Помощь в написании студенческих работ
Антистрессовый сервис

Изучение механизмов внутриклеточного распределения митохондрий

ДиссертацияПомощь в написанииУзнать стоимостьмоей работы

Мы обнаружили, что если убрать промежуточные филаменты (ПФ) к ядру подвижность митохондрий на периферии клеток возрастает. Это может говорить о роли ПФ, как одного из элементов, удерживающих митохондрии в определенных местах. ПФ это третий компонент цитоскелета клетки. В клетках соединительной ткани они состоят из виментина и являются. Целью настоящей работы было изучить, как ПФ участвуют… Читать ещё >

Изучение механизмов внутриклеточного распределения митохондрий (реферат, курсовая, диплом, контрольная)

Содержание

  • СПИСОК ПРИНЯТЫХ СОКРАЩЕНИИ
  • Глава 1. ОБЗОР ЛИТЕРАТУРЫ
    • 1. 1. Распределение митохондрий связано с их функциями в клетках
    • 1. 2. Роль микротрубочек и актина в распределении митохондрий
      • 1. 2. 1. Общие черты микротрубочек и актиновых микрофиламентов
      • 1. 2. 2. Особенности системы микротрубочек
      • 1. 2. 3. Особенности актинового цитоскелета
      • 1. 2. 4. Транспорт митохондрий вдоль микротрубочек- роль кинезиновых и динеиновых моторов в этом процессе
      • 1. 2. 5. Актин — зависимый транспорт митохондрий с участием моторных белков
      • 1. 2. 6. Актин — зависимое движение митохондрий без участия моторных белков в дрожжах
      • 1. 2. 7. Прикрепление митохондрий к микротрубочкам и актиновым микрофиламентам
        • 1. 2. 7. 1. Роль микротрубочек ассоциированных с ними белков (МАРв)
        • 1. 2. 7. 2. Прикрепление митохондрий к фибриллярному актину
    • 1. 3. Роль промежуточных филаментов в распределении митохондрий в клетках
      • 1. 3. 1. Особенности промежуточных филаментов
      • 1. 3. 2. Сборка виментиновых промежуточных филаментов в клетках
    • 1. 3. 3, Взаимодействие промежуточных филаментов с митохондриями
      • 1. 3. 4. Плектин — белок ассоциированный с промежуточными филаментами
    • 1. 4. Фибронектин — регулятор внутриклеточных процессов
    • 1. 5. Роль протеинкиназы С в регуляции перестроек цитоскелета
    • 1. 6. Регуляция распределения митохондрий ростовыми факторами
  • Глава 2. МАТЕРИАЛЫ И МЕТОДЫ
    • 2. 1. Культивирование клеток
    • 2. 2. Иммунофлюоресценция
      • 2. 2. 1. Фиксация клеток
      • 2. 2. 2. Иммунофлюоресцентное окрашивание
      • 2. 2. 3. Антитела
      • 2. 2. 4. Окрашивание актина
      • 2. 2. 5. Окрашивание митохондрий
      • 2. 2. 6. ДНК конструкции
      • 2. 2. 7. Трансфекция клеток
      • 2. 2. 8. Получение покровных стекол, покрытых фибронектином или его фрагментами
        • 2. 2. 8. 1. Получение фибронектина и его фрагментов
        • 2. 2. 8. 2. Пришивка фибронектина и его фрагментов к покровным стеклам
      • 2. 2. 9. Посадка клеток на стекла, покрытые фибронектином или его фрагментами
    • 2. 3. Электрофорез и иммуноблотинг
    • 2. 4. Видеомикроскопия
    • 2. 5. Обработка данных
  • Глава 3. РЕЗУЛЬТАТЫ
    • 3. 1. Роль фибронектина, в регуляции формы и внутриклеточного распределения митохондрий в клетке
      • 3. 1. 1. Прикрепление клеток к фибронектину
      • 3. 1. 2. Влияние фибронектина на формирование стресс-фибрилл в клетках
      • 3. 1. 3. Влияние фибронектина на форму митохондрий
      • 3. 1. 4. Процесс удлинения и распределения митохондрий на периферии клетки зависит от взаимодействия их с микротрубочками
      • 3. 1. 5. Локализация митохондрий на периферии клетки
    • 3. 2. Роль промежуточных филаментов в распределении митохондрий
      • 3. 2. 1. Отсутствие промежуточных филаментов приводит к увеличению подвижности митохондрий в клетке
      • 3. 2. 2. Роль промежуточных филаментов во взаимодействии митохондрий с актиновым цитоскелетом
    • 3. 3. Протеинкиназа С регулирует подвижность митохондрий
      • 3. 3. 1. Подвижность митохондрий зависит от активности протеинкиназы С
      • 3. 3. 2. Протеинкиназа С регулирует связь митохондрий с промежуточными филаментами
  • Глава 4. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ
  • ВЫВОДЫ

Митохондрии занимают особое место среди других органелл клетки, благодаря способности синтезировать АТФ, участвовать в регуляции уровня внутриклеточного кальция, и контролировать процесс регулируемой клеточной гибели, апоптоз. Для нормального функционирования митохондрий большое значение имеет их внутриклеточное распределение. Во многих клетках митохондрии локализуются вблизи мест высокого потребления энергии. Локализация митохондрий находится под контролем внешних и внутренних факторов и достигается при помощи транспорта этих органелл вдоль микротрубочек и актиновых филаментов моторными белками.

