Помощь в написании студенческих работ
Антистрессовый сервис

Лазерная модификация гелей и гибридных материалов на основе оксида титана

ДиссертацияПомощь в написанииУзнать стоимостьмоей работы

Продемонстрировано создание Ti3+ центров под воздействием слабосфокусированного пучка мощного фемтоекундного титан-сапфирового лазера за счет нелинейных процессов. Предложено два нелинейных механизма, способных объяснить наблюдаемый эффект, (i) Первый механизм создания Ti3+ центров связан с двухфотонным возбуждением электронов на Ti-О цепочке на частоте суперконтинуума + фундаментальная… Читать ещё >

Лазерная модификация гелей и гибридных материалов на основе оксида титана (реферат, курсовая, диплом, контрольная)

Содержание

  • ГЛАВА I. ЛИТЕРАТУРНЫЙ ОБЗОР
    • 1. 1. Материалы на основе оксида титана
      • 1. 1. 1. Кристаллы ТЮ
      • 1. 1. 2. Коллоидные растворы и гели
      • 1. 1. 3. Гибридные органо-неорганические материалы
    • 1. 2. Воздействие УФ и гамма — излучения на материалы на основе оксида титана
      • 1. 2. 1. Коллоидные растворы
      • 1. 2. 1. -1. Введение
      • 1. 2. 1. -2. Изменение спектров поглощения коллоидных растворов окисида титана под воздействием излучения
      • 1. 2. 1. -2а. Изменение спектров поглощения под воздействием УФ излучения
      • 1. 2. 1. -26. Изменение спектров поглощения под воздействием у излучения
      • 1. 2. 1. -2 В. Изменения спектров поглощения и ЭПР спектров, индуцированные электрохимическим путем
      • 1. 2. 1. -3. Кинетика фотоиндуцированных зарядов
      • 1. 2. 1. -4. ЭПР спектры облученных ТЮ2 коллоидов
      • 1. 2. 1. -5. Квантовый выход УФ-индуцированного разделения зарядов
      • 1. 2. 1. -6. Использование ТЮ2 для изготовления солнечных батарей

III. 1.2. УФ-видимые-ИК спектры.69.

III. 1.3. ЭПР спектры Ti3+ центров.72.

III. 1.4.

Заключение

73.

III.2. Кинетика Ti3+ центров в титаноксидных гелях.74.

III.2.1.

Введение

74.

III. 2.2. УФ-индуцированное создание Ti3+ центров.74.

III. 2.3. Релаксация Ti3+ центров.78.

III. 2.4. Индуцированное лазером уничтожение Ti3+ центров.79.

111.2.5. Теоретическая модель УФ-индуцированной кинетики Ti3+ центров в титаноксидных гелях. .80.

111.2.6.

Заключение

88.

III.3 Химическая активность фотоиндуцированных Tj3+ центров в титаноксидных гелях.89.

III. 3.1.

Введение

89.

III. 3.2. Кинетика индуцированного лазером видимого и УФ поглощения гелей с HN03.90.

III. 3.3. Теоретическая модель кинетики Ti3+ центров в гелях с HNOj.99.

III.3.4.

Заключение

104.

Заключение

.

Диссертационная работа посвящена исследованию взаимодействия света с новым классом материалов — гелями и гибридами на основе оксида титана.

Под воздействием УФ излучения с длиной волны в диапазоне 280 нм < X < 380 нм в гелях происходит разделение зарядов (еи h+): электроны захватываются на титаноксидной сетке как Ti3+ центры, в то время как дырки уходят в жидкую составляющую геля, образуя ионы кг и радикалы. Было показано, что квантовый выход этого процесса составляет 25%, что существенно превосходит результаты, полученные ранее для коллоидных растворов ТЮгГелевая структура содержит очень большое число электронных ловушек (в нашем случае 4.3><1020см~3). В результате длительного УФ воздействия более 7% этих ловушек могут быть заполнены электронами. Время жизни этих захваченных электронов (Ti3+ центров) может превышать несколько месяцев, и ограничено диффузией атмосферного кислорода в образец. Ti3+ центры обладают широкой полосой поглощения, покрывающей диапазон от 350 нм до 2.5 мкм. Значения сечения их поглощения были измерены путем одновременных оптических и ЭПР измерений и составляют с (600 nm) = 3.0 ± 0.2* 10″ 18 см² в гелях, сгь (640 nm) ~ 1.3×10'18см2 в гибридах. Эксперименты показали, что все образованные в гелевой структуре Ti3+ центры являются химически активными.

