
- 8. 7. ΠΠΎΡΡΡΠΎΠ΅Π½ΠΈΠ΅ ΡΠ°Π±Π»ΠΈΡ ΡΠΈΠ·ΠΈΠΊΠΎ-Ρ ΠΈΠΌΠΈΡΠ΅ΡΠΊΠΈΡ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΠΉ
- 9. ΠΡΠ²ΠΎΠ΄Ρ
- 10. ΠΠΈΡΠ΅ΡΠ°ΡΡΡΠ°
9. ΠΡΠ²ΠΎΠ΄Ρ.
1. ΠΠΎΠ»ΡΡΠ΅Π½Π½Π°Ρ Π² ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠ΅ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΡ ΡΠ΅ΠΎΡΠ΅ΡΠΈΡΠ΅ΡΠΊΠΈΡ ΠΏΡΠ°Π²ΠΈΠ» ΠΌΠΎΠ΄Π΅Π»Ρ ΠΠΠ-Π±Π΅Π»ΠΊΠΎΠ²ΠΎΠ³ΠΎ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΡ Π°Π΄Π΅ΠΊΠ²Π°ΡΠ½ΠΎ ΠΎΠΏΠΈΡΡΠ²Π°Π΅Ρ ΡΠΏΠ΅ΡΠΈΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΊΠΎΠ½ΡΠ°ΠΊΡΡ, ΠΎΠ±ΡΠ°Π·ΡΡΡΠΈΠ΅ΡΡ ΠΏΡΠΈ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΠΈ Ρ ΠΏΡΠΎΠΌΠΎΡΠΎΡΠ½ΠΎΠΉ ΠΎΠ±Π»Π°ΡΡΡΡ ΡΠΎΠ±ΡΡΠ²Π΅Π½Π½ΠΎΠ³ΠΎ Π³Π΅Π½Π° ΠΠΠ-ΠΌΠ΅ΡΠΈΠ»ΡΡΠ°Π½ΡΡΠ΅ΡΠ°Π·Ρ SsoII, ΡΡΠΎ ΡΠ²ΠΈΠ΄Π΅ΡΠ΅Π»ΡΡΡΠ²ΡΠ΅Ρ ΠΎ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΠΈ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΡ ΡΠ΅ΠΎΡΠ΅ΡΠΈΡΠ΅ΡΠΊΠΈΡ ΠΏΡΠ°Π²ΠΈΠ» Π΄Π»Ρ ΠΏΡΠ΅Π΄ΡΠΊΠ°Π·Π°Π½ΠΈΡ ΠΠΠ-Π±Π΅Π»ΠΊΠΎΠ²ΡΡ ΠΊΠΎΠ½ΡΠ°ΠΊΡΠΎΠ².
2. Π Π°Π·ΡΠ°Π±ΠΎΡΠ°Π½Π° ΠΎΡΠΈΠ³ΠΈΠ½Π°Π»ΡΠ½Π°Ρ ΠΎΠ±ΡΠ΅ΠΊΡΠ½ΠΎ-ΠΎΡΠΈΠ΅Π½ΡΠΈΡΠΎΠ²Π°Π½Π½Π°Ρ ΡΠ΅Π»ΡΡΠΈΠΎΠ½Π½Π°Ρ Π±Π°Π·Π° Π΄Π°Π½Π½ΡΡ ΠΠΠ-Π±Π΅Π»ΠΊΠΎΠ²ΡΡ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΠΉ DNA-Protein Interaction Data Base (DPIDB) Ρ Π°Π΄Π΅ΠΊΠ²Π°ΡΠ½ΠΎΠΉ ΠΎΡΠ³Π°Π½ΠΈΠ·Π°ΡΠΈΠ΅ΠΉ ΠΈΠ½ΡΠΎΡΠΌΠ°ΡΠΈΠΈ ΠΎ ΡΡΠ΅Ρ ΠΌΠ΅ΡΠ½ΡΡ ΡΠ°ΡΡΠΈΡΡΠΎΠ²ΠΊΠ°Ρ ΠΠΠ-Π±Π΅Π»ΠΊΠΎΠ²ΡΡ ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠΎΠ².
3. ΠΠΏΠ΅ΡΠ²ΡΠ΅ ΡΠ°Π·ΡΠ°Π±ΠΎΡΠ°Π½ΠΎ ΠΈ Π°Π»Π³ΠΎΡΠΈΡΠΌΠΈΡΠ΅ΡΠΊΠΈ ΡΠ΅Π°Π»ΠΈΠ·ΠΎΠ²Π°Π½ΠΎ ΡΠΎΡΠΌΠ°Π»ΠΈΠ·ΠΎΠ²Π°Π½Π½ΠΎΠ΅ ΠΎΠΏΠΈΡΠ°Π½ΠΈΠ΅ Π·ΠΎΠ½Ρ ΠΠΠ-Π±Π΅Π»ΠΊΠΎΠ²ΠΎΠ³ΠΎ ΠΊΠΎΠ½ΡΠ°ΠΊΡΠ°, ΡΡΠΎ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎ ΠΎΡΡΡΠ΅ΡΡΠ²Π»ΡΡΡ ΠΊΠΎΠΌΠΏΡΡΡΠ΅ΡΠ½ΡΠΉ ΡΡΠ°Π²Π½ΠΈΡΠ΅Π»ΡΠ½ΡΠΉ Π°Π½Π°Π»ΠΈΠ· Π·ΠΎΠ½ ΠΊΠΎΠ½ΡΠ°ΠΊΡΠ° Π² Π»ΡΠ±ΠΎΠΌ ΠΎΠ±ΡΠ΅ΠΌΠ΅ Π΄Π°Π½Π½ΡΡ .
4. ΠΠΏΠ΅ΡΠ²ΡΠ΅ ΠΏΡΠ΅Π΄Π»ΠΎΠΆΠ΅Π½Ρ Π½Π΅ΡΠ΅Π»ΠΎΡΠΈΡΠ»Π΅Π½Π½ΡΠ΅ ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»ΠΈ Π²ΠΎΠ΄ΠΎΡΠΎΠ΄Π½ΡΡ ΡΠ²ΡΠ·Π΅ΠΉ ΠΈ Π³ΠΈΠ΄ΡΠΎΡΠΎΠ±Π½ΠΎΠ³ΠΎ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΡ, ΡΠ°ΡΡΡΠΈΡΠ°Π½Π½ΡΠ΅ Π½Π° ΠΎΡΠ½ΠΎΠ²Π΅ ΠΌΠ΅ΡΠΎΠ΄Π° ΠΈΠ·Π²Π»Π΅ΡΠ΅Π½ΠΈΡ ΠΏΠΎΡΠ΅Π½ΡΠΈΠ°Π»Π° Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΡ ΠΈΠ· ΡΡΠ°ΡΠΈΡΡΠΈΡΠ΅ΡΠΊΠΈΡ Π΄Π°Π½Π½ΡΡ ΠΎ ΡΡΠ΅Ρ ΠΌΠ΅ΡΠ½ΠΎΠΉ ΡΡΡΡΠΊΡΡΡΠ΅ ΠΠΠ-Π±Π΅Π»ΠΊΠΎΠ²ΡΡ ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠΎΠ² Ρ ΡΡΠ΅ΡΠΎΠΌ Π²ΡΠ΅Ρ ΠΈΠ·Π²Π΅ΡΡΠ½ΡΡ Π½Π° ΡΠ΅Π³ΠΎΠ΄Π½ΡΡΠ½ΠΈΠΉ Π΄Π΅Π½Ρ ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠΎΠ². ΠΡΠΈ ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»ΠΈ ΡΠΈΡΠ»Π΅Π½Π½ΠΎ ΠΎΡΡΠ°ΠΆΠ°ΡΡ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ ΠΠΠ-ΡΠ·Π½Π°ΡΡΠ΅Π³ΠΎ ΡΡΠ°ΡΡΠΊΠ° Π±Π΅Π»ΠΊΠ° Ρ Π±ΠΎΠ»ΡΡΠΎΠΉ Π±ΠΎΡΠΎΠ·Π΄ΠΊΠΎΠΉ ΠΠΠ.