Считается, что транспорт митохондрий и других органелл происходит в две стадии: на большие расстояния они переносятся по микротрубочкам, а по актиновым филаментам происходит их перемещение на небольшие расстояния и локализация (Chada and Hollenbeck, 2004; Kuznetsov et al., 1992; Morris and Hollenbeck, 1995). При этом скорость движения вдоль микротрубочек намного выше, чем вдоль микрофиламентов (Monis and Hollenbeck, 1995). Недавно в нашей лаборатории было показано, что фибриллярный актин (F — актин)1, полимеризующийся в результате действия белков семейства форминов, специфически взаимодействует с митохондриями и ограничивает их транспорт (Кулик и др., 2006). Однако оставалось не ясным, какие белки или структуры обеспечивают это взаимодействие.

Мы обнаружили, что если убрать промежуточные филаменты (ПФ) к ядру подвижность митохондрий на периферии клеток возрастает. Это может говорить о роли ПФ, как одного из элементов, удерживающих митохондрии в определенных местах. ПФ это третий компонент цитоскелета клетки. В клетках соединительной ткани они состоят из виментина и являются.

1 См. список принятых сокращений на стр. 5. наименее динамичной структурой цитоскелета (Lodish et al., 1997). Во многих работах представлены данные о том, что митохондрии взаимодействуют с ПФ (Collier et al., 1993; Hirokawa, 1982; Leterrier et al, 1994; Reipert et al., 1999). И хотя к настоящему времени связь ПФ с митохондриями, и ее роль в функционировании последних не вызывает сомнения, детали их взаимодействия остаются все еще мало изученными.

Целью настоящей работы было изучить, как ПФ участвуют в регуляции подвижности митохондрий в клетке. Другой целью было определить роль белка внеклеточного матрикса фибронектина, в прикреплении митохондрий к цитоскелету.

Мы показали, что форма и распределение митохондрий в клетке зависит от фибронектина, который находится в растворенном состоянии, а точнее его гепарин-связывающего домена. Кроме того, наши данные свидетельствуют о том, что ПФ участвуют в заякоривании митохондрий на периферии клеток. Они играют важную роль во взаимодействии митохондрий со специфическими структурами актинового цитоскелета. Связь митохондрий с ПФ находится под контролем протеинкиназы С (РКС).

ВЫВОДЫ.

1. Определена новая функция фибронектина как регулятора внутриклеточного распределения митохондрий.

2. Показано что за контроль распределения и формы митохондрий отвечает гепарин-связывающий домен фибронектина.

3. Виментиновые промежуточные филаменты ингибируют движение митохондрий в клетках.

4. Виментиновые промежуточные филаменты обеспечивают взаимодействие митохондрий со структурами актинового цитоскелета.

5. Обнаружено, что взаимодействие митохондрий с виментиновыми промежуточными филаментами находится под контролем протеинкиназы С.