Новые гибридные органо-неорганические материалы на основе титаноксидных гелей, разработанные в нашей группе, обладают высокой фоточувствительностью, присущей титаноксидным гелям, а также хорошими механическими свойствами, позволяющими производить их механическую обработку и полировку до оптического качества. Под воздействием УФ света в гибридах возникает поглощение, соответствующее наработке Ti3+ центров. Время жизни этих захваченных электронов в гибридах является еще более долгим, чем в титаноксидных гелях из-за более медленной диффузии кислорода в твердые образцы. Эффективность УФ-индуцированного разделения зарядов в гибридных материалах на основе титаноксидных гелей выше, чем в гибридах, приготовленных с использованием нанокластеров. Квантовая эффективность наработки Ti3+ центров зависит от способа приготовления гибридных образцов. Наибольшее значение квантового выхода и максимальной концентрации захваченных электронов (г| = 12%, (Ti3+/Ti4+)maX = 13.9%) были получены в образце, где полимеризация проводилась после процесса гелеобразования с задержкой ltgei. Наименьшую чувствительность к свету продемонстрировали образцы, приготовленные без гелеобразования.

Уничтожение Ti3+ центров может быть осуществлено путем их облучения лазерами видимого диапазона вследствие «внутреннего фотоэффекта». То есть, захваченные электроны могут быть возбуждены в зону проводимости и рекомбинировать с захваченными дырками.

Разработана теоретическая модель, хорошо описывающая УФ-индуцированную кинетику Ti3+ центров в гелях и гибридных материалах.

Продемонстрировано создание Ti3+ центров под воздействием слабосфокусированного пучка мощного фемтоекундного титан-сапфирового лазера за счет нелинейных процессов. Предложено два нелинейных механизма, способных объяснить наблюдаемый эффект, (i) Первый механизм создания Ti3+ центров связан с двухфотонным возбуждением электронов на Ti-О цепочке на частоте суперконтинуума + фундаментальная и последующим захватом их на ионах Ti4+. (ii) В случае.

34* филаментации пучка образование Ti центров может быть также связано с ионизацией вещества в филаментах и последующим захватом образованных электронов на титаноксидных цепочках. Оценки показывают значимость обоих предложенных механизмов в разных экспериментальных условиях.

Продемонстрирована реализация трехмерного лазерного микроструктурирования внутри объема новых гибридных материалов.

Проведено теоретическое исследование модификации прозрачных диэлектриков за счет однои многоимпульсного воздействия фемтосекундного лазера. Построена теоретическая модель, описывающая кинетику электронов в рамках уравнения Фоккера-Планка и приближения «удвоения потока». Найдено универсальное соотношение между характерным временем развития лавинной ионизации и временем задержки лавины, которое позволяет осуществить учет времени задержки лавины в расчетах без сильного усложнения вычислений. Модель связывает модификацию материала с генерацией свободных электронов за счет многофотонной и лавинной ионизации.

Показано, что в случае многоимпульсного воздействия количество импульсов, необходимое для модификации материала существенно уменьшается, если в образце присутствуют электронные ловушки. Это исследование показывает, что гели и гибридные материалы на основе оксида титана являются особенно привлекательными для применения в 3D микроструктурировании, так как они представляют собой яркий пример сред, содержащих очень высокую концентрацию ловушек >Ю20 см" 3.

Исследования, представленные в этой диссертационной работе демонстрируют высокую фоточувствительность гелей и новых гибридных материалов на основе оксида титана, позволяющую рассматривать их для различных применений в фотонике, включающих трехмерное микроструктурирование, фотокатализ и солнечные батареи.