5. ΠΠΏΠ΅ΡΠ²ΡΠ΅ ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ, ΡΡΠΎ Π΄Π»Ρ ΠΊΠΎΡΡΠ΅ΠΊΡΠ½ΠΎΠ³ΠΎ ΡΠ°ΡΡΠ΅ΡΠ° Π³ΠΈΠ΄ΡΠΎΡΠΎΠ±Π½ΠΎΠ³ΠΎ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΡ Π² Π·ΠΎΠ½Π΅ ΠΠΠ-Π±Π΅Π»ΠΊΠΎΠ²ΠΎΠ³ΠΎ ΠΊΠΎΠ½ΡΠ°ΠΊΡΠ° Π½Π΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΠΎ ΡΡΠΈΡΡΠ²Π°ΡΡ, ΡΡΠΎ Π² ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠΈ Π³ΠΈΠ΄ΡΠΎΡΠΎΠ±Π½ΡΡ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΠΉ ΠΌΠ΅ΠΆΠ΄Ρ Π±ΠΎΠ»ΡΡΠΎΠΉ Π±ΠΎΡΠΎΠ·Π΄ΠΊΠΎΠΉ ΠΠΠ ΠΈ Π±Π΅Π»ΠΊΠΎΠΌ ΠΏΡΠΈΠΌΠ΅ΡΠ½ΠΎ Π² 45% ΡΠ»ΡΡΠ°Π΅Π² ΡΡΠ°ΡΡΠ²ΡΡΡ Π‘5Π ΠΈ Π‘ Π± Π°ΡΠΎΠΌΡ ΡΠΈΠΌΠΈΠ½Π°. ΠΡΠΎΠΌΠ΅ ΡΠΎΠ³ΠΎ, Π°ΡΠΎΠΌΡ Π‘5 ΠΈ Π‘ Π± ΡΠΈΡΠΎΠ·ΠΈΠ½Π°, ΠΈ Π°ΡΠΎΠΌΡ Π‘5 ΠΈ Π‘8 Π³ΡΠ°Π½ΠΈΠ½Π° Π² ΡΡΠΌΠΌΠ΅ ΠΎΠ±ΡΠ°Π·ΡΡΡ ΠΏΡΠΈΠΌΠ΅ΡΠ½ΠΎ ΡΠΎ ΠΆΠ΅ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²ΠΎ Π³ΠΈΠ΄ΡΠΎΡΠΎΠ±Π½ΡΡ ΠΊΠΎΠ½ΡΠ°ΠΊΡΠΎΠ².
6. Π‘ΠΎΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠ΅ ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»Π΅ΠΉ Π²ΠΎΠ΄ΠΎΡΠΎΠ΄Π½ΡΡ ΡΠ²ΡΠ·Π΅ΠΉ ΠΈ ΠΏΠ°ΡΠ½ΠΎΠ³ΠΎ Π³ΠΈΠ΄ΡΠΎΡΠΎΠ±Π½ΠΎΠ³ΠΎ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΡ ΠΈ ΡΠ°ΠΌΠΈ Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΡΡΠΈΡ ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»Π΅ΠΉ Ρ ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ ΡΠΈΠΏΠΎΠ² ΠΠΠ-ΡΠ·Π½Π°ΡΡΠΈΡ Π΄ΠΎΠΌΠ΅Π½ΠΎΠ² ΡΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎ ΡΠ°Π·Π»ΠΈΡΠ½Ρ.
1. ΠΠΎΠ»Π΅ΠΊΡΠ»ΡΡΠ½ΠΎΠ΅ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΠ΅. // Π., ΠΠΈΡ, 198 4.
2. ΠΠ°ΡΠΈΠ»ΡΠ΅Π² Π‘. Π., Π‘Π΅Π²Π°ΡΡΡΡΠ½ΠΎΠ²Π° Π. Π. Π‘ΡΡΡΠΊΡΡΡΠ½ΡΠ΅ Π°ΡΠΏΠ΅ΠΊΡΡ ΠΠΠ-Π±Π΅Π»ΠΊΠΎΠ²ΠΎΠ³ΠΎ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΡ Π½Π° ΠΏΡΠΈΠΌΠ΅ΡΠ΅ ΡΠ΅ΡΠΌΠ΅Π½ΡΠ° 5-ΠΌΠ΅ΡΠΈΠ»ΡΠΈΡΠΎΠ·ΠΈΠ½-ΠΌΠ΅ΡΠΈΠ»ΡΡΠ°Π½ΡΡΠ΅ΡΠ°Π·Ρ. // Π., ΠΠΠΠ£, 1997.
3. ΠΠ°ΡΠΈΠ»ΡΠ΅Π² Π‘. Π., ΠΠ»Π΅ΠΊΡΠ΅Π΅Π²ΡΠΊΠΈΠΉ Π. Π., Π‘ΠΏΠΈΡΠΈΠ½ Π‘. Π., Π’Π°ΡΠ»ΠΈΡΠΊΠΈΠΉ Π. Π., Π’ΠΈΡ ΠΎΠ½ΠΎΠ²Π° Π’. Π., ΠΠ°ΡΡΠ³ΠΈΠ½Π° Π. Π‘. ΠΡΠ΅Π½ΠΊΠ° Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΡ ΡΠ·Π½Π°ΡΡΠ΅ΠΉ ΠΎΠ±Π»Π°ΡΡΠΈ Π±Π΅Π»ΠΊΠ° Ρ Π±ΠΎΠ»ΡΡΠΎΠΉ Π±ΠΎΡΠΎΠ·Π΄ΠΊΠΎΠΉ ΠΠΠ. // ΠΠΈΠΎΡΠΈΠ·ΠΈΠΊΠ°, 1999, 12 (Π² ΠΏΠ΅ΡΠ°ΡΠΈ).
4. ΠΠ΅Π½Π³Π΅Ρ Π. ΠΡΠΈΠ½ΡΠΈΠΏΡ ΡΡΡΡΠΊΡΡΡΠ½ΠΎΠΉ ΠΎΡΠ³Π°Π½ΠΈΠ·Π°ΡΠΈΠΈ Π½ΡΠΊΠ»Π΅ΠΈΠ½ΠΎΠ²ΡΡ ΠΊΠΈΡΠ»ΠΎΡ. // Π., ΠΠΈΡ, 1987.
5. ΠΠ°Π½ΡΠΎΡ Π§., Π¨ΠΈΠΌΠΌΠ΅Π» Π. ΠΠΈΠΎΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠ°Ρ Ρ ΠΈΠΌΠΈΡ, Π² 3-Ρ ΡΠΎΠΌΠ°Ρ . // Π., ΠΠΈΡ, 1984.
6. ΠΡΠΎΠΈΠ½ Π. ΠΠ΅Π½Ρ. // Π., ΠΠΈΡ, 1987.
7. ΠΡΠ°ΡΠ½Π΅ Π. ΠΠ΅ΡΠ΅ΠΊΠ»ΡΡΠ΅Π½ΠΈΠ΅ Π³Π΅Π½ΠΎΠ². Π Π΅Π³ΡΠ»ΡΡΠΈΡ Π³Π΅Π½Π½ΠΎΠΉ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ ΠΈ ΡΠ°Π³ X. // Π., ΠΠΈΡ, 1988.
8. PDB newsletter. // PDB, 1999.
9. Protein Data Bank Contents Guide: atomic coordinate entry format description, version 2.1 (draft). // PDB, 1996.
10. Abola E.E., Sussman J.L., Prilusky J., Manning N.O. Protein Data Bank archives of three-dimensional macromolecu-lar structures. // Methods Enzymol., 1997, v. 277, p. 556 571.
11. Abola E.E., Manning N.O., Prilusky J., Stampf D.R., Sussman J.L. The Protein Data Bank: current status and future challenges. // J.Res.Natl.Inst.Stand.Technol., 1996, v. 101, p. 231−241.
12. Aggarwal A.K., Wah D.A. Novel site-specific DNA endonu-cleases. // Curr.Opin.Struct.Biol., 1998, v. 8, p. 19−25.
13. Albright R.A., Matthews B.W. Crystal structure of a-Cro bounding to a consensus operator at 3.0 A resolution. // J.Mol.Biol., 1998, v. 280, p. 137−151.