Показать весь текст

Список литературы

  1. А. Ю., Ходяков А. Л., Байбикова Е. М., Соловьянова О. Б., Надеждина Е. С. Стабильность виментиновых промежуточных филаментов в интерфазных клетках // ДАН. 1997. Т. 357. с. 130−133.
  2. А. В., Гиоева Ф. К., Минин А. А. Видеомикроскопическое изучение подвижности митохондрий // Онтогенез. 2002. Т. 33. с. 366−373.
  3. А. В., Некрасова О. Е., Минин А. А. Фибрилярный актин регулирует подвижность митохондрий // Биологические мембраны. 2006. Т. 23. № I.e. 42−51.
  4. О. Е., Минин Ан. А., Кулик А. В., Минин А. А. Регуляция фибронектином формы и внутриклеточного распределения митохондрий // Биологические мембраны. 2005. Т. 22. с. 105−112.
  5. Allen R. D., Metuzals J., Tasaki I., Brady S. T. and Gilbert S. P. Fast axonal transport in squid giant axon // Science. 1982. Vol. 218. p. 1127−1129
  6. Aniento F., Emans N., Griffiths G. and Gruenberg J. Cytoplasmic dynein-dependent vesicular transport from early to late endosomes // J. Cell Biol. 1993. Vol. 123. p. 1373−1387
  7. Appaix F., Kuznetsov A. V., Usson Y., Kay L., Andrienko T., Olivares J., Kaambre T., Sikk P., Margreiter R. and Saks V. Possible role of cytoskeleton in intracellular arrangement and regulation of mitochondria // Exp. Physiol. 2003. Vol. 88. p. 175−190.
  8. Barkalow K., Hamasaki T. and Satir P. Regulation of 22S dynein by a 29-kD light chain // J. Cell Biol. 1994. Vol. 126. p. 727−735.
  9. Berg J. S., Powell B. C. and Cheney R. E. A millennial myosin census // Mol. Biol. Cell. 2001. Vol. 12. p. 780−794.
  10. Berridge M. J. and Irvine R. F. Inositol trisphosphate, a novel second messenger in cellular signal transduction // Nature. 1984. Vol. 312. p. 315−321.
  11. Bertrand F., Veissiere D., Hermelin B., Paul A., Capeau J., Picard J. and Cherqui G. Phosphorylation of vimentin is an intermediate step in protein kinase C-mediated glycoconjugate secretion // Am J. Physiol. 1994. Vol. 266. C p. 611 621.
  12. Boldogh I. R. and Pon L. A. Interactions of mitochondria with the actin cytoskeleton // Biochim. Biophys. Acta. 2006. Vol. 1763. p. 450−462.
  13. Bradley T. J. and Satir P. Evidence of microfilament-associated mitochondrial movement// J. Supramol. Struct. 1979. Vol. 12. p. 165−175.
  14. Brady S. T. Molecular motors in the nervous system // Neuron. 1991. Vol. 7. p. 521−533.
  15. Brady S. T., Lasek R. J. and Allen R. D. Fast axonal transport in extruded axoplasm from squid giant axon // Science. 1982. Vol. 218. p. 1129−1131.
  16. Brady S. T., Pfister K. K. and Bloom G. S. A monoclonal antibody against kinesin inhibits both anterograde and retrograde fast axonal transport in squid axoplasm // Proc. Natl. Acad. Sci. USA. 1990. Vol. 87. p. 1061−1065.
  17. Brenner C. and Kroemer G. Apoptosis. Mitochondria~the death signal integrators // Science. 2000. Vol. 289. p. 1150−1151.
  18. Bridgman P. C. Myosin Va movements in normal and dilute-lethal axons provide support for a dual filament motor complex // J. Cell Biol. 1999. Vol. 146. p. 1045−1060.
  19. Bridgman P. C. Myosin-dependent transport in neurons // J. Neurobiol. 2004. Vol. 58. p. 164−174.
  20. Brown J. R., Stafford P. and Langford G. M. Short-range axonal/dendritic transport by myosin-V: A model for vesicle delivery to the synapse // J. Neurobiol. 2004. Vol. 58. p. 175−188.
  21. Burkhardt J. K., Echeverri C. J., Nilsson T. and Vallee R. B. Overexpression of the dynamitin (p50) subunit of the dynactin complex disrupts dynein-dependent maintenance of membrane organelle distribution // J. Cell Biol. 1997. Vol. 139. p. 469−484.
  22. Burridge K., Fath K., Kelly T., Nuckolls G. and Turner C. Focal adhesions: transmembrane junctions between the extracellular matrix and the cytoskeleton // Annu. Rev. Cell Biol. 1988. Vol. 4. p. 487−525.
  23. Cambray-Deakin M. A., Robson S. J. and Burgoyne R. D. Colocalisation of acetylated microtubules, glial filaments, and mitochondria in astrocytes in vitro // Cell Motil. Cytoskeleton. 1988. Vol. 10. p. 438−449
  24. Capetanaki Y. Desmin cytoskeleton: a potential regulator of muscle mitochondrial behavior and function // Trends. Cardiovasc. Med. 2002. Vol. 12. p. 339−348.
  25. Chada S. R. and Hollenbeck P. J. Mitochondrial movement and positioning in axons: the role of growth factor signaling // J. Exp. Biol. 2003. Vol. 206. p. 1985−1992.
  26. Chada S. R. and Hollenbeck P. J. Nerve growth factor signaling regulates motility and docking of axonal mitochondria // Curr. Biol. 2004. Vol. 14. p. 1272−1276.
  27. Chilcote T. J. and Johnson K. A. Phosphorylation of Tetrahymena 22 S dynein//J. Biol. Chem. 1990. Vol. 265. p. 17 257−17 266.
  28. Chou Y. H. and Goldman R. D. Intermediate filaments on the move // J. Cell Biol. 2000. Vol. 150, F. p. 101−106.
  29. Collier N. C., Sheetz M. P. and Schlesinger M. J. Concomitant changes in mitochondria and intermediate filaments during heat shock and recovery of chicken embryo fibroblasts // J. Cell Biochem. 1993. Vol. 52. p. 297−307.
