Помощь в написании студенческих работ
Антистрессовый сервис

Исследование структур фермент-лигандных комплексов аденозина и его 2 «-, 3» — и 5'-замещённых аналогов с аденозиндезаминазой млекопитающих методами компьютерной химии

ДиссертацияПомощь в написанииУзнать стоимостьмоей работы

Актуальность работы. Аденозиндезаминаза (АДА, КФ 3.5.4.4) -фермент, играющий исключительно важную роль в метаболизме пуриновых нуклеозидов и регуляции клеточного иммунитета у человека и животных. АДА необратимо дезаминирует аденозин и его различные аналоги, включая фармакологически активные, в инозин и его соответствующие малоактивные аналоги путём гидролитического замещения ИНг-группы… Читать ещё >

Исследование структур фермент-лигандных комплексов аденозина и его 2 «-, 3» — и 5'-замещённых аналогов с аденозиндезаминазой млекопитающих методами компьютерной химии (реферат, курсовая, диплом, контрольная)

Содержание

  • ГЛАВА 1. ОБЗОР ЛИТЕРАТУРЫ
    • 1. 1. Кинетические и структурно-функциональные исследования механизма реакции дезаминирования аденозина и его аналогов аденозиндезаминазой млекопитающих
    • 1. 2. Система обозначений конформационных параметров молекул 20 пуриновых нуклеозидов и их аналогов по номенклатуре IUPAC-IUBMB
    • 1. 3. Складчатость рибофуранозного цикла
    • 1. 4. Структурные, конформационные и стереохимические 28 требования к аналогам аденозина, необходимые для их ферментативного дезаминирования
    • 1. 5. Теоретические исследования аденозина и его аналогов как 41 антагонистов и ингибиторов аденозиндезаминазы млекопитающих
  • ГЛАВА 2. ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТ
    • 2. 1. Построение исходных структур молекул нуклеозидов
    • 2. 2. %шчёт зарядов на атомах в молекулах нуклеозидов
    • 2. 3. Расчёт наиболее устойчивых и близких к оптимальным для 48 акцептирования в активном центре АДА конформаций у исследуемых структур молекул нуклеозидов
    • 2. 4. Расчёт зарядов на атомах в протонированных остатках 50 аминокислот и в комплексе с ионом цинка
    • 2. 5. Оптимизация геометрии комплексов АДА-нуклеозид методом молекулярной механики в силовом поле Amber
  • ГЛАВА 3. РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ
    • 3. 1. Аденозин и его замещённые рибоаналоги
    • 3. 2. Ксилоаденозин и его замещённые аналоги
    • 3. 3. Арабиноаденозин и его замещённые аналоги, ликсоаденозин
    • 3. 4. Возможный механизм акцептирования аденозина и его аналогов 90 в активном центре АДА млекопитающих и его уточнение для 2'-,
    • 3. '- и 5'-замещённых аналогов аденозина
  • ВЫВОДЫ

Актуальность работы. Аденозиндезаминаза (АДА, КФ 3.5.4.4) -фермент, играющий исключительно важную роль в метаболизме пуриновых нуклеозидов и регуляции клеточного иммунитета у человека и животных. АДА необратимо дезаминирует аденозин и его различные аналоги, включая фармакологически активные, в инозин и его соответствующие малоактивные аналоги путём гидролитического замещения ИНг-группы на ОН-группу в положении 6 остатка пурина или другого гетероцикла. Недостаток этого фермента в лимфоидных тканях приводит к тяжёлому комбинированному иммунодефициту (ТКИД), связанному с угнетающим действием избытка 2'-дезоксиаденозина на биосинтез ДНК в Ти В-лимфоцитах (образующийся 2'-дезоксиаденозин-5'-трифосфат аллостерически ингибирует рибонуклео-тидредуктазу) и, как следствие, на их размножение.

Исследование взаимодействий в системах фермент-лиганд на примере системы «АДА-аналог аденозина» методами квантовой химии и молекулярной механики позволяет на атомном уровне получить данные о взаимосвязи структур фермент-лигандных комплексов с субстратными свойствами этих лигандов, которые невозможно получить экспериментальными методами.