14. Allen M.D., Yamasaki K., Ohme-Takagi M., Tateno M., Suzuki M. A novel mode of DNA recognition by a fJ-sheet revealed by the solution structure of the GCC-box binding domain in complex with DNA. // EMBO J., 1998, v. 17, p. 5484−5496.
15. Anderson J.E., Ptashne M., Harrison S.C. Structure of the repressor-operator complex of bacteriophage 434. // Nature, 1987, v. 326, p. 846−852.
16. Apaya R.P., Bondi M., Price S.L. The orientation of N-H.0=C and N-H.N hydrogen bonds in biological systems:
17. How good is a point charge as a model for a hydrogen binding atom? // J.Comput.-Aided Mol. Desighn, 1997, v. 11, p. 479−490.
18. Auffinger P., Westhof E. Simulation of the molecular dynamics of nucleic acids. // Curr. Opin.Struct.Biol., 1998, v. 8, p. 227−236.
19. Balaeff A., Churchill M.E.A., Schulten K. Structural prediction of a complex between the chromosomal protein HMG-D and DNA. // Proteins Struct.Funct.Genet., 1998, v. 30, p. 113−135.
20. Barrett T., Savva R., Panayotou G., Barlow T., Brown T., Jiricny J., Pearl L.H. Crystal structure of a G: T/U mismatch-specific DNA glycosylase: mismatch recognition by complementary-strand interactions. // Cell, 1998, v. 92, p. 117 129.
21. Bastia D. Structural aspects of protein-DNA interactions as revealed by conversion of the interacting protein into a sequence-specific cross-linking agent or a chemical nuclease. // Structure, 1996, v. 4, p. 661−664.
22. Berg J.M. DNA binding specificity of steroid receptors. // Cell, 1989, v. 57, p. 1065−1068.
23. Berg J.M. Proposed structure for the zinc-binding domains from transcription factor IIIA and related proteins. // Proc.Natl.Acad.Sci.U.S.A, 1988, v. 85, p. 99−102.
24. Berger C., Piubelli L., Haditsch U., Bosshard H.R. Diffu-siom-controlled DNA recognition by an unfolded, monomeric bZIP transcription factor. // FEBS Lett., 1998, v. 425, p. 14−18.
25. Berger J.M. Type II topoisomerases. // Curr.Opin.Struct. Biol., 1998, v. 8, p. 26−32.
26. Berger J.M., Gamblin S.J., Harrison S.C., Wang J.C. Structure and mechanism of DNA topoisomerase II. // Nature, 1996, v. 379, p. 225−232.
27. Bernstein F.C., Koetzle T.F., Williams G.J., Meyer E.E. Jr., Brice M.D., Rodgers J.R., Kennard 0., Shimanouchi T., Tasumi M. The Protein Data Bank: a computer-based archival file for macromolecular structures. // J.Mol.Biol., 1977, v. 112, p. 535−542.
28. Billeter M., Qian Y.Q., Otting G., Muller M., Gehring W., Wuthrich K. Determination of the nuclear magnetic resonance solution structure of an antennapedia homeodomain-DNA complex. // J.Mol.Biol., 1993, v. 234, p. 1084−1097.
29. Bird L.E., Subramanya H.S., Wigley D.B. Helicases: a unifying structural theme? // Curr.Opin.Struct.Biol., 1998, v. 8, p. 14−18.
30. Bochkarev A., Barwell J.A., Pfuetzner R.A., Bochkareva E., Frappier L., Edwards A.M. Crystal structure of the DNA-binding domain of the Epstein-Barr virus origin-binding protein, EBNA1, bound to DNA. // Cell, 1996, v. 84, p. 791 800.
31. Bochkarev A., Barwell J.A., Pfuetzner R.A., Furey W., Edwards A.M., Frappier L. Crystal structure of the DNA-bind-ing domain of the Epstein-Barr virus origin-binding protein EBNA1. // Cell, 1995, v. 83, p. 39−46.
32. Bornberg-Bauer E., Rivals E., Vingron M. Computational approach to identify leucine zippers. // Nucleic Acids Res., 1998, v. 26, p. 2740−2746.
33. Brautigam C.A., Steitz T.A. Structural and functional insights provided by crystal structures of DNA polymerases and their substrate complexes. // Curr.Opin. Struct. Biol., 1998, v. 8, p. 63.
34. Brennan R.G. DNA recognition by the helix-turn-helix motif. // Curr.Opin.Struct.Biol., 1992, v. 2, p. 100−108.
35. Brennan R.G. Interaction of the helix-turn-helix binding domain. // Curr.Opin.Struct.Biol., 1991, v. 1, p. 80−88.
36. Brennan R.G., Matthews B.W. Structural basis of DNA-protein recognition. // Trends Biochem.Sei., 1989, v. 14, p. 286−290.
37. Buning H., Gatner U., von Schack D., Baeuerle P.A., Zorbas H. The histidine tail of a recombination DNA binding proteins may influence the quality of interaxtion with DNA. // Anal.Biochem., 1996, v. 234, p. 227−230.
38. Burley S.K. The TATA box binding protein. // Curr.Opin. Struct.Biol., 1996, v. 6, p. 69−75.
39. Chen J., Pongor S., Simoncsits A. Recognition of DNA by single-chain derivatives of the phage 434 repressor: high affinity binding depends on both the contacted and non-contacted base pairs. // Nucleic Acids Res., 1997, v. 25, p. 2047;2054.
40. Cho Y., Gorina S., Jeffrey P.D., Pavletich N.P. Crystal structure of a p53 tumor suppressor-DNA complex: understanding tumorigenic mutations. // Science, 1994, v. 265, p. 346−355.
41. Choo Y. End effects in DNA recognition by zinc finger arrays. // Nucleic Acids Res., 1998, v. 26, p. 554−557.
42. Clark K.L., Halay E.D., Lai E., Burley S.K. Co-crystal structure of the HNF-3/fork head DNA-recognition motif resembles histone H5. // Nature, 1993, v. 364, p. 412−420.
43. Crothers D.M. DNA curvature and deformation in protein-DNA complexes: a step in the right direction. // Proc.Natl.Acad. Sci. USA, 1998, v. 95, p. 15 163−15 165.
44. Damante G., Pellizzari L., Esposito G., Fogolari F., Viglino P., Fabbro D., Tell G., Formisano S., Lauro R.D. A molecular code dictates sequence-specific DNA recognition by ho-meodomains. // EMBO J., 1996, v. 15, p. 4992−5000.
45. Deng Q.L., Ishii S., Sarai A. Binding site analysis of c-Myb: screening of potentional binding sites by using the mutation matrix derived from systematic binding affinity measurements. // Nucleic Acids Res., 1996, v. 24, p. 766 774 .
46. Desjarlais J.R., Berg J.M. Use of a zinc-finger consensus sequence framework and specificity rules to design specific DNA binding proteins. // Proc.Natl.Acad.Sci.USA, 1993, v. 90, p. 2256−2260.
47. Dickerson R.E. DNA bending: the prevalence of kinkiness and the virtues of normality. // Nucleic Acids Res., 1998, v. 26, p. 1906;1926.
48. Dickerson R.E. Definition and nomenclature of nucleic acid structure parameters. // J.Biomol.Struct.Dyn., 1989, v. 4, p. 627−634.
49. Dodd I.B., Egan J.B. Improved detection of helix-turn-helix DNA-binding motifs in protein sequences. // Nucleic Acids Res., 1990, v. 18, p. 5019−5026.
50. Doherty A.J., Serpell L.C., Ponting C.P. The helix-hairpin-helix DNA-binding motif: a structural basis for non-sequence-specific recognition of DNA. // Nucleic Acids Res., 1996, v. 24, p. 2488−2497.
51. Duong T.H., Zakrzewska K. Sequence specificity of bacte-riphage 434 repressor-operator complexation. // J.Mol.Biol., 1998, v. 280, p. 31−39.
52. Edwards A.M., Bochkarev A., Frappier L. Origin DNA-binding proteins. // Curr.Opin.Struct.Biol., 1998, v. 8, p. 49−53.
53. Ellenberger T.E., Brandl C.J., Struhl K., Harrison S.C. The GCN4 basic region leucine zipper binds DNA as a dinner of uninterrupted a helices: crystal structure of the protein-DNA complex. // Cell, 1992, v. 71, p. 1223−1237.