  30. Copeland J. W. and Treisman R. The diaphanous-related formin mDial controls serum response factor activity through its effects on actin polymerization // Mol. Biol. Cell. 2002. Vol. 13. p. 4088−4099.
  31. Corthesy-Theulaz I., Pauloin A. and Pfeffer S. R. Cytoplasmic dynein participates in the centrosomal localization of the Golgi complex // J. Cell Biol. 1992. Vol. 118. p. 1333−1345.
  32. Cossarizza A. and Salvioli S. Analysis of mitochondria during cell death // Methods Cell Biol. 2001. Vol. 63. p. 467−486.
  33. Craig S. W. and Johnson R. P. Assembly of focal adhesions: progress, paradigms, and portents // Curr. Opin. Cell Biol. 1996. Vol. 8. p. 74−85.
  34. Csordas G., Thomas A. P. and Hajnoczky G. Quasi-synaptic calcium signal transmission between endoplasmic reticulum and mitochondria // Embo J. 1999. Vol. 18. p. 96−108.
  35. Dedhar S. and Hannigan G. E. Integrin cytoplasmic interactions and bidirectional transmembrane signaling // Curr. Opin. Cell Biol. 1996. Vol. 8. p. 657−669.
  36. DeGiorgis J. A., Reese T. S. and Bearer E. L. Association of a nonmuscle myosin II with axoplasmic organelles // Mol. Biol. Cell. 2002. Vol. 13. p. 10 461 057.
  37. Desagher S. and Martinou J. C. Mitochondria as the central control point of apoptosis // Trends Cell Biol. 2000. Vol. 10. p. 369−377.
  38. J. F., 3rd and Pfister K. K. Differential phosphorylation in vivo of cytoplasmic dynein associated with anterogradely moving organelles // J. Cell Biol. 1994. Vol. 127. p. 1671−1681.
  39. Eckert B. S. Alteration of the distribution of intermediate filaments in PtKl cells by acrylamide. II: Effect on the organization of cytoplasmic organelles // Cell Motil. Cytoskeleton. 1986. Vol. 6. p. 15−24.
  40. Evangelista M., Blundell K., Longtine M. S., Chow C. J., Adames N., Pringle J. R., Peter M. and Boone C. Bnilp, a yeast formin linking cdc42p and the actin cytoskeleton during polarized morphogenesis // Science. 1997. Vol. 276. p. 118−122.
  41. Evangelista M., Zigmond S. and Boone C. Formins: signaling effectors for assembly and polarization of actin filaments // J. Cell Sci. 2003. Vol. 116. p. 2603−2611.
  42. Evans L. L. and Bridgman P. C. Particles move along actin filament bundles in nerve growth cones // Proc. Natl. Acad. Sci. USA 1995. Vol. 92. p. 1 095 410 958.
  43. Evans L. L., Lee A. J., Bridgman P. C. and Mooseker M. S. Vesicle-associated brain myosin-V can be activated to catalyze actin-based transport // J. Cell Sci. 1998. Vol. Ill .(Pt 14). p. 2055−2066.
  44. Fath K. R., Trimbur G. M. and Burgess D. R. Molecular motors are differentially distributed on Golgi membranes from polarized epithelial cells // J. Cell Biol. 1994. Vol. 126. p. 661−675.
  45. Fehrenbacher K. L., Yang H. C., Gay A. C., Huckaba T. M. and Pon L. A. Live cell imaging of mitochondrial movement along actin cables in budding yeast // Curr. Biol. 2004. Vol. 14. p. 1996−2004.
  46. Foisner R., Feldman B., Sander L. and Wiche G. Monoclonal antibody mapping of structural and functional plectin epitopes // J. Cell Biol. 1991a. Vol. 112. p. 397−405.
  47. Foisner R., Traub P. and Wiche G. Protein kinase A- and protein kinase deregulated interaction of plectin with lamin B and vimentin // Proc. Natl. Acad. Sci. USA 1991b. Vol. 88. p. 3812−3816.
  48. Foisner R. and Wiche G. Structure and hydrodynamic properties of plectin molecules // J, Mol. Biol. 1987. Vol. 198. p. 515−531.
  49. Foisner R. and Wiche G. Intermediate filament-associated proteins // Curr. Opin. Cell Biol. 1991. Vol. 3. p. 75−81.
  50. Forman D. S., Lynch K. J. and Smith R. S. Organelle dynamics in lobster axons: anterograde, retrograde and stationary mitochondria // Brain Res. 1987. Vol.412, p. 96−106.
  51. Fuchs E. and Weber K. Intermediate filaments: structure, dynamics, function, and disease//Annu. Rev. Biochem. 1994. Vol. 63. p. 345−382.
  52. Grafstein B. and Forman D. S. Intracellular transport in neurons // Physiol. Rev. 1980. Vol. 60. p. 1167−1283.
  53. Gyoeva F. K. and Gelfand V. I. Coalignment of vimentin intermediate filaments with microtubules depends on kinesin // Nature. 1991. Vol. 353. p. 445 448.
  54. Hall A. Small GTP-binding proteins and the regulation of the actin cytoskeleton // Annu. Rev. Cell Biol. 1994. Vol. 10. p. 31−54.
  55. Hanlon D. W., Yang Z. and Goldstein L. S. Characterization of KIFC2, a neuronal kinesin superfamily member in mouse // Neuron. 1997. Vol. 18. p. 439 451.
  56. Hay E.D. Extracellular matrix // J. Cell Biol. 1981. Vol. 91. p. 205−223.
  57. Heggeness M. H., Simon M. and Singer S. J. Association of mitochondria with microtubules in cultured cells // Proc. Natl. Acad. Sci. USA 1978. Vol. 75. p. 3863−3866.
  58. Heins S., Song Y. H., Wille H., Mandelkow E., and Mandelkow E. M. Effect of MAP2, MAP2c, and tau on kinesin-dependent microtubule motility // J. Cell Sci. Suppl. 1991. Vol. 14. p. 121−124.