Существуют лишь единичные работы, в которых методами компьютерной химии исследовались отдельные аналоги аденозина в комплексе с АДА. Несмотря на наличие ряда рентгеноструктурных данных для комплексов АДА-ингибитор, многие аспекты взаимодействия аналогов субстрата и взаимосвязь их с субстратными свойствами в отношении АДА млекопитающих остаются неизученными. Поэтому теоретическое исследование особенностей акцептирования 2'-, Уи 5'-замещённых аналогов аденозина (производных p-D-рибофуранозы, (3-£)-арабинофуранозы, Р-?)-ксилофуранозы, (3-£>-ликсофуранозы и др.) в активном центре АДА методами компьютерной химии представляется актуальным. Установление влияния структурных и стереохимических факторов на субстратную активность у этих аналогов аденозина в отношении АДА млекопитающих необходимо для направленного поиска в этих группах новых нуклеозидов с возможной химиотерапевтической активностью (противовирусной, противоопухолевой, иммуносупрессорной).

Работа выполнялась при финансовой поддержке РФФИ (проект 01−449 938).

Целью работы явилось исследование оптимизированных структур фермент-лигандных комплексов «АДА-аналог аденозина» и установление взаимосвязи их параметров с субстратными свойствами соответствующих аналогов аденозина.

Для достижения поставленной цели решались следующие задачи:

1) получение распределения зарядов методом ab initio в базисе 6−31G* (6−311Gдля бромопроизводных) в молекулах исследуемых нуклеозидов и поиск их конформаций — наиболее устойчивых и оптимальных для акцептирования активным центром АДА — с использованием метода молекулярной механики с силовым полем Amber99;

2) получение распределения зарядов методом ab initio (базисный набор 6−31G*) в остатках аминокислот с нестандартным состоянием протонирования или находящихся в комплексе с ионом цинка и создание стартовой модели полного комплекса АДА-1-деазааденозин на базе исходной структуры 1ADD из Protein Data Bank для последующего замещения 1-деазааденозина на аденозин или его аналог;

3) ступенчатая оптимизация полученных структур фермент-лигандных комплексов в силовом поле Amber99;

4) анализ геометрических и энергетических параметров оптимизированных структур комплексов «АДА-аналог аденозина»;

5) установление структурных, стереохимических и конформационных факторов, приводящих к различиям в субстратных свойствах для 2'-, 3'- и 5'-замещённых аналогов аденозина в отношении АДА млекопитающих.

Научная новизна. В работе впервые получены следующие результаты:

1) методами компьютерной химии созданы и оптимизированы фермент-лигандные комплексы «АДА-аналог аденозина», содержащие аналоги аденозина с заместителями в положениях 2', 3' и 5' фуранозного цикла;

2) проведён сравнительный анализ геометрических и энергетических параметров для оптимизированных структур комплексов «АДА-аналог аденозина»;

3) установлено, что нахождение фуранозного цикла в //-области псевдовращения является необходимым условием для эффективного акцептирования аналога аденозина активным центром АДА;

4) установлены структурные, стереохимические и конформационные корреляции в комплексах «АДА-аналог аденозина» с экспериментальными данными по субстратным свойствам в отношении АДА для изученных аналогов аденозина.

Практическая значимость работы. Исследование и сравнительный анализ геометрических и энергетических параметров оптимизированных структур фермент-лигандных комплексов для 2'-, 3'- и 5'-замещённых аналогов аденозина с АДА млекопитающих совместно с анализом взаимосвязи их субстратной активности в отношении этого фермента позволит проводить направленный поиск новых аналогов аденозина с ожидаемыми субстратными и ингибиторными свойствами, которые могут проявлять различные виды химиотерапевтической активности.

Предложенные подходы к исследованию фермент-лигандных комплексов методами компьютерной химии могут быть распространены на другие ферменты, для которых известны рентгеноструктурные данные по их фермент-ингибиторным комплексам.