54. Elrod-Erickson M., Benson T.E., Pabo C.O. High-resolution structures of variant Zif268-DNA complexes: implication for understanding zinc finger-DNA recognition. // Structure, 1998, v. 6, p. 451−464.
55. Elrod-Erickson M., Rould M.A., Nekludova L., Pabo C.O. Zif268 protein-DNA complex refined at 1.6 A: a model system for understanding zinc finger-DNA interaction. // Structure, 1996, v. 4, p. 1171−1180.
56. Ezaz-Nikpay K., Verdine G.L. The effects of N7-methylgua-nine on duplex DNA structure. // Chem.Biol., 1994, v. 1, p. 235−240.
57. Fairall L., Schwabe J.W., Chapman L., Finch J.T., Rhodes D. The crystal structure of a two zinc-finger peptide reveals an extension to the rules for zinc-finger/DNA recognition. // Nature, 1993, v. 366, p. 483−487.
58. Feng D.F., Johnson M.S., Doolittle R.F. Aligning amino acid sequences: comparison of commonly used methods. // J.Mol.Evol., 1985, v. 21, p. 112−125.
59. Feng J.A., Johnson R.C., Dickerson R.E. Hin recombinase bound to DNA: the origin of specificity in major and minor groove interactions. // Science, 1994, v. 263, p. 348−355.
60. Ferre-D'Amare A.R., Pognonec P., Roeder R.G., Burley S.K. Structure and function of the b/HLH/Z domain of USF. // EMBO J., 1994, v. 13, p. 180−189.
61. Fields D.S., Stormo G.D. Quantatative DNA sequencing to determine the relative protein-DNA binding constants to multiple DNA sequences. // Anal.Biochem., 1994, v. 219, p. 230 239.
62. Fogh R.H., Ottleben G., Ruterjans H., Schnarr M., Boelens R., Kaptein R. Solution structure of the LexA repressor.
63. DNA binding domain determined by 1H NMR spectroscopy. // EMBO J., 1994, v. 13, p. 3936−3944.
64. Fraenkel E., Pabo C.O. Comparison of X-ray and NMR structures for the Antennapedia homeodomain-DNA complex. // Nat.Struct.Biol., 1998, v. 5, p. 692−697.
65. Fraenkel E., Rould M.A., Chambers K.A., Pabo C.O. Engrailed homeodomain-DNA complex at 2.2 A resolution: a detailed view of the interface and comparison with other engrailed structures. // J.Mol.Biol., 1998, v. 284, p. 351 361.
66. Frankel A.D., Bredt D.S., Pabo C.O. Tat protein from human immunodeficiency virus forms a metal-linked dimer. // Science, 1988, v. 240, p. 70−73.
67. Freedman L.P., Luisi B.F., Korszun Z.R., Basavappa R., Si-gler P.B., Yamamoto K.R. The function and structure of the metal coordination sites within the glucocorticoid receptor DNA binding domain. // Nature, 1988, v. 334, p. 543 546.
68. Giffin W., Torrance H., Rodda D.J., Prefontaine G.G., Pope L., Hache R.J.G. Sequence-specific DNA binding by Ku autoantigen and its effect on transcription. // Nature, 1996, v. 380, p. 265−268.
69. Gilis D., Rooman M.J. Stability changes upon mutation of solvent-accessible residues in proteins evaluted by database-derived potentials. // J.Mol.Biol., 1996, v. 257, p. 1112−1126.
70. Gorin A.A., Zhurkin V.B., Olson W.K. B-DNA twisting correlates with base-pare morphology. // J.Mol.Biol., 1995, v. 247, p. 34−48.
71. Gromiha M.M., Munteanu M.G., Simon I., Pongor S. The role of DNA bending in Cro protein-DNA interaction. // Biophys.Chem., 1997, v. 69, p. 153−160.
72. Harrison S.C. A structural taxonomy of DNA-binding domains. // Nature, 1991, v. 353, p. 715−719.
73. Harrison S.C., Aggarwal A.K. DNA recognition by proteins with the helix-turn-helix motif. // Annu.Rev.Biochem., 1990, v. 59, p. 933−969.
74. Hegde R.S., Grossman S.R., Laimins L.A., Sigler P.B. Crystal structure at 1.7 A of the bovine papillomavirus-1 E2 DNA-binding domain bound to its DNA target. // Nature, 1992, v. 359, p. 505−512.
75. Jacobs G., Michaels G. Zinc finger gene database. // New Biol., 1990, v. 2, p. 583.
76. Janin J. Quantifuing biological specificity: the statistical mechanics of molecular recognition. // Proteins Struct.Funct. Genet., 1996, v. 25, p. 438−445.
77. Jansen C., Gronenborn A.M., Clore G.M. The binding of the cyclic AMP receptor protein to synthetic DNA sites containing permutations in the consensus sequence TGTGA. // Biochem.J., 1987, v. 246, p. 227−232.
78. Jeon C., Yoon H., Agarwal K. The transcription factor TFI-IS zinc ribbon dipeptide Asp-Glu is critical for stimulation of elongation and RNA cleavage by RNA polymerase II. // Proc.Natl.Acad.Sci.U.S .A, 1994, v. 91, p. 9106−9110.
79. Jin C., Marsden I., Chen X., Liao X. Dynamic DNA contacts observed in the NMR structure of winged helix protein-DNA complex. // J.Mol.Biol., 1999, v. 289, p. 683−690.
80. Jones S., van Heyningen P., Berman H.M., Thronton J.M. Protein-DNA interactions: a structural analysis. // J.Mol.Biol., 1999, v. 287, p. 877−896.
81. Jordan S.R., Pabo C.O. Structure of the lambda complex at 2.5 A resolution: details of the repressor-operator interactions. // Science, 1988, v. 242, p. 893−899.
82. Kabsch W., Sander C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. // Biopolymers, 1983, v. 22, p. 2577−2637.
83. Kaptein R., Zuiderweg E.R., Scheek R.M., Boelens R., van Gunsteren D. A protein structure from nuclear magnetic resonance data Lac repressor headpiece. // J.Mol.Biol., 1985, v. 182, p. 179−182.
84. Karlin S., Brendel V. Chance and statistical significance in protein and DNA sequence analysis. // Science, 1992, v. 257, p. 39−49.
85. Keller W., Konig P., Richmond T.J. Crystal structure of a bZip/DNA complex at 2.2 A: determinants of DNA specificrecognition. // J.Mol.Biol., 1995, v. 254, p. 657−667.
86. Kim J.L., Nikolov D.B., Burley S.K. Co-crystal structure of TBP recognizing the minor groove of a TATA element. // Nature, 1993, v. 365, p. 520−527.
87. Kim Y., Geiger J.H., Hahn S., Sigler P.B. Crystal structure of a yeast TBP/TATA-box complex. // Nature, 1993, v. 365, p. 512−527.
88. Kissinger C.R., Liu B.S., Martin-Blanco E., Kornberg T.B., Pabo C.O. Crystal structure of an engrailed homeodomain-DNA complex at 2.8 A resolution: a framework for understanding homeodomain-DNA interactions. // Cell, 1990, v. 63, p. 579−590.
89. Klemm J.D., Rould M.A., Aurora R., Herr W., Pabo C.O. Crystal structure of the Oct-1 POU domain bound to an octamer site: DNA recognition with tethered DNA-binding modules. // Cell, 1994, v. 77, p. 21−32.
90. Klug A., Rhodes D. Zinc fingers: a novel protein fold for nucleic acid recognition. // Cold Spring Harb.Symp. Quant.Biol., 1987, v. 52, p. 473−482.
91. Kodandapani R., Pio F., Ni C., Piccialli G., Klemsz M., McKercher S., Maki R.A., Ely K.R. A new pattern for helix-turn-helix recognition revealed by the PU. l ETS-domain-DNA complex. // Nature, 1996, v. 380, p. 456−460.
92. Kohn W.D., Mant C.T., Hodges R.S. a-helical protein assembly motifs. // J.Biol.Chem., 1997, v. 272, p. 2583−2586.
93. Konig P., Girado R., Chapman L., Rhodes D. The crystal structure of the DNA-binding domain of yeast RAP1 in complex with telomeric DNA. // Cell, 1996, v. 85, p. 125−136.