Показать весь текст

Список литературы

  1. Bityurin N., Zdaidi L., Kanaev A. Laser-induced absorption in titanium oxide based gels // Chem. Phys. Lett., 2003. V. 374, pp. 95−99.
  2. O. // PhD Thesis, Universite Paris 13 (France), 2006.
  3. Tolbert S.H., Herald A.B., Johnson C.S. et Alivisatos А.Р. Comparison of Quantum Confinement Effects on the Electronic Absorption Spectra of Direct and Indirect Gap Semiconductor Nanocrystals П Phys. Rev. Letters 73, pp. 3266−3269. 1994
  4. Daude N., Gout C., Jouanin C., Electronic band structure of titanium dioxide // Phys. Rev. В 15, pp. 3229−3235, 1977
  5. Phillips J.C. and Kleinman L., New method for calculating wave functions in crystals and molecules // Phys. Rev. 116, pp. 287−294, 1959.
  6. Bach U., Lupo D., Comte P., Moser J.E., Weissortel F., Salbeck J., Spreitzer H. and Gratzel M., Solid-state dye-sensitised mesoporous ТЮг solar cells with high photon-to-electron conversion efficiencies II Nature 395, pp. 583−585, 1998
  7. Gratzel M., Mesoporous oxide junctions and nanostructured solar cells // Current Opinion in Colloid & Interface Science, 4, pp. 314−321, 1999.
  8. Franco Garcia M.L., Elaboration par voie sol-gel de masses catalytiques a base de dioxyde de titane pour reactions de photo-oxydation en solution // These de I’universite Claude Bernard, Lyon I., 1996.
  9. Sanchez C. and Ribot F., Design of hybrid organic-inorganic materials via sol-gel chemistry // New J. Chem. 18, pp. 1007−1047,1994
  10. Pierre A.C., Introduction to Sol-Gel Processing // The Kluwer International Series in Sol-Gel Processing: Technology and Applications, Kluwer, Dordrecht, 1998.
  11. Ponton A., Barboux-Doeuff S., Sanchez C, Rheology of titanium oxide based gels: determination of gelation time versus temperature // Colloids and Surfaces A: Physicochem. Eng. Aspects 162, pp. 177−192, 1999.
  12. Bityurin N., Znaidi L., Marteau P., Kanaev A., UV absorption of titanium oxide based gels, Chem. Phys. Lett. 367, pp. 690−696, 2003.
  13. Blanchard J., PhD thesis, Universite Pierre et Marie Curie, Paris, France, 1997.
  14. Yoldas B.E., Hydrolysis of titanium alkoxide and effects of hydrolytic polycondensation parameters // J. Mater. Sci. 21, pp. 1087−1092,1986.161 922,23,24,25,26,27,28,29,30.
  15. Sanchez С., Soler-Illia G.J.deA.A., Ribot F., Lalot Т., Mayer C.R., and Cabuil V., Designed Hybrid Organic-Inorganic Nanocomposites from Functional Nanobuilding Blocks, Chem. Mat. 13, pp. 3061−3083,2001.
  16. Mammeri F., Le Bourhis E., Rozes L. and Sanchez C., Mechanical properties of hybridorganic-inorganic materials, J. Mat. Chem. 15, pp. 3787 3811, 2005.
  17. Kraeutler В., Bard A., Photoelectrosynthesis of ethane from acetate ion at an n-type titanium dioxide electrode. The photo-Kolbe reaction // J. Am. Chem. Soc. 99, pp. 77 297 731, 1997.
  18. Kamat P.V., Photochemistry on Nonreactive and Reactive (Semiconductor) Surfaces // Chem. Rev. 93, pp. 267−300, 1993.
  19. Hagfeldt A. and Gratzel M., Light-Induced Redox Reactions in Nanocrystalline Systems // Chem. Rev. 95, pp. 49−68, 1995.
  20. Bahnemann D., Henglein A., Lilie J., and Spanhel L., Flash Photolysis Observation of the Absorption Spectra of Trapped Positive Holes and Electrons in Colloidal ТЮ2 // J. Phys. Chem. 88, pp. 709−711, 1984.
  21. Kolle U., Moser J., Gratzel M., Dynamics of Interfacial Charge-Transfer Reactions in Semiconductor Dispersions. Reduction of Cobaltoceniumdicarboxylate in Colloidal Ti02 //Inorg. Chem. 24, pp. 2253−2258,1985.
  22. Dimitrijevic N.M., Savic D., Micic O.I., and Nozik A.J., Interfacial Electron-Transfer Equilibria and Flat-Band Potentials of а-РегОз and ТЮг Colloids Studied by Pulse Radiolysis II J. Phys. Chem. 88, pp. 4278−4283, 1984.