На защиту выносятся: — результаты исследования оптимизированных структур фермент-лигандных комплексов «АДА-аналог аденозина», включая установление того факта, что нахождение фуранозного цикла в iV-области псевдовращения является необходимым условием для эффективного акцептирования аналога аденозина активным центром АДА;

— результаты исследования влияния структурных и стереохимических факторов, приводящих к различиям в субстратных свойствах для АДА у исследуемых групп аналогов аденозина;

— установление основных критериев для акцептирования 2'-, Уи 5'-замещённых аналогов аденозина активным центром АДА млекопитающих.

Личный вклад автора заключается в постановке научно-исследовательской работы, планировании подходов к её решению, определении характера проводимых расчётов, обсуждении взаимосвязи структуры фермент-лигандных комплексов с субстратными свойствами 2'-, 3'- и 5'-замещённых аналогов аденозина в отношении АДА млекопитающих, установления влияния ориентации и природы заместителей в положениях 2', 3' и 5' фуранозного цикла на субстратные свойства соответствующих аналогов аденозина.

Публикации. По теме диссертации опубликовано 3 статьи и 4 тезиса докладов.

Структура и объём диссертации. Диссертационная работа состоит из введения, трёх глав, выводов, списка использованных источников и приложения. Текст диссертации изложен на 105 страницах машинописного текста, содержит 16 таблиц, 24 рисунка, 85 литературных ссылок на работы отечественных и зарубежных авторов. В первой главе проанализированы литературные данные по структурно-функциональным исследованиям субстратных свойств аналогов аденозина в отношении АДА млекопитающих, в частности 2'-, Уи 5'-замещённых аналогов аденозина, и их теоретическим исследованиям с использованием различных методов квантовой хихмии и молекулярной механики. Вторая глава посвящена обсуждению полученных результатов. Третья глава содержит экспериментальные материалы автора. Приложение (20 с.) содержит подробные данные по результатам расчётов фермент-лигандных комплексов и листинги расчётов их конформационных парахМетров.

ВЫВОДЫ.

1. Разработаны методики создания, расчёта и анализа структур фермент-лигандных комплексов «АДА-аналог аденозина», содержащие аналоги аденозина с заместителями в положениях 2', 3' и 5' фуранозного цикла.

2. Установлено, что нахождение фуранозного цикла в TV-области псевдовращения (группа СЗ'-эндо) является необходимым условием для эффективного связывания аналога аденозина активным центром АДА. В случае стартовой-области молекулы нуклеозида наблюдаются либо конформационный S-+Nпереход, либо неоптимальность геометрических параметров оптимизированных фермент-лигандных комплексов.

3. Установлено, что величина торсионного угла (3 должна находиться в пределах -80.-90° (-синклинальная конформация). Уменьшение его значения ниже -100° (-антиклинальная конформация) приводит к резкому ухудшению и исчезновению субстратных свойств у соответствующих аналогов аденозина, так как нарушается соответствующая водородная связь между 5'-ОН-группой нуклеозида и СОО~-группой остатка Asp 19 в активном центре АДА.

4. Для рибоаналогов аденозина наличие заместителя при атоме СЗ' в Р-ориентации приводит к стерическим затруднениям в образовании водородной связи между атомом водорода Н05' субстрата и атомом кислорода СОО~-группы остатка Asp 19. Ван-дер-ваальсовый радиус этого заместителя не должен превышать 1.8 А, чтобы соединение проявляло субстратные свойства (этинильная группа). Увеличение размеров заместителя при атоме СЗ' в а-ориентации влияет на ухудшение субстратных свойств аналога гораздо сильнее, чем при атоме С2' в той же ориентации вследствие его влияния на образование той же водородной связи.

5. Для ксилоаналогов аденозина наличие заместителя при атоме СЗ' в Р-ориентации приводит к сходному его влиянию, как и в случае рибоаналогов. Поэтому наилучшими субстратными свойствами обладают соединения, у которых в Р-ориентации при атоме СЗ' находятся атомы водорода или фтора. При достижении ван-дер-ваальсового радиуса этого заместителя величины 1.8 А субстратные свойства у аналога полностью исчезают вследствие невозможности его акцептирования активным центром АДА.