94. Kostrewa D., Winkler F.K. Mg-+ binding to the active site of EcoRV endonuclease: a cristallographic study of complexes with substrate and product DNA at 2 A resolution. // Biochemistry, 1995, v. 34, p. 683−696.
95. Kostrewa D., Granzin J., Stock D., Choe H.W., Labahn J., Saenger W. Crystal structure of the factor for inversion stimulation FIS at 2.0 A resolution. // J.Mol.Biol., 1992, v. 226, p. 209−226.
96. Koudelka G.B. Recognition of DNA structure by 434 repressor. // Nucleic Acids Res., 1998, v. 26, p. 669−675.
97. Leplae R., Hubbard T., Tramontane" A. GLASS: a tool to visualize protein structure prediction data in three dimensions and evaluate their consistency. // Proteins Struct.Funct. Genet., 1998, v. 30, p. 339−351.
98. Lesser D.R., Kurpiewski M.R., Waters T., Connolly B.A., Jen-Jacobson L. Facilitated distortion of the DNA site enhances EcoRI endonuclease-DNA recognition. // Proc.Natl.Acad. Sci.U.S.A, 1993, v. 90, p. 7548−7552.
99. Lindauer K., Bendic C., Suhnel J. HBexplore a new tool for identifying and analysing hydrogen bonding patterns in biological macromolecules. // CABIOS communication, 1996, v. 12 (4), p. 281−289.
100. Lipanov A., Kopka M.L., Kaczor-Grzeskowiak M., Quintana J., Dickerson R.E. Structure of the B-DNA decamer C-C-A-A-C-I-T-T-G-G in two different space groups: conformation flexibility of B-DNA. // Biochemistry, 1993, v. 32, p. 13 731 389.
101. Louse-May S., Auffinger P., Westhof E. Calculation of nucleic acid conformation. // Curr.Opin.Struct.Biol., 1996, v. 6, p. 289−298.
102. Luger K., Richmond T.J. DNA binding within the nucleosome core. // Curr.Opin.Struct.Biol., 1998, v. 8, p. 33−40.
103. Luger K., Rechsteiner T.J., Flaus A.J., Waye M.M., Richmond T.J. Characterization of nucleosome core particles containing histone proteins made in bacteria. // J.Mol.Biol., 1997, v. 272, p. 301−311.
104. Luisi B.F., Xu W.X., Otwinowski Z., Freedman L.P., Yamamo-to K.R., Sigler P.B. Crystallographic analysis of the interaction of the glucocorticoid receptor with DNA. // Nature, 1991, v. 352, p. 497−505.
105. Luscombe N.M., Laskowski R.A., Thronton J.M. NUCPLOT: a program to generate schematic diagrams of protein-nucleic acid interactions. // Nucleic Acids Res., 1997, v. 25, p. 4940−4945.
106. Ma P.C.M., Rould M.A., Weintraub H., Pabo C.O. Crystal structure of MyoD bHLH domain-DNA complex: perspectives on DNA recognition and implications for transcriptional activation. // Cell, 1994, v. 77, p. 451−459.
107. Mandel-Gutfreund Y., Margalit H., Jernigan R.L., Zhurkin V.B. A role for CH.0 interactions in protein-DNA recognition. // J.Mol.Biol., 1998, v. 277, p. 1129−1140.
108. Mandel-Gutfreund Y., Margalit H. Quantitave parameters for amino acid-base interaction: implications for prediction of protein-DNA binding sites. // Nucleic Acids Res., 1998, v. 26, p. 2306−2312.
109. Mandel-Gutfreund Y., Schueler 0., Margalit H. Comprehensive analysis of hydrogen bonds in regulatory protein DNA-complexes: insearch of common principles. // J.Mol.Biol., 1995, v. 253, p. 370−382.
110. Marmorstein R.Q., Carey M., Ptashne M., Harrison S.C. DNA recognition by GAL4: structure of a protein-DNA complex. // Nature, 1992, v. 356, p. 408−414.
111. Matsuo H., Shirakawa M., Kyogoku Y. Three-dimentional dimer structure of the X-Cro repressor in solution as determined by heteronuclear multidimensional NMR. // J.Mol.Biol., 1995, v. 254, p. 668−680.
112. Matthews B.W. Protein-DNA interaction. No code for recognition. // Nature, 1988, v. 335, p. 294−295.
113. McCammon J.A. Theory of biomolecular recognition. // Curr.Opin.Struct.Biol., 1998, v. 8, p. 245−249.
114. Misra V.K., Sharp K.A., Friedman R.A., Honig B. Salt effects on ligand-DNA binding minor groove binding antibiotics. // J.Mol.Biol., 1994, v. 238, p. 245−263.
115. Misra V.K., Hecht J.L., Sharp K.A., Friedman R.A., Honig B. Salt effects on protein-DNA interactions. The A-cI repressor andEcoRI endonuclease. // J.Mol.Biol., 1994, v. 238, p. 264−280.
116. Mondragon A., Subbiah S., Almo S.C., Drottar M., Harrison S.C. Structure of the amino-terminal domain of phage 434 repressor at 2.0 A resolution. // J.Mol.Biol., 1989, v. 205, p. 189−200.
117. Mueser T.C., Nossal N.G., Hyde C.C. Structure of bacteriophage T4 RNase H, a 5' to 3' RNA-DNA and DNA-DNA Exonu-clease with sequence similarity to the RAD2 family of eu-karyotic proteins. // Cell, 1996, v. 85, p. 1101−1112.
118. Nardelli J., Gibson T.J., Vesque C., Charnay P. Base sequence discrimination by zinc-finger DNA-binding domains. // Nature, 1991, v. 349, p. 175−178.
119. Nekludova L., Pabo C.O. Distinctive DNA conformation with enlarged major groove is found in Zn-finger-DNA and other protein-DNA complexes. // Proc.Natl.Acad.Sci.U.S.A, 1994, v. 91, p. 6948−6952.
120. Nelson H.C.M. Structure and function of DNA-binding proteins. // Curr.Opin.Genet.& Dev., 1995, v. 5, p. 180−189.
121. Newman M., Lunnen K., Wilson G., Greci J., Schildkraut I., Phillips S.E.V. Crystal structure of restriction endonu-clease Bgl I bound to its interrupted recognition sequence. // EMBO J., 1998, v. 17, p. 5466−5476.
122. Oelgeschlager T., Chiang C., Roeder R.G. Topology and reorganization of a human TFIID-promoter complex. // Nature, 1996, v. 382, p. 735−738.
123. Ogata K., Morikawa S., Nakamura H., Sekikawa A., Inoue T., Kanai H., Sarai A., Ishii S., Nishimura Y. Solution structure of a specific DNA complex of the Myb DNA-binding domain with cooperative recognition helices. // Cell, 1994, v. 79, p. 639−648.
124. Olson W.K., Gorkin A.A., Lu X., Hock L.M., Zhurkin V.B. DNA sequence-dependent deformability deduced from proteinDNA crystal complexes. // Proc.Natl.Acad.Sci.USA, 1998, v. 95, p. 11 163−11 168.
125. Otwinowski Z., Schevitz R.W., Zhang R.G., Lawson C.L., Joachimiak A., Marmorstein R.Q., Luisi B.F., Sigler P.B. Crystal structure of trp repressor/operator complex at atomic-resolution. // Nature, 1988, v. 335, p. 321−329.
126. Pabo C.O., Aggarwal A.K., Jordan S.R., Beamer L.J., Obey-sekare U.R., Harrison S.C. Conserved residues make similar contacts in two repressor-operator complexes. // Science, 1990, v. 247, p. 1210−1213.
127. Pabo C.O. New generation databases for molecular biology. // Nature, 1987, v. 327, p. 467.136 137 138 139 140 150 725 949 979 828 640 490 192 896.
128. Pabo C.O., Suchanek E.G. Computer-aided model-building strategies for protein design. // Biochemistry, 1986, v. 25, p. 5987−5991.
129. Pabo C.O., Sauer R.T. Protein-DNA recognition. // Annu.Rev.Biochem., 1984, v. 53, p. 293−321. Pabo C.O., Lewis M. The operator-binding domain of X repressor: structure and DNA recognition. // Nature, 1982, v. 298, p. 443−447.