  59. Helfand B. T., Mikami A., Vallee R. B. and Goldman R. D. A requirement for cytoplasmic dynein and dynactin in intermediate filament network assembly and organization // J. Cell Biol. 2002. Vol. 157. p. 795−806.
  60. Herman I. ML, Crisona N. J. and Pollard T. D. Relation between cell activity and the distribution of cytoplasmic actin and myosin // J. Cell Biol. 1981. Vol. 90. p. 84−91.
  61. Hirokawa N. Cross-linker system between neurofilaments, microtubules, and membranous organelles in frog axons revealed by the quick-freeze, deep-etching method // J. Cell Biol. 1982. Vol. 94. p. 129−142.
  62. Hirokawa N, Sato-Yoshitake R, Yoshida T. and Kawashima T. Brain dynein (MAP1C) localizes on both anterogradely and retrogradely transported membranous organelles in vivo // J. Cell Biol. 1990. Vol. 111. p. 1027−1037.
  63. Hollenbeck P. J. The pattern and mechanism of mitochondrial transport in axons // Front. Biosci. 1996. Vol. 1, d. p. 91−102.
  64. Holleran E. A, Tokito M. K., Karki S. and Holzbaur E. L. Centractin (ARP1) associates with spectrin revealing a potential mechanism to link dynactin to intracellular organelle // J. Cell Biol. 1996. Vol. 135. p. 1815−1829.
  65. Horiuchi D, Barkus R. V, Pilling A. D, Gassman A. and Saxton W. M. APLIP1, a kinesin binding JIP-1/JNK scaffold protein, influences the axonal transport of both vesicles and mitochondria in Drosophila // Curr. Biol. 2005. Vol. 15. p. 2137−2141.
  66. Hotani H. and Horio T. Dynamics of microtubules visualized by darkfield microscopy: treadmilling and dynamic instability // Cell Motil. Cytoskeleton. 1988. Vol. 10. p. 229−236.
  67. Hotchin N. A. and Hall A. The assembly of integrin adhesion complexes requires both extracellular matrix and intracellular rho/rac GTPases // J. Cell Biol. 1995. Vol. 131. p. 1857−1865.
  68. Hoth M., Fanger C. M. and Lewis R. S. Mitochondrial regulation of store-operated calcium signaling in T lymphocytes // J. Cell Biol. 1997. Vol. 137. p. 633−648.
  69. Hunt C. and Stebbings H. Role of MAPs and motors in the bundling and shimmering of native microtubules from insect ovarioles // Cell Motil. Cytoskeleton.1994. Vol. 27. p. 69−78.
  70. Ishiguro K., Kadomatsu K., Kojima T., Muramatsu H., Tsuzuki S., Nakamura E., Kusugami K., Saito H. and Muramatsu T. Syndecan-4 deficiency impairs focal adhesion formation only under restricted conditions // J. Biol. Chem. 2000. Vol. 275. p. 5249−5252.
  71. Itin C., Ulitzur N., Muhlbauer B. and Pfeffer S. R. Mapmodulin, cytoplasmic dynein, and microtubules enhance the transport of mannose 6-phosphate receptors from endosomes to the trans-golgi network // Mol. Biol. Cell. 1999. Vol. 10. p. 2191−2197.
  72. Kamal A., Almenar-Queralt A., LeBlanc J. F., Roberts E. A. and Goldstein L. S. Kinesin-mediated axonal transport of a membrane compartment containing beta-secretase and presenilin-1 requires APP // Nature. 2001. Vol. 414. p. 643 648.
  73. Kamal A., Stokin G. B., Yang Z., Xia C. H. and Goldstein L. S. Axonal transport of amyloid precursor protein is mediated by direct binding to the kinesin light chain subunit of kinesin-I // Neuron. 2000. Vol. 28. p. 449−459.
  74. Khodjakov A., Lizunova E. M., Minin A. A., Koonce M. P. and Gyoeva F. K. A specific light chain of kinesin associates with mitochondria in cultured cells // Mol. Biol. Cell. 1998. Vol. 9. p. 333−343.
  75. Krendel M., Sgourdas G. and Bonder E. M. Disassembly of actin filaments leads to increased rate and frequency of mitochondrial movement along microtubules // Cell Motil. Cytoskeleton. 1998. Vol. 40. p. 368−378.
  76. Ku N. O., Zhou X., Toivola D. M. and Omary M. B. The cytoskeleton of digestive epithelia in health and disease // Am. J. Physiol. 1999. Vol. 277, G p. 1108−1137.
  77. Kuznetsov S. A., Langford G. M. and Weiss D. G. Actin-dependent organelle movement in squid axoplasm // Nature. 1992. Vol. 356. p. 722−725.
  78. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4 // Nature. 1970. Vol. 227. p. 680−685.
  79. Lawrie A. M., Rizzuto R., Pozzan T. and Simpson A. W. A role for calcium influx in the regulation of mitochondrial calcium in endothelial cells // J. Biol. Chem. 1996. Vol. 271. p. 10 753−10 759.
  80. Lee K. D. and Hollenbeck P. J. Phosphorylation of kinesin in vivo correlates with organelle association and neurite outgrowth // J. Biol. Chem. 1995. Vol. 270. p. 5600−5605.
  81. Leopold P. L., McDowall A. W., Pfister K. K., Bloom G. S. and Brady S. T. Association of kinesin with characterized membrane-bounded organelles // Cell Motil. Cytoskeleton. 1992. Vol. 23. p. 19−33.
  82. Leterrier J. F., Linden M. and Nelson B. D. How do microtubules interact in vitro with purified subcellular organelles? // Biochem. J. 1990. Vol. 269. p. 556 558.
  83. Lewis A. K. and Bridgman P. C. Mammalian myosin I alpha is concentrated near the plasma membrane in nerve growth cones // Cell Motil. Cytoskeleton. 1996. Vol. 33. p. 130−150.
  84. Li Z., Colucci-Guyon E., Pincon-Raymond M., Mericskay M., Pournin S., Paulin D. and Babinet C. Cardiovascular lesions and skeletal myopathy in mice lacking desmin // Dev. Biol. 1996. Vol. 175. p. 362−366.