6. Для арабиноаналогов аденозина увеличение объёма заместителя при атоме С2' в Р-ориентации приводит к стерическим затруднениям при вращении вокруг гликозидной связи нуклеозида и ухудшению субстратных свойств вплоть до полного их исчезновения. К аналогичному явлению также приводит наличие заместителя при атоме СЗ' в а-ориентации, что связано с влиянием этого заместителя на образование водородной связи между атомом водорода Н05' субстрата и атомом кислорода СОСГ-группы остатка Asp 19. Наилучшими субстратами для АДА являются те арабиноаналоги аденозина, которые имеют в соответствующих положениях остатков фуранозы атомы водорода или фтора.

Показать весь текст

Список литературы

  1. Franco R., Valenzuela A., Lluis С., Blanco J. Enzymatic and extraenzymatic role of ecto-adenosine deaminase in lymphocytes// Immunol. Rev. 1998. V. 161. P. 27−42.
  2. Wilson D.K., Rudolph F.B., Quiocho F.A. Atomic structure of adenosine deaminase complexed with a transition-state analog: understanding catalysis and immunodeficiency mutations // Science. 1991. V. 252. N 5010. P. 1278−1284.
  3. Kefford R.F., Fox R.M. Purinogenic lymphocytotoxicity: clues to a wider chemotherapeutic potential for the adenosine deaminase inhibitors// Cancer Chemother, and Pharmacol. 1983. V. 10. N 2. P. 73−78.
  4. Valentine W.N., Tanaka K.R., Paglia D.E. Hemolytic anemias and erythrocyte enzymopathies // Ann. Intern. Med. 1985. V. 103. N 2. P. 245−257.
  5. Agarwal R.P. Inhibitors of adenosine deaminase// Pharmacol, and Ther. 1982. V. 17. N3. P. 399−429.
  6. Glazer R.I. Adenosine deaminase inhibitors: their role in chemotherapy and immunosuppression// Cancer Chemother, and Pharmacol. 1980. V. 4. N4. P. 227−235.
  7. Bennett L.L., Jr, Allan P.W., Carpenter J.W., Hill D.L. Nucleosides of 2-aza-purines cytotoxicities and activities as substrates for enzymes metabolizing purine nucleosides // Biochem. Pharmacol. 1976. V. 25. N 5. P. 517−521.
  8. Chao D.L., Kimball A.P. Deamination of arabinosyladenine by adenosine deaminase and inhibition by arabinosyl-6-mercaptopurine// Cancer Res. 1972. V. 32. N8. P. 1721−1724.
  9. Dutta S.P., Bernacki R.J., Bloch A., Chheda G.B. Synthesis and biological activity of 6-hydroxyguanidino- and 6-hydroxyureidopurine and their ribonucleosides //Nucleosides and Nucleotides. 1990. V. 9. N 2. P. 151−162.
  10. Bussolari J.C., Ramesh K., Stoeckler J.D., Chen S.F., Panzica R.P. Synthesis and biological evaluation of N -substituted imidazo- and v-triazolo-4,5-aOpyridazine nucleosides // J. Med. Chem. 1993. V. 36. N 25. P. 4113−4120.
  11. Oertel F., Winter H., Kazimierczuk Z., Vilpo J.A., Richter P., Seela F. Synthesis and properties of methylthiopyrazolo3,4-c/.pyrimidine 2'-deoxy-j8-D-ribonucleosides // Liebigs Ann. Chem. 1992. N 11. P. 1165−1170.
  12. Baker D.C., Haskell Т.Н., Putt S.R. Prodrugs of 9-/3-D-arabino-furanosyl-adenine. 1. Synthesis and evaluation of some 5'-(O-acyl)-derivatives// J. Med. Chem. 1978. V. 21. N 12. P. 1218−1221.
  13. Nair V., Nuesca Z.M. Isodideoxynucleosides: A conceptually new class of nucleoside antiviral agents// J. Amer. Chem. Soc. 1992. V. 114. N20. P. 79 517 953.