  23. Henglein A., Colloidal ТЮ2 Catalyzed Photo- and Radiation Chemical Processes in Aqueous Solution // Ber. Bunsenges. Phys. Chem. 86, pp. 241−246, 1982.
  24. Rabani J., Yamashita K., Ushida K., Stark J., Kira A., Fundamental Reactions in Illuminated Titanium Dioxide Nanocrystallite Layers Studied by Pulsed Laser // J. Phys. Chem. В 102, pp. 1689−1695, 1998.
  25. Safrany A., Gao. R., and Rabani J., Optical Properties and Reactions of Radiation Induced ТЮ2 Electrons in Aqueous Colloid Solutions // J. Phys. Chem. B. 104, pp. 5848−5853,2000.
  26. Gao R., Safrany A., Rabani J., Fundamental reaction in ТЮ2 nanocrystallite aqueous solutions studied by pulse radiolysis // Rad. Phys. and Chem. 65, pp. 599−609, 2002.
  27. Redmomd G., Fitzmaurice D., and Graetzel M., Effect of Surface Chelation on the Energy of an Intraband Surface State of a Nanocrystalline ТЮ2 Film U J. Phys. Chem. 97, pp. 6951−6954,1993.
  28. Fitzmaurice D., Using spectroscopy to probe the band energetics of transparent nanocrystalline semiconductor films // Sol. Energy Mater. Sol. Cells 32, pp. 289−305, 1994.
  29. Boschloo G., and Fitzmaurice D., Electron accumulation in nanostructured ТЮ2 (anatase) electrodes II J. Electrochem. Soc. 147, pp. 1117−1123, 2000.
  30. Cao F., Gerko O., Searson P.C., Stipkala J.M., Heimer T.A., Farzad F., and Meyer G.J., Electrical and Optical Properties of Porous Nanocrystalline Ti02 Films II J. Phys. Chem. 99, pp. 11 974−11 980,1995.
  31. Siripala, W. and M. Tomkiewicz, Interactions between photoinduced and dark charge transfer across n-Ti02-aqueous electrolyte interface // Journal of Electrochemical Society 129, p. 1240,1982.
  32. Ikeda S., Sugiyama N., Murakami S., Kominami H., Kera Y., Noguchi H., Uosaki K., Torimoto Т., Ohtani В., Quantitative analysis of defective sites in titanium (IV) oxide photocatalyst powders II Phys. Chem. Chem. Phys. 5, pp. 778−783, 2003.
  33. Rothenberger G., Moser J., Gratzel M., Serpone N., and Sharma D.K., Charge Carrier Trapping and recombination Dynamics in Small Semiconductor Particles // J. Am. Chem. Soc. 107, p. 8054−8059, 1985.
  34. Colombo Jr. D.P., Bowman R.M., Does Interfacial Charge Transfer Compete with Charge Carrier Recombination? A Femtosecond Diffuse Reflectance Investigation of ТЮ2 Nanoparticles II J. Phys. Chem. 100, pp. 18 445−18 449, 1996.
  35. Skinner D.E., Colombo Jr.D.P., Cavalery J.J., Bowman R.M., Femtosecond Investigation of Electron Trapping in Semiconductor Nanoclusters // J. Phys. Chem. 99, pp. 7853−7856, 1995.
  36. Bahnemann D.W., Hilgendorff M., and Memming R., Charge Carriers Dynamics at Ti02 Particles: Reactivity of Free and Trapped Holes II J. Phys. Chem. В 101, pp. 42 654 275, 1997.
  37. Asahi Т., Furube A., Masuhara H., Direct measurements of picosecond interfacial electron transfer from photoexcited ТЮ2 powder to an adsorbed molecule in the opaque suspension // Chem. Phys. Lett. 275, pp. 234−238,1997.
  38. Asahi Т., Matsuo Y., Masuhara H., Localization of a charge transfer excited state in molecular crystals: a direct confirmation by femtosecond diffuse reflectance spectroscopy // Chem. Phys. Lett. 256, pp. 525−530,1996.
  39. Furube A., Asahi Т., Masuhara H., Yamashita H., and Anpo M., Charge Carrier Dynamics of Standard ТЮ2 Catalysts Revealed by Femtosecond Diffuse Reflectance Spectroscopy II J. Phys. Chem. В 103, pp. 3120−3127, 1999.
  40. Tachibana Y., Moser J.E., Gratzel M. Klug D.R., Durrant J.R., Subpicosecond Interfacial Charge Separation in Dye-Sensitized Nanocrystalline Titanium Dioxide Films// J. Phys. Chem. 100, pp. 20 056−20 062,1996.