  85. Li Z., Okamoto K., Hayashi Y. and Sheng M. The importance of dendritic mitochondria in the morphogenesis and plasticity of spines and synapses // Cell. 2004. Vol.119, p. 873−887.
  86. Ligon L. A. and Steward 0. Role of microtubules and actin filaments in the movement of mitochondria in the axons and dendrites of cultured hippocampal neurons // J. Comp. Neurol. 2000. Vol. 427. p. 351−361.
  87. Ligon L. A., Tokito M., Finklestein J. M., Grossman F. E. and Holzbaur E. L. A direct interaction between cytoplasmic dynein and kinesin I may coordinate motor activity//J. Biol. Chem. 2004. Vol. 279. p. 19 201−19 208.
  88. Linden M., Nelson B. D. and Leterrier J. F. The specific binding of the microtubule-associated protein 2 (MAP2) to the outer membrane of rat brain mitochondria//Biochem. J. 1989a. Vol. 261. p. 167−173.
  89. Linden M., Nelson B. D., Loncar D. and Leterrier J. F. Studies on the interaction between mitochondria and the cytoskeleton // J. Bioenerg. Biomembr. 1989b. Vol. 21. p. 507−518.
  90. Lo S. H. and Chen L. B. Focal adhesion as a signal transduction organelle // Cancer Metastasis Rev. 1994. Vol. 13. p. 9−24.
  91. Lodish H., Baltimore D., Berk A., Zipursky S. L., Matsudaira P., Darnell J. Molecular Cell Biology. Third Edition. // New York: Scientific American Books. 1997. p. 1106.
  92. Lopez L. A. and Sheetz M. P. Steric inhibition of cytoplasmic dynein and kinesin motility by MAP2 // Cell Motil. Cytoskeleton. 1993. Vol. 24. p. 1−16.
  93. Mandelkow E. and Mandelkow E. M. Microtubules and microtubule-associated proteins // Curr. Opin. Cell Biol. 1995. Vol. 7. p. 72−81.
  94. Martin M. A., Hurd D. D. and Saxton W. M. Kinesins in the nervous system // Cell Mol. Life Sci. 1999. Vol. 56. p. 200−216.
  95. Miller K. E. and Sheetz M. P. Characterization of myosin V binding to brain vesicles // J. Biol. Chem. 2000. Vol. 275. p. 2598−2606.
  96. Miller K. E. and Sheetz M. P. Axonal mitochondrial transport and potential are correlated // J. Cell Sci. 2004. Vol. 117. p. 2791−2804.
  97. Milner D. J., Mavroidis M., Weisleder N. and Capetanaki Y. Desmin cytoskeleton linked to muscle mitochondrial distribution and respiratory function //J. Cell Biol. 2000. Vol. 150. p. 1283−1298.
  98. Milner D. J., Weitzer G., Tran D., Bradley A. and Capetanaki Y. Disruption of muscle architecture and myocardial degeneration in mice lacking desmin // J. Cell Biol. 1996. Vol. 134. p. 1255−1270.
  99. Minin A. A., Kulik A. V., Gyoeva F. K., Li Y., Goshima G. and Gelfand V. I. Regulation of mitochondria distribution by RhoA and formins // J. Cell Sci. 2006. Vol. 119. p. 659−670.
  100. Morris R. L. and Hollenbeck P. J. The regulation of bidirectional mitochondrial transport is coordinated with axonal outgrowth // J. Cell Sci. 1993. Vol. 104 (Pt3-. p. 917−927.
  101. Morris R. L. and Hollenbeck P. J. Axonal transport of mitochondria along microtubules and F-actin in living vertebrate neurons // J. Cell Biol. 1995. Vol. 131. p. 1315−1326.
  102. Mose-Larsen P., Bravo R., Fey S. J., Small J. V. and Celis J. E. Putative association of mitochondria with a subpopulation of intermediate-sized filaments in cultured human skin fibroblasts // Cell. 1982. Vol. 31. p. 681−692.
  103. Mosher D. F. and Furcht L. T. Fibronectin: review of its structure and possible functions //J. Invest. Dermatol. 1981. Vol. 77(2). p. 175−80.
  104. Mullins R. D., Heuser J. A. and Pollard T. D. The interaction of Arp2/3 complex with actin: nucleation, high affinity pointed end capping, and formation of branching networks of filaments // Proc. Natl. Acad. Sci. USA 1998. Vol. 95. p. 6181−6186.
  105. Nangaku M., Sato-Yoshitake R., Okada Y., Noda Y., Takemura R., Yamazaki H. and Hirokawa N. KIF1B, a novel microtubule plus end-directed monomelic motor protein for transport of mitochondria // Cell. 1994. Vol. 79. p. 1209−1220.
  106. Nguyen H. L., Gruber D., Bulinski J. C., Microtubule-associated protein 4 (MAP4) regulates assembly, protomer-polymer partitioning and synthesis of tubulin in cultured cells // J. Cell Sci. 1999. Vol. 112. p. 1813−1824.
  107. Nishizuka Y. The role of protein kinase C in cell surface signal transduction and tumour promotion // Nature. 1984. Vol. 308. p. 693−698.
  108. Nishizuka Y. Studies and prospectives of the protein kinase c family for cellular regulation//Cancer. 1989. Vol. 63. p. 1892−1903.
  109. Nobes C. D. and Hall A. Rho, rac and cdc42 GTPases: regulators of actin structures, cell adhesion and motility// Biochem. Soc. Trans. 1995. Vol. 23. p. 456−459.
  110. Oh E. S., Woods A. and Couchman J. R. Syndecan-4 proteoglycan regulates the distribution and activity of protein kinase C // J. Biol. Chem. 1997. Vol. 272. p. 8133−8136.
  111. Pacher P. and Hajnoczky G. Propagation of the apoptotic signal by mitochondrial waves // Embo. J. 2001. Vol. 20. p. 4107−4121.