130. Pabo C.O., Sauer R.T., Sturtevant J.M., Ptashne M. The X repressor contains two domains. // Proc. Natl .Acad.Sci.U.S.A, 1979, v. 76, p. 1608−1612.
131. Packer M.J., Hunter C.A. Sequence-dependent DNA structure: the role of the sugar-phosphate backbone. // J.Mol.Biol., 1998, v. 280, p. 407−420.
132. Pan T., Coleman J.E. GAL4 transcription factor is not a wzinc finger" but forms a Zn (II)2Cys6 binuclear cluster. // Proc.Natl.Acad.Sci.U.S.A, 1990, v. 87, p. 2077;2081 .
133. Pavletich N.P., Pabo C.O. Crystal structure of a five-finger GLI-DNA complex: new perspectives on zinc fingers. // Science, 1993, v. 261, p. 1701−1707.
134. Pavletich N.P., Pabo C.O. Zinc finger-DNA recognition: crystal structure of a Zif268-DNA complex at 2.1 A. // Science, 1991, v. 252, p. 809−817.
135. Pettitt M., Makarov V.A., Andrews B.K. Protein hydration density: theory, simulations and crystallography. // Curr.Opin.Struct.Biol., 1998, v. 8, p. 218−221.
136. Phillips S.E.V. Specific p-sheet interaction. // Curr.Opin.Struct.Biol., 1991, v. 1, p. 89−98.
137. Pomerantz J.L., Pabo C.O., Sharp P.A. Analysis of home-odomain function by structure-based design of a transcription factor. // Proc.Natl.Acad.Sci.USA, 1995, v. 92, p. 97 529 756.
138. Povey J.F., Diakun G.P., Garner C.D., Wilson S.P., Laue E.D. Metal ion co-ordination in the DNA binding domain of the yeast transcriptional activator GAL4. // FEBS Lett., 1 501 511 521 531 541 707 951 419 418 074 874 543 899 410 432, v. 266, p. 142−146.
139. Preibner R., Goede A., Fruromel C. Dictionary of interfaces in proteins (DIP). Data bank of complementary molecular surface patches. // J.Mol.Biol., 1998, v. 280, p. 535−550.
140. Ptashne M., Jeffrey A., Johnson A.D., Maurer R., Meyer B.J., Pabo C.O., Roberts T.M., Sauer R.T. How the X repressor and cro work. // Cell, 1980, v. 19, p. 1−11.
141. Raumann B.E., Rould M.A., Pabo C.O., Sauer R.T. DNA recognition by ?-sheets in the Arc repressor-operator crystal structure. // Nature, 1994, v. 367, p. 754−757.
142. Rice P.A., Yang S., Mizuuchi K., Nash H.A. Crystal structure of an IHF-DNA complex: a protein-induced DNA U-turn. // Cell, 1996, v. 87, p. 1295−1306.
143. Ringe D. What makes a binding site a binding site? // Curr.Opin.Struct.Biol., 1995, v. 5, p. 825−829.
144. Robinson H., Gao Y., McCrary B.S., Edmondson S.P., Shriver J.W., Wang A.H.J. Thehyperthermophile chromosomal protein Sac7d sharply kinks DNA. // Nature, 1998, v. 392, p. 202 205.
145. Rozenberg H., Rabinovich D., Frolow F., Hegde R.S., Shakked Z. Structural code for DNA recognition revealed in crystal structures of papillomavirus E2-DNA targets. // Proc.Natl.Acad.Sei.USA, 1998, v. 95, p. 15 194−15 199.
146. Sandmann C., Cordes F., Saenger W. Structure model of a complex between the factor for inversion stimulation (FIS) and DNA: modeling protein-DNA complexes with dyad symmetry and known protein structures. // Proteins, 1996, v. 25, p. 486−500.
147. Saroff H.A. Energetics of protein-DNA interactions: an exact calculation for binding of ligands to a lattice of overlapping sites. // Biopolymers, 1994, v. 36, p. 121 134 .
148. Sauer R.T. Lac repressor at last. // Structure, 1996, v. 4, p. 219−222.
149. Sayle R. RasMol user manual. 1992.
150. Scheif R. DNA binding by proteins. // Science, 1988, v. 241, p. 1182−1187.
151. Schildbach J.F., Karzai A.W., Raumann B.E., Sauer R.T. Origins of DNA-binding specificity: role of protein contacts with the DNA backbone. // Proc .Natl .Acad. Sei. USA, 1999, v. 96, p. 811−817.
152. Schneider R., Daruvar A., Sander C. The HSSP database of protein structure-sequence aliment. // Nucleic Acids Res., 1997, v. 25, p. 226−230.
153. Schneider T.D. Sequence walker: a graphical method to display how binding proteins interact with DNA or RNA sequences. // Nucleic Acids Res., 1997, v. 25, p. 4408−4415.
154. Schreiber J., Enderich J., Wegner M. Structural requirement for DNA binding of GCM proteins. // Nucleic Acids Res., 1998, v. 26, p. 2337−2343.
155. Schultz S.C., Shields G.C., Steitz T.A. Crystal structure of a CAP-DNA complex: the DNA is bent by 90. // Science, 1991, v. 253, p. 1001−1007.
156. Schumacher M.A., Choi K.Y., Zalkin H., Brennan R.G. Crystal structure of LacI member, PurR, bound to DNA: minor groove binding by alpha helices. // Science, 1994, v. 266, p. 763−770.
157. Schwabe J.W.R., Chapman L., Flinch J.T. The crystal structure of the estrogen receptor DNA-binding domain bound to DNA: how receptors discriminate between their response elements. // Cell, 1993, v. 75, p. 567−578.
158. Shilov I., Tashlitskii V., Khodoun M., Vasil’ev S., Alek-seev Y., Kuzubov A., Kubareva E.A., Karyagina A.S. DNA-methyltransferase SsoII interaction with own promotor region binding site. // Nucleic Acids Res., 1998, v. 26, p. 2659−2664.
159. Shimofurutani N., Kisu Y., Suzuki M., Esaka M. Functional analyses of the Dof domain, a zinc finger DNA-binding domain, in a pumpking DNA-protein AOBP. // FEBS Lett., 1998, v. 430, p. 251−256.
160. Simoncsits A., Chen J., Percipalle P., Wang S., Toro I., Pongor S. Single-chain repressors containing engineered DNA-binding domains of the phage 434 repressor recognize symmetric or asymmetric DNA operators. // J.Mol.Biol., 1997, v. 267, p. 118−131.
161. Sippl M.J., Jaritz M. Prediction power of mean force pair potentials. // n/a, 1996, p. 113−134.
162. Sippl M.J., Ortner M., Jaritz M., Lackner P., Flockner H. Helmholtz free energies of atom pair interactions in proteins. // Fold.Des., 1996, v. 1, p. 289−298.
163. Sippl M.J. Helmholtz free energy of peptide hydrogen bonds in proteins. // J.Mol.Biol., 1996, v. 260, p. 644−648.
164. Somers W.S., Phillips S.E.V. Crystal structure of the met repressor-operator complex at 2.8 A resolution reveals DNA recognition by b-strands. // Nature, 1992, v. 359, p. 387 393.176177178179180181182183184185186187188189.
165. Steitz T.A. Structural studies of protein-nucleic acid interaction: the sources of sequence-specific binding. // Q.Rev.Biophys., 1990, v. 23, p. 205−280.
166. Sternberg M.J.E., Gabb H.A., Jackson R.M. Predictive docking of protein-protein and protein-DNA complexes. // Curr.Opin.Struct.Biol., 1998, v. 8, p. 250−256.
167. Stormo G.D., Fields D.S. Specifity, free energy and information contents in protein-DNA interaction. // TIBS, 1998, v. 23, p. 109−113.
168. Suzuki M., Amano N., Kakinuma J., Tateno M. Use a 3D structure data base for understanding sequence-dependent conformational aspects of DNA. // J.Mol.Biol., 1997, v. 274, p. 421−435.
169. Suzuki M., Yagi N. An in-the-groove view of DNA structures in complexes with proteins. // J.Mol.Biol., 1996, v. 255, p. 677−687.