  14. Е.Н., Бейгельман JI.H., Михайлов С. Н., Михайлопуло И. А. Субстратная специфичность аденозиндезаминазы. Роль метальных групп при 2', 3' и 5'-атомах углерода аденозина// Биоорган, химия. 1988. Т. 14. № 9. С. 1157−1161.
  15. Barchi J.Jr., Marquez V.E., Driscoll J.S., Ford H. Jr., Mitsuya H., Shirasaka Т., Aoki S., Kelley J.A. Potential anti-AIDS drugs. Lipophilic, adenosine deaminase-activated prodrugs // J. Med. Chem. 1991. V. 34. N 5. P. l647−1655.
  16. Morgan M.E., Chi S.C., Murakami K., Mitsuya H., Anderson B.D. Central nervous system targeting of 2', 3'-dideoxyinosine via adenosine deaminase-activated 6-halo-dideoxypurine prodrugs// Antimicrob Agents Chemother. 1992. V.36. N. 10. P. 2156−2165.
  17. Hutchinson D.W. Trends New approaches to the synthesis of antiviral nucleosides//Biotechnol. 1990. V. 8. N. 12. P. 348−353.
  18. Hanrahan J.R., Hutchinson D.W. The enzymatic synthesis of antiviral agents // J. Biotechnol. 1992. V. 23. N. 2. P. 193−210.
  19. Cory J.G., Suhadolnik R.J. Dechloronase activity of adenosine deaminase// Biochemistry. 1965. V. 4. N 9. P. 1733−1735.
  20. Bar H.P., Drummond G.I. On the mechanism of adenosine deaminase action // Biochem. and Biophys. Res. Communs. 1966. V. 24. N 4. P. 584−587.
  21. Baer H.P., Drummond G.I., Gillis J. Studies on the specificity and mechanism of action of adenosine deaminase // Arch. Biochem. and Biophys. 1968. V. 123. N 1. P. 172−178.
  22. Ronca G., Zucchelli G. Competitive inhibition of adenosine deaminase by purine and pyrimidine bases // Biochim. et biophys. acta. 1968. V. 159. N 1. P. 203−205.
  23. Wolfenden R. On the Rate-Determining Step in the Action of Adenasine Deaminase // Biochemistry. 1969. V. 8. N. 6. P. 2409−2412.
  24. Wolfenden R., Kaufman J., Macon J.B. Ring-Modified Substrates of Adenosine Deaminases // Biochemistry. 1969 V. 8. N. 6. P. 2412−2415.
  25. Wolfenden R., Sharpless Т.К., Allan R. Substrate Binding by Adenosine Deaminase: Specifity, pH dependence, and competition mercurials// J. Bio. Chem. 1967. P.977−983.
  26. Frieden C., Kurz L.C., Gilbert H.R. Adenosine deaminase and adenylate deaminase: comparative kinetic studies with transition state and ground state analogue inhibitors // Biochemistry. 1980. V. 19. N 23. P. 5303−5309
  27. Frick L., Wolfenden R., Smal E., Baker D.C. Transition-state stabilization by adenosine deaminase: structural studies of its inhibitory complex with deoxycoformycin // Biochemistry. 1986. V. 25. N 7. P. 1616−1621.
  28. Caiolfa V.R., Gill D., Parola A.H. The protonated form of 1 -N6-dhoxo-erythro-9-(2-hydroxy-3-nonyl). adenine is identified at the active site of adenosine deaminase // FEBS Lett. 1990. V. 260. N 1. P. 19−22.
  29. IUPAC-IUB Joint Commission of Biochemical Nomenclature: Abbreviations and symbols for the description of conformations of polynucleotide chains // Eur. J. Biochem. 1983. V. 131. P. 9−15.
  30. Hall L.D. Conformations of some ribofuranosides// Chem. Ind. 1963. P.950 951.
  31. Jardetzky C.D. Proton magnetic resonance studies on purines? pyrimidines? ribose nucleosides and nucleotides. III. Ribose conformation // J. Amer. Chem. Soc. 1960. N. 82. P.229−223.