  112. Paulin D. and Li Z. Desmin: a major intermediate filament protein essential for the structural integrity and function of muscle // Exp. Cell Res. 2004. Vol. 301. p. 1−7.
  113. Pereira A. J., Dalby B., Stewart R. J., Doxsey S. J. and Goldstein L. S. Mitochondrial association of a plus end-directed microtubule motor expressed during mitosis in Drosophila // J. Cell Biol. 1997. Vol. 136. p. 1081−1090.
  114. Pilling A. D., Horiuchi D., Lively C. M. and Saxton W. M. Kinesin-1 and Dynein are the primary motors for fast transport of mitochondria in Drosophila motor axons // Mol. Biol. Cell. 2006. Vol. 17. p. 2057−2068.
  115. Pollard T. D. Actin // Curr. Opin. Cell Biol. 1990. Vol. 2. p. 33−40.
  116. Pollard T. D. and Beltzner C. C. Structure and function of the Arp2/3 complex // Curr. Opin. Struct. Biol. 2002. Vol. 12. p. 768−774.
  117. Pollard T. D., Blanchoin L. and Mullins R. D. Molecular mechanisms controlling actin filament dynamics in nonmuscle cells // Annu. Rev. Biophys. Biomol. Struct. 2000. Vol. 29. p. 545−576.
  118. Pollard T. D. and Earashaw W. C. Cell Biology //Philadelphia: Elsevier Science (USA). 2002. p. 599.
  119. Prahlad V., Yoon M., Moir R. D., Vale R. D. and Goldman R. D. Rapid movements of vimentin on microtubule tracks: kinesin-dependent assembly of intermediate filament networks // J. Cell Biol. 1998. Vol. 143. p. 159−170.
  120. Prekeris R. and Terrian D. M. Brain myosin V is a synaptic vesicle-associated motor protein: evidence for a Ca2±dependent interaction with the synaptobrevin-synaptophysin complex //J. Cell Biol. 1997. Vol. 137. p. 15 891 601.
  121. Pruyne D., Evangelista M., Yang C., Bi E., Zigmond S., Bretscher A. and Boone C. Role of formins in actin assembly: nucleation and barbed-end association // Science. 2002. Vol. 297. p. 612−615.
  122. Reipert S., Steinbock F., Fischer I., Bittner R. E., Zeold A. and Wiche G. Association of mitochondria with plectin and desmin intermediate filaments in striated muscle // Exp. Cell Res. 1999. Vol. 252. p. 479−491.
  123. Ridley A. J. and Hall A. Distinct patterns of actin organization regulated by the small GTP-binding proteins Rac and Rho // Cold Spring Harb. Symp. Quant. Biol. 1992. Vol. 57. p. 661−671.
  124. Rizzuto R., Brini M., Murgia M. and Pozzan T. Microdomains with high Ca2+ close to IP3-sensitive channels that are sensed by neighboring mitochondria // Science. 1993. Vol. 262. p. 744−747.
  125. Rizzuto R., Pinton P., Carrington W., Fay F. S., Fogarty K. E., Lifshitz L. M., Tuft R. A. and Pozzan T. Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca2+ responses // Science. 1998. Vol. 280. p. 1763−1766.
  126. Ron D. and Kazanietz M. G. New insights into the regulation of protein kinase C and novel phorbol ester receptors // Faseb. J. 1999. Vol. 13. p. 16 581 676.
  127. Ruoslahti E. RGD and other recognition sequences for integrins // Annu. Rev. Cell Dev. Biol. 1996. Vol. 12. p. 697−715.
  128. Ruoslahti E., Pierschbacher M., Engvall E., Oldberg A. and Hayman E. G. Molecular and biological interactions of fibronectin // J. Invest. Dermatol. 1982. Vol. 79 Suppl 1. p. 65s-68s.
  129. Sato-Harada R., Okabe S., Umeyama T., Kanai Y. and Hirokawa N. Microtubule-associated proteins regulate microtubule function as the track for intracellular membrane organelle transports // Cell Struct. Funct. 1996. Vol. 21. p. 283−295.
  130. Sato-Yoshitake R., Yorifuji H., Inagaki M. and Hirokawa N. The phosphorylation of kinesin regulates its binding to synaptic vesicles // J. Biol. Chem. 1992. Vol. 267. p. 23 930−23 936.
  131. Schroer T. A. and Sheetz M. P. Two activators of microtubule-based vesicle transport//J. Cell Biol. 1991. Vol. 115. p. 1309−1318.
  132. Schulze E. and Kirschner M. New features of microtubule behaviour observed in vivo // Nature. 1988. Vol. 334. p. 356−359.
  133. Sheetz M. P. and Spudich J. A. Movement of myosin-coated fluorescent beads on actin cables in vitro // Nature. 1983. Vol. 303. p. 31−35.
  134. Small J. V. The actin cytoskeleton // Electron. Microsc. Rev. 1988. Vol. 1. p. 155−174.
  135. Small J. V., Rottner K. and Kaverina I. Functional design in the actin cytoskeleton // Curr. Opin. Cell Biol. 1999. Vol. 11. p. 54−60.
  136. Spudich A., Meyer T. and Stryer L. Association of the beta isoform of protein kinase C with vimentin filaments // Cell Motil. Cytoskeleton. 1992. Vol. 22. p. 250−256.
  137. Stebbings H. and Hunt C. The translocation of mitochondria along insect ovarian microtubules from isolated nutritive tubes: a simple reactivated model // J. Cell Sci. 1987. Vol. 88 (Pt 5) p. 641−648.
  138. Strelkov S. V., Herrmann H. and Aebi U. Molecular architecture of intermediate filaments // Bioessays. 2003. Vol. 25. p. 243−251.
  139. Summerhayes I. C., Wong D. and Chen L. B. Effect of microtubules and intermediate filaments on mitochondrial distribution // J. Cell Sci. 1983. Vol. 61. p. 87−105.
  140. Svitkina T. M., Verkhovsky A. B. and Borisy G. G. Improved procedures for electron microscopic visualization of the cytoskeleton of cultured cells // J. Struct. Biol. 1995. Vol. 115. p. 290−303.