170. Suzuki M., Yagi N., Finch J.T. Role of base-backbone and base-base interactions in alternating DNA conformations. / / FEBS Lett., 1996, v. 379, p. 148−152.
171. Suzuki M., Brenner S.E., Gerstein M., Yagi N. DNA recognition code of transcription factors. // Protein Eng., 1995, v. 8, p. 319−328.
172. Suzuki M., Yagi N., Gerstein M. DNA recognition and superstructural formation by helix-turn-helix proteins. // Protein Eng., 1995, v. 8, p. 329−338.
173. Suzuki M., Gerstein M., Yagi N. Stereochemical basis of DNA recognition by Zn finger. // Nucleic Acids Res., 1994, v. 22, p. 3397−3405.
174. Suzuki M., Yagi N. DNA recognition rules for steroid hormone receptors and GATA1: specificity of the rules. // Proc. Japan Acad., 1994, v. 70B, p. 62−66.
175. Suzuki M., Yagi N. DNA recognition rules for steroid hormone receptors and GATA1: chemical and stereochemical rules. // Proc. Japan Acad., 1994, v. 70B, p. 58−61.
176. Suzuki M. A framework for the DNA-protein recognition code of the probe helix in transcription factors: the chemical and stereochemical rules. // Structure, 1994, v. 2, p. 317 326.
177. Suzuki M., Yagi N. DNA recognition code of transcription factors in the helix-turn-helix, probe helix, hormone receptor, and zinc finger families. // Proc.Natl.Acad.Sci.USA, 1994, v. 91, p. 12 357−12 361.
178. Tan S., Richmond T.J. Eukariotic transcription factors. // Curr.Opin.Struct.Biol., 1998, v. 8, p. 41−48.
179. Tan S., Hunziker Y., Sargent D.F., Richmond T.J. Crystal structure of a yeast TFIIA/TBP/DNA complex. // Nature, 1996, v. 381, p. 127−134.
180. Turner D.H. Thermodynamics of base pairing. // Curr.Opin. Struct.Biol., 1996, v. 6, p. 299−304.
181. Vipond I.B., Baldwin G.S., Halford S.E. Divalent metal ions at the active sites of the EcoRV and EcoRI restriction endonucleases. // Biochemistry, 1995, v. 34, p. 697−704.
182. Vuister G.W., Kim S.J., Orosz A., Marquardt J., Wu C., Bax A. Solution structure of the DNA-binding domain of Droso-phila heat shock transcription factor. // Nat.Struct.Biol., 1994, v. 1, p. 605−614.
183. Waters T.R., Connolly B.A. Interaction of the restriction endonuclease UcoRV with the deoxyguanosine and deoxycyti-dine bases in its recognition sequence. // Biochemistry, 1994, v. 33, p. 1812−1819.
184. Werner M.H., Gronenborn A.M., Clore G.M. Intercalation, DNA kinking, and control of transcription. // Science, 1996, v. 271, p. 778−784.
185. Werner M.H., Clore G.M., Fisher C.L., Fisher R.J., Trinh L., Shiloach J., Gronenborn A.M. The solution structure of the human ETS1-DNA complex reveals a novel mode of binding and true side chain intercalation. // Cell, 1995, v. 83, p. 761−771.
186. Westcott T.P., Tobias I., Olson W.K. Elasticity theory and numerical analysis of DNA supercoiling: an application to DNA looping. // J.Phys.Chem., 1995, v. 99, p. 17 926−17 935.
187. Wikstrum A., Berglund H., Hambraeus C., van der Berg S., Hurd T. Conformational dynamics and molecular recognition: backbone dynamics of the estrogen receptor DNA-binding domain. // J.Mol.Biol., 1999, v. 289, p. 963−979.
188. Wilson D.S., Guenther B., Desplan C., Kuriyan J. High resolution cristal structure of a paired (Pax) class cooperative homeodomain dimer on DNA. // Cell, 1995, v. 82, p. 709 719.
189. Wingenber E., Dietze P., Karas H., Knuppel R. TRANSFAC: a database on transcription factors and their DNA binding sites. // Nucleic Acids Res., 1996, v. 24, p. 238−241.
190. Wintjens R.T., Rooman M.J., Wodak S.J. Automatic classification and analysis of aa-turn motifs in proteins. // J.Mol.Biol., 1996, v. 255, p. 235−253.
191. Wintjens R.T., Rooman M.J. Structural classification of HTH DNA-binding domains and protein-DNA interaction modes. // J.Mol.Biol., 1996, v. 262, p. 294−313.
192. Wolberger C. Homeodomain interactions. // Curr.Opin. Struct.Biol., 1996, v. 6, p. 62−68.
193. Wolberger C., Vershon A.K., Liu B., Johnson A.D., Pabo C.O. Crystal structure of a MATa2 homeodomain-operator complex suggests a general model for homeodomain-DNA interactions. // Cell, 1991, v. 67, p. 517−528.
194. Wolberger C., Dong Y., Ptashne M., Harrison S.C. Structure of a phage 434 Cro/DNA complex. // Nature, 1988, v. 335, p. 789−795.
195. Wolfe S.A., Greisman H.A., Ramm E.I., Pabo C.O. Analysis of zinc fingers optimized via phage display: evaluating the utility of a recognition code. // J.Mol.Biol., 1999, v. 285, p. 1917;1934.
196. Yang W., Steitz T.A. Crystal structure of the site-specific recombinase y5 resolvase complexed with a 34 bp cleavage site. // Cell, 1995, v. 82, p. 193−207.
197. Yura K., Tomoda S., Go M. Repeat of a helix-turn-helix module in DNA-binding proteins. // Protein Eng., 1993, v. 6, p. 621−628.
198. Zhang H., Zhao D., Revington M., Lee W., Jia X., Arrow-smith C., Jardetzky 0. The solution structures of the trp repressor-operator DNA complex. // J.Mol.Biol., 1994, v. 238, p. 592−614.
199. Zhang P., Tobias I., Olson W.K. Computer simulation of protein-induced structural changes in closed circular DNA. // J.Mol.Biol., 1994, v. 242, p. 271−290.
200. Zhou P., Sun L.J., Dotch V., Wagner G., Verdine G.L. Solution structure of the core NFATCl/DNA complex. // Cell, 1998, v. 92, p. 687−696.
201. Zou Q., Habermann-Rottinghaus S.M., Murphy K.P. Urea effects on protein stability: hydrogen bonding and the hydrophobic effect. // Proteins Struct.Funct.Genet., 1998, v. 31, p. 107−115.
202. ΠΠΎΠ΄ ΠΠ-ΠΈΡΡΠΎΡΠ½ΠΈΠΊΠ° Kofl DPIDB ΠΠ-ΠΈΡΠ’ΠΠ§-ΠΠΠ ΠΠ°Π³ΠΎΠ»ΠΎΠ²ΠΎΠΊ Π‘ΠΎΡΡΠ°Π² Π Π°Π·ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ ΠΠ°ΡΠ° (A)1 1Π02 2 3 4 5 6 7.
203. MOLECULE: DNACHAIN: D, E MOLECULE: 3−1BNK P1BNK PDB DNA REPAIR METHYLADENINE DNA GLYCOSYLASECHAIN: A, B, 2. 70 29. 07 .981. CSYNONYM: AAG, I1BNZ P1BNZ PDB PROTEIN-DNA INTERACTION MOL ID: 1- MOLECULE: SS07DCHAIN: NULL 2 .00 31 .07. 98.
204. CHAIN: T, P, DENGINEERED: YES-1BPX P1BPX PDB COMPLEX (NUCLEOTIDYLOTHER DETAILS: GAPPED DNA IS COMPOSED OF 3 2 .40 11. 04 .97.
205. TRANSFERASE / DNA) STRANDS TEMPLATE, PRIMER, AND DOWNSTREAM1. OLIGO SYNONYM: POL-B.
206. CHAIN: T, P, DENGINEERED: YES-1BPY P1BPY PDB COMPLEX (NUCLEOTIDYLTRANSFERASE / DNA) OTHER DETAILS: GAPPED DNA IS COMPOSED OF 3 STRANDS TEMPLATE, PRIMER, AND DOWNSTREAM 2 .20 15 .04 .971. OLIGO SYNONYM: POL B.