  32. Kilpatrick J.E., Pitzer K.S., Spitzer R. The thermodynamics and molecular structure of cyclopentane // Amer. Chem. Soc. 1960. N. 69. P.2483−2488.
  33. Pitzer K.S., Donath W.E. Conformations and strain energy of cyclopentane and its derivatives //J. Amer. Chem. Soc. 1979. N.48. P.3213−3218.
  34. Hall L.D., Steiner P.R., Pederse C. Studies of specifically fluorinated carbohydrates. Part VI. Some pentafuranosyl fluorides// Can. J. Chem. 1979. N.81. P. l 155−1165.
  35. Altona C., Geise H.J., Romers C. Conformations analysis of nonaromatic ring compounds. XXV. Geometry and conformation of ring D in some steroids from X-ray structure determinations // Tetrahedron. 1968. N 24. P. 13−32.
  36. Altona C., Sundaralingam M. Conformational analysis of the sugar ring in nucleisides and nucleotides. A new description using the concept of pseudorotation// J. Amer. Chem. Soc. 1972. N.94. P.8205−8212.
  37. Prusiner P., Sundaralingam M. Stereochemistry of nucleic acids and their constituents. XXV. Crystal and moleciular structure of allopurinol, a potent inhibitor of xantine oxidase // Acta Cryctallogr., 1972. V. B. N. 28. P. 2148−2152.
  38. Harvey S.C., Prabhakaran M. Ribose puckering: structure, energetics, and the pseudorotation cycle //J. Amer. Chem. Soc. 1986. V. 108. N 20. P. 6128−6136.
  39. Levitt M., Warshel A. Extreme conformational flexibility of the furanose ring in DNA and RNA // J. Amer. Chem. Soc. 1978. V. 100. P. 2607−2613.
  40. Schlick Т., Perkin C., Broyde S., Overton M. An analysis of the structural and energetic properties of deoxyribose by potential energy methods // J. Comput. Chem. 1987. V. 8. N 8. P. 1199−1224.
  41. Bloch A., Robins M.J., McCarthy J.R., Jr. The role of the 5'-hydroxyl group of adenosine in determining substrate specificity for adenosine deaminase // J. Med. Chem. 1967. V. 10. N 5. P. 908−912.
  42. Hampton A., Harper P.J., Sasaki T. Substrate properties of cycloadenosines with adenosine aminohydrolase as evidence for the conformation of enzyme-bound adenosine // Biochemistry. 1972. V. 11. N 25. P. 4736−4739.
  43. Dudycz L., Shugar D. Susceptibility to various enzymes of the carbon-bridged ® and (5) diastereoisomers of 8,5'-cycloadenosine and their 5'-phosphates// FEBS Lett. 1979. V. 107. N 2. P. 363−365.
  44. Stolarski R., Dudycz L., NMR studies in the syn-anti dynamic equilibrium in purine nucleosides and nucleotides Shugar D. // Eur. J. Biochem. 1980. V. 108. Nl.P. 111−121.
  45. Ikehara M., Fukui T. Studies of nucleosides and nucleotides. LXIII. Deamination of adenosine analogs with calf intestine adenosine deaminase// Biochim. Biophys. Acta. 1974. V. 338. N 2. P. 512−519.
  46. Zemlicka J. Formycin anhydronucleosides. Conformation of formycin and conformational specificity of adenosine deaminase// J. Amer. Chem. Soc. 1975. V. 97. N20. P. 5896−5903.
  47. Dudycz L., Shugar D. Susceptibility to various enzymes of the carbon-bridged ® and (S) diastereoisomers of 8,5'-cycloadenosine and their 5'-phosphates// FEBS Lett. 1979. V. 107. N 2. P. 363−365.