  141. Svitkina T. M., Verkhovsky A. B. and Borisy G. G. Plectin sidearms mediate interaction of intermediate filaments with microtubules and other components of the cytoskeleton // J. Cell Biol. 1996. Vol. 135. p. 991−1007.
  142. Tabb J. S., Molyneaux B. J., Cohen D. L., Kuznetsov S. A. and Langford G. M. Transport of ER vesicles on actin filaments in neurons by myosin V // J. Cell Sci. 1998. Vol. 111 (Pt 21). p. 3221−3234.
  143. Tanaka Y., Kanai Y., Okada Y., Nonaka S., Takeda S., Harada A. and Hirokawa N. Targeted disruption of mouse conventional kinesin heavy chain, kif5B, results in abnormal perinuclear clustering of mitochondria // Cell. 1998. Vol. 93. p. 1147−1158.
  144. Tilney L. G. and Portnoy D. A. Actin filaments and the growth, movement, and spread of the intracellular bacterial parasite, Listeria monocytogenes // J. Cell Biol. 1989. Vol. 109. p. 1597−1608.
  145. Trinczek B., Ebneth A., Mandelkow E. M. and Mandelkow E. Tau regulates the attachment/detachment but not the speed of motors in microtubule-dependent transport of single vesicles and organelles // J. Cell Sci. 1999. Vol. 112 (Pt 14). p. 2355−2367.
  146. Ulitzur N., Humbert M. and Pfeffer S. R. Mapmodulin: a possible modulator of the interaction of microtubule-associated proteins with microtubules // Proc. Natl. Acad. Sci. USA 1997. Vol. 94. p. 5084−5089.
  147. Vale R. D., Reese T. S. and Sheetz M. P. Identification of a novel forcegenerating protein, kinesin, involved in microtubule-based motility // Cell. 1985. Vol. 42. p. 39−50.
  148. Van Blerkom J. Microtubule mediation of cytoplasmic and nuclear maturation during the early stages of resumed meiosis in cultured mouse oocytes // Proc. Natl. Acad. Sci. USA 1991. Vol. 88. p. 5031−5035.
  149. Verhey K. J., Meyer D., Deehan R., Blenis J., Schnapp B. J., Rapoport T. A. and Margolis B. Cargo of kinesin identified as JIP scaffolding proteins and associated signaling molecules // J. Cell Biol. 2001. Vol. 152. p. 959−970.
  150. Vikstrom K. L., Lim S. S., Goldman R. D. and Borisy G. G. Steady state dynamics of intermediate filament networks // J. Cell Biol. 1992. Vol. 118. p. 121−129.
  151. Wade R. H., Chretien D. and Job D. Characterization of microtubule protofilament numbers. How does the surface lattice accommodate? // J. Mol. Biol. 1990. Vol.212, p. 775−786.
  152. Wagner M. C., Barylko B. and Albanesi J. P. Tissue distribution and subcellular localization of mammalian myosin I // J. Cell Biol. 1992. Vol. 119. p. 163−170.
  153. Wagner O. I., Lifshitz J., Janmey P. A., Linden M., Mcintosh T. K. and Leterrier J. F. Mechanisms of mitochondria-neurofilament interactions // J. Neurosci. 2003. Vol. 23. p. 9046−9058.
  154. Watanabe N., Kato T., Fujita A., Ishizaki T. and Narumiya S. Cooperation between mDial and ROCK in Rho-induced actin reorganization // Nat. Cell Biol. 1999. Vol. 1. p. 136−143.
  155. Wegner A. Head to tail polymerization of actin // J. Mol. Biol. 1976. Vol. 108. p. 139−150.
  156. Wiche G. Plectin: general overview and appraisal of its potential role as a subunit protein of the cytomatrix // Crit. Rev. Biochem. Mol. Biol. 1989. Vol. 24. p. 41−67.
  157. Woods A. and Couchman J. R. Protein kinase C involvement in focal adhesion formation // J. Cell Sci. 1992. Vol. 101(Pt 2). p. 277−290.
  158. Wu X., Bowers B., Rao K., Wei Q. and Hammer J. A., 3rd Visualization of melanosome dynamics within wild-type and dilute melanocytes suggests a paradigm for myosin V function In vivo // J. Cell Biol. 1998. Vol. 143. p. 18 991 918.
  159. Yaffe M. P. The machinery of mitochondrial inheritance and behavior // Science. 1999. Vol. 283. p. 1493−1497.
  160. Yaffe M. P., Harata D., Verde F., Eddison M., Toda T. and Nurse P. Microtubules mediate mitochondrial distribution in fission yeast // Proc. Natl. Acad. Sci. USA 1996. Vol. 93. p. 11 664−11 668.
  161. Yamada K. M. and Miyamoto S. Integrin transmembrane signaling and cytoskeletal control // Curr. Opin. Cell Biol. 1995. Vol. 7. p. 681−689.
  162. Yang H.C. and Pon L.A. Actin cable dynamics in budding yeast // Proc. Natl. Acad. Sci. USA. 2002. Vol. 99. p. 751−756.
  163. Yang Z., Roberts E. A. and Goldstein L. S. Functional analysis of mouse C-terminal kinesin motor KifC2 // Mol. Cell Biol. 2001. Vol. 21. p. 2463−2466.
  164. Yi M., Weaver D. and Hajnoczky G. Control of mitochondrial motility and distribution by the calcium signal: a homeostatic circuit // J. Cell Biol. 2004. Vol. 167. p. 661−672.
  165. Zackroff R. V. and Goldman R. D. In vitro assembly of intermediate filaments from baby hamster kidney (BHK-21) cells // Proc. Natl. Acad. Sci. USA 1979. Vol. 76. p. 6226−6230.
  166. Zielinski B. S., Getchell M. L. and Getchell T. V. Ultrastructural characteristics of sustentacular cells in control and odorant-treated olfactory mucosae of the salamander // Anat. Rec. 1988. Vol. 221. p. 769−779.
Заполнить форму текущей работой