  41. Hannappel Т., Burfeindt В., and Storck W., Measurement of Ultrafast Photoinduced Electron Transfer from Chemically Anchored Ru-Dye Molecules into Empty Electronic States in a Colloidal Anatase Ti02 Film II J. Phys. Chem. В 101, pp. 6799−6802, 1997.
  42. Martini I., Hodak J.H., and Hartland G.V., Effect of Water on the Electron Transfer Dynamics of 9-Anthracenecarboxylic Acid Bound to ТЮ2 Nanoparticles: Demonstration of the Marcus Inverted Region // J. Phys. Chem. В 102, pp. 607−614, 1998.
  43. Hilgendorff M, Sundstrom V., Ultrafast electron injection and recombination dynamics of dye sensitized Ti02 particles // Chem. Phys. Lett. 287, pp. 709−713, 1998.
  44. Morishita Т., Hibara A., and Sawada Т., Ultrafast Charge Transfer at Ti02/SCN" (aq) Interfaces Investigated by Femtosecond Transient Reflecting Grating Method, J. Phys. Chem. В103, pp. 5984−5987, 1999.
  45. Serpone N., Lawless D., Khairutdinov R., Pelizzetti E., Subnanosecond Relaxation Dynamics in ТЮ2 Colloidal Sols (Particle Sizes Rp = 1.0−13.4 nm). Relevance to Heterogeneous Photocatalysis, J. Phys. Chem. 99, pp. 16 655−16 661,1995.
  46. Lawless D., Serpone N., Meisel D., Role of OH" Radicals and Trapped Holes in Photocatalysis. A pulse Radiolysis Study II J. Phys. Chem. 95, pp. 5166−5170, 1991.
  47. Yang X., and Tamai N., How fast is interfacial hole transfer? In situ monitoring of carrier dynamics in anatase ТЮ2 nanoparticles by femtosecond laser spectroscopy // Phys. Chem. Chem. Phys. 3, pp. 3393−3398, 2001.
  48. Howe R.F. and Gratzel M., EPR Observation of Trapped Electrons in Colloidal Ti02 // J. Phys. Chem. 89, pp. 4495−4499, 1985.
  49. Gratzel M. and Howe R.F., Electron Paramagnetic Resonance Studies of Doped ТЮ2 Colloids, J. Phys. Chem. 94, pp. 2566−2572,1990.
  50. Anpo M., Shima Т., Kodama S., Kubokawa Y., Photocatalytic Hydrogenation of CH3CCH with H20 on Small-Particle ТЮ2: Size Quantization Effects and Reaction Intermediates // J. Phys. Chem. 91, pp. 4305−4310, 1987.
  51. Micic O.I., Zhang Y., Cromack K.R., Trifunac A.D., and Thurnauer M.C., Trapped Holes on ТЮ2 Colloids Studied by Electron Paramagnetic Resonance // J. Phys. Chem. 91, pp. 7277−7283, 1993.
  52. Micic O.I., Zhang Y., Cromack K.R., Trifunac A.D., and Thurnauer M.C., Photoinduced hole transfer from titanium dioxide to methanol molecules in aqueous solution studied by electron paramagnetic resonance///. Phys. Chem. 97, pp. 13 284−13 288,1993.
  53. Kormann C., Bahnemann D.W., Hoffmann M.R., Preparation and Characterization of Quantum-Size Titanium Dioxide // J. Phys. Chem. 92, pp. 5196−5201, 1988.
  54. Sun L., and Bolton J.R., Determination of the Quantum Yield for the Photochemical Generation of Hydroxyl Radicals in ТЮ2 Suspensions II J. Phys. Chem. 100, pp. 41 274 134,1996.
  55. Franco G., Gehring J., Peter L.M., Ponomarev E.A., and Uhlendorf I., Frequency-Resolved Optical Detection of Photoinjected Electrons in Dye-Sensitized Nanocrystalline Photovoltaic Cells II J. Phys. Chem. B. 103, pp. 692−698,1999.
  56. Zhu K., Schiff E.A., Park N.-G., Lagemaat J., Frank A.J., Determining the locus for photocarrier recombination in dye-sensitized solar cells // Appl. Phys. Lett. 80, pp. 685 687,2002.
  57. Boschloo G., Hagfeldt A., Photoinduced absorption spectroscopy of dye-sensitized nanostructured Ti02, Chem. Phys. Lett. 370, pp. 381−386, 2003.
  58. Xiao-e L., Green A.N.M., Haque S.A., Mills A., Durrant J.R., Light-driven oxygen scavenging by titania/polymer nanocomposite films // J. Photochem. and Photobiology A: Chemistry 162, pp. 253−259, 2004.
  59. Green A.N.M., Chandler R.E., Haque S.A., Nelson J., and Durrant J.R., Transient Absorption Studies and Numerical Modeling of Iodine Photoreduction by Nanocrystalline Ti02 Films II J. Phys. Chem. В 109, pp. 142−150,2005.76.
Заполнить форму текущей работой