  48. Stolarski R., Dudycz L., NMR studies in the syn-anti dynamic equilibrium in purine nucleosides and nucleotides Shugar D.// Eur. J. Biochem. 1980. V. 108. Nl.P. 111−121.
  49. Ciuffreda P., Casati S., Santaniello E. The action of adenosine deaminase (E.C. 3.5.4.4.). On adenosine and deoxyadenosine acetates: the crucial role of the 5'-hydroxy group for the enzyme activity// Tetrahedron. 2000. V. 56. N20. P. 3239−3243.
  50. Chun B.K., Olgen S., Hong J.H., Newton M.G., Chu C.K. Enantiomeric syntheses of conformationally restricted D- and L-2', 3'-dideoxy-2', 3'-endo-methylene nucleosides from carbohydrate chiral templates // J. Org. Chem. 2000. V. 65. N3. P. 685−693.
  51. Tritsch D., Jung P.M.J., Burger A., Biellmann J.-F. З'-P-Ethynyl and 2'-deoxy-З'-P-ethynyl adenosines: first 3'-P-branched-adenosines substrates of adenosine deaminase // Bioorg. Med. Chem. Lett. 2000. V. 10. N 2. P. 139−141.
  52. Orozco M., Velasco D., Canela E.I., Franco R. Determination of the conformational preferences of adenosine at the active site of adenosine deaminase // J. Amer. Chem. Soc. 1990. V. 112. N 23. P. 8221−8229.
  53. Hansen L.M., Kollman P.A. Free energy perturbation calculations on models of active sites: Applications to adenosine deaminase inhibitors // J. Comput. Chem. 1990. V. 11. N8. P. 994−1002.
  54. Wilson D.K., Quiocho F.A. A pre-transition-state mimic of an enzyme: X-ray structure of adenosine deaminase with bound 1-deazaadenosine and zinc-activated water// Biochemistry. 1993. V. 32. N 7. P. 1689−1694.
  55. Wilson D.K., Quiocho F.A. Crystallographic observation of a trapped tetrahedral intermediate in a metalloenzyme // Nat. Struct. Biol. 1994. V. 1. N 10. P. 691 694.
  56. Wang Z., Quiocho F.A. Complexes of adenosine deaminase with two potent inhibitors: X-ray structures in four independent molecules at pH of maximum activity//Biochemistry. 1998. V. 37. N23. P. 8314−8324.
  57. Wolfenden R., Sharpless Т.К., Allan R. Substrate Binding by Adenosine Deaminase: Specifity, pH dependence, and competition mercurials// J. Bio. Chem. 1967. P.977−983.
  58. Krajewska E., De Clercq E., Shugar D. Nucleoside-catabolizing enzyme activities in primary rabbit kidney cells and human skin fibroblasts // Biochem. Pharmacol. 1978. V. 27. N 10. P. 1421−1426.
  59. Tritsch D., Jung P.M.J., Burger A., Biellmann J.-F. З'-P-Ethynyl and 2'-deoxy-З'-P-ethynyl adenosines: first 3'-|3-branched-adenosines substrates of adenosine deaminase // Bioorg. Med. Chem. Lett. 2000. V. 10. N 2. P. 139−141.
  60. Bloch A., Robins M.J., McCarthy J.R., Jr. The role of the 5'-hydroxyl group of adenosine in determining substrate specificity for adenosine deaminase // J. Med. Chem. 1967. V. 10. N 5. P. 908−912.
  61. Borland Pascal 7.0 for DOS. Borland International, Inc. 1992.
  62. A.B., Птицын О. Б. Физика белка: Курс лекций с цветными и стереоскопическими иллюстрациями. 2-е изд., исп. и доп. — М.: Книжный дом «Университет», 2002. — с. 43.
  63. Д.В., Зарубин Ю. П., Пурыгин П. П. Взаимосвязь структур комплексов «АДА-аналог аденозина» с субстратными свойствами аналогов аденозина. // Тез. докл. научной конференции «Человек и Вселенная». Санкт-Петербург, 2004. С. 43—46.
Заполнить форму текущей работой