207. COMPLEX (ENDONUCLEASE /DNA) CHAIN: B, CENGINEERED: YES MOLECULE: FOKI RESTRICTION ENDONUCLEASECHAIN: ASYNONYM: 2.80 R. FOK 18.04.97.
208. COMPLEX (GENE-REGULATORY PROTEIN/DNA) C-JUN PROTO-ONCOGENE (TRANSCRIPTION FACTOR AP-1) DIMERIZED WITH C-FOS AND COMPLEXED WITH 3.05 DNA 07.03.95.
209. LU 1— 1HCQ PI GLU P1HCQ PDB PDB PDB GLUCOCORTICOID RECEPTOR (DNA-BINDING DOMAIN) COMPLEX WITH DNA (FIRST SIX RESIDUES ARE CLONAL LINKERS) 2. 90.
210. COMPLEX (DNA-BINDING PROTEIN/DNA) MOL ID 1, MOLECULE: HUMAN SRYCHAIN: AMOL ID 2, HMP 09.05.951HRZ P1HRZ PDB COMPLEX (DNA-BINDING PROTEIN/DNA) MOL ID 1, MOLECULE: HUMAN SRYCHAIN: AMOL ID 2, HMP 09.05.95.
211. Fl 1IGN UHF PI I Fl PDB COMPLEX (DNA-BINDING PROTEIN/DNA) S MOLECULE: INTERFERON REGULATORY FACTOR 1- CHAIN: A, BFRAGMENT: DNA- 3. 00 2.25 12.09.97 29.02.96.
212. P1IGN PDB P1IHF PDB Β¦ COMPLEX (DNA-BINDING PROTEIN/DNA) ENGINEERED: YES MOLECULE: RAP1- CHAIN: A, BFRAGMENT: DNA.
213. CHAIN: A, BENGINEERED: YE.
214. DNA POLYMERASE I (KLENOW FRAGMENT)1KLN P1KLN PDB NUCLEOTIDYLTRANSFERASE (E.C.2.7.7.7) MUTANT WITH ASP 3 55 REPLACED BY 3.20 24. 05. 94.
215. ALA (D355A) COMPLEXED WITH DNA1LAT < 1 P1LAT PDB 1 1 COMPLEX (TRANSCRIPTION REGULATION/DNA) CHAIN: C, DSYNONYM: GRESOENGINEERED: YESOTHER DETAILS: 2 GRE HALF-SITES SEPARATED BY ZERO BASE PAIRS OF SPACE 1. 90 18. 12. 95.
216. C REPRESSOR («HEADPIECE») COMPLEX WITH AN1LCC P1LCC PDB GENE-REGULATING PROTEIN 11 BASE-PAIR HALF-OPERATOR CORRESPONDING TO THE LEFT HALF OF THE WILD TYPE LAC OPERATOR UMP 25. 03. 931. NMR, BEST STRUCTURE).
217. C REPRESSOR («HEADPIECE») COMPLEX WITH AN1LCD 1 PlLCD GENE-REGULATING PROTEIN 11 BASE-PAIR HALF-OPERATOR CORRESPONDING TO THE LEFT HALF OF THE WILD TYPE LAC OPERATOR HMP 25. 03. 931. NMR, 3 STRUCTURES).
218. MBDA REPRESSOR MUTANT WITH VAL 3 6 REPLACED1LLI P1LLI PDB TRANSCRIPTION REGULABY LEU, MET 40 REPLACED BY LEU, AND VAL 47 2.10 25. 03. 94.
219. TION PROTEIN/DNA REPLACED BY ILE (V36L, M4OL, V471) COMPLEXED WITH DNA OPERATOR1LMB P1LMB PDB DNA-BINDING REGULATORY PROTEIN LAMBDA REPRESSOROPERATOR COMPLEX 1.80 05. 11. 91.
220. MYOD BASIC-HELIX-LOOP-HELIX (BHLH) DOMAIN1MDY P1MDY PDB TRANSCRIPTION ACTIVA- (RESIDUES 102 166) MUTANT WITH CYS 135 RE- 2 .80 09. 06. 94.
221. S F 1NFK 10CT 1 PAR COMPLEX (BINDING PRO-P1MSFPDB TEIN/DNA) C-MYB DNA-BINDING DOMAIN COMPLEXED WITH DNA (NMR, 25 STRUCTURES) 24.01.95.
222. P1NFK PIOCT PI PAR PDB PDB PDB COMPLEX (TRANSCRIPTION FACTOR/DNA) THE HOMODIMER IS BOUND TO A KB SITE MOLECULE: NUCLEAR FACTOR KAPPA-BCHAIN: A, BFRAGMENT: P50 2 .30 03.10.96.
223. DNA-BINDING PROTEIN OCT-1 (POU DOMAIN) 3. 00 2. 60 09.05.94 22.03.94.
224. COMPLEX (DNA-BINDING PROTEIN/DNA)1TRO P1TRO PDB I L > — 51TRR P1TRR PDB.
225. ARE NONCODING STRAND NUCLEOTIDES + 62 +92, CHAINS C AND F ARE CODING STRAND NUCLEOTIDES + 6.
226. ENGINEERED: YES MOLECULE: HUMAN TATA BINDING PROTEINCHAIN: ASYNONYM: HTBP-1TSR P1TSR PDB.
227. DNA-BINDING REGULATORY PROTEIN.
228. DNA-BINDING REGULATORY PROTEIN.
229. COMPLEX (DNA-BINDING PROTEIN/DNA).
230. TRP REPRESSOR COMPLEX WITH OPERATOR290 13 1.90 30.
231. TRP REPRESSOROPERATOR HALF-SITE TANDEM COMPLEX2.401TUP P1TUP PDB1UBD P1UBD PDB1. AS P1VAS PDB i1VOL P1VOL1VPW A00191.' I '1WET A00201. I «» 1XBR1YRN 1YSA1. P1XBR1. P1YRN P1YSA1. PDB1. PDB1. PDB1. PDB1. PDB PDB.
232. COMPLEX (TUMOR SUP-PRESSOR/DNA).
233. COMPLEX (TRANSCRIPTION CHAIN: A, BENGINEERED: YES MOLECULE: YY1- REGULATION/DNA) COMPLEX (ENDONUCLEase/dna)1. COMPLEX (TRANSCRIPTIONI1. FACTOR/REGN/DNA).
234. MOL ID: 1- MOLECULE: P53 TUMOR SUPPRESSORCHAIN: A, B, CENGINEERED: YE.
235. MOL ID: 1- MOLECULE: TUMOR SUPPRESSOR P53- CHAIN: A, B, CMOL ID: 2-chain: cfragment: zinc5'-d (tpapgpcpgpcpapapcpgpcpgpa)-3') — chain: B, cengineered: yes chain: aec: 3.1.25.1;
236. MOL ID: 3- MOLECULE: 16 BASE-PAIR TATA-CONTAINING OLIGONUCLEOTIDECHAIN: C, DENGINEERED: YES FRAGMENT: RESI1. PROTEIN/DNA).
237. ENGINEERED: YESOTHER DETAILS: BOUND TO COMPLEX (DNA-BINDING COREPRESSOR, HYPOXANTHINE, AND PURF OPERATOR.
238. NO 5' PHOSPHATE ON OLIGONUCLEOTIDE CHAIN: AENGINEERED: YE.
239. MOL ID: 1- MOLECULE: PURINE REPRESSOR-GUANINE-PURF-OPERATORCHAIN: AMOL ID: 2;
240. COMPLEX (DNA-BINDING PROTEIN/DNA).
241. COMPLEX (TRANSCRIPTION FACTOR/DNA)1. COMPLEX (TWO DNA.
242. ENGINEERED: YESOTHER DETAILS: 24-MERIC DNA DUPLEX MOLECULE: T PROTEINCHAIN: A, BFRAGMENT: T DO.
243. DOMAIN: HOMEODOMAINSYNONYM: MAT ALPHA-2;
244. BINDING PROTEINS/DNA) ENGINEERED: YESMOL ID: 3- MOLECULE: DNA-1.UCINE ZIPPER.
245. GCN4 (BASIC REGION, LEUCINE ZIPPER) COMPLEX220 2.20 2.50 275 2.702 .702 128 11 0408.