Механизм термического окисления оксида азота (II) в газовой фазе
Диссертация
Научная новизна. Неэмпирическими квантово-химическими методами (САЭБСР, СА8РТ2 и МИМР2, СС80(Т) и МЯ-АОСС) и современными вариантами метода функционала плотности (двойные гибридные функционалы, приближение В8−1ГОРТ) определены синглетная и триплетная (ВЗЬУР) ППЭ реакции (1). Построены полные пути минимальной энергии реакции (ПМЭР) от реагентов к продуктам для всех каналов реакции. Установлен… Читать ещё >
Список литературы
- Gershinowitz Н., Eyring P1. The theory of trimolecular reactions // J. Am. Chem. Soc. 1935. V. 57, № 6. P. 985−991.
- Bodenstein M., Wachenheim L.Z. Die Geschwindigkeit der Reaktion zwischen Stickoxyd und Sauerstoff. // Z. Elektrochem. 1918. V. 24, P. 183−201.
- Bodenstein M. Bildung und Zersetzung der hoheren Stickoxyde // Z. Physik. Chem. 1922. V. 100, P. 68−123.
- Kassel L.S. The theory of third-order gas reactions // J. Phys. Chem. 1930. V. 34, P. 1777−1796.
- Brown F.B., Crist R.PI. FurtTier studies on the oxidation of nitric oxide: The rate of the reaction between carbon monoxide and nitrogen dioxide // J. Chem. Phys. 1941. V. 9, № 16. P. 840−846.
- Hasche R.L., Patrick W.A. Studies on the rate of oxidation of nitric oxide. II. The velocity of the reaction between nitric oxide and oxygen at 0° and 30° // J. Am. Chem. Soc. 1925. V. 47, №> 5. P. 1207−1215.
- Treacy J.C., Daniels F. Kinetic study of the oxidation of nitric oxide with oxygen in the pressure range 1 to 20 mm // J. Am. Chem. Soc. 1955. V. 77, № 8. P. 20 332 036.
- Ashmore P.G., Burnett M.G., Tyler B.J. Reaction of nitric oxide and.-oxygen // Trans. Faraday Soc. 1962. V. 58, № 158. P. 685−691.
- Glasson W.A., Tuesday C.S. The atmospheric thermal oxidation of nitric oxide // J. Am. Chem. Soc. 1963. V. 85, № 19. P. 2901−2904.
- Cox R.A., Coker G.B. Kinetics of the reaction of nitrogen dioxide with ozone // J. Atmos. Chem. 1983. V. 1, № 1. P. 53−63.
- Olbregts J. Termolecular reaction of nitrogen monoxide and oxygen: A still unsolved problem // Int. J. Chem. Kinet. 1985. V. 17, № 8. P. 835−848.
- Sole M. Kinetics of the reaction of nitric oxide with molecular oxygen // Nature. 1966. V. 1209, № 5024. P. 706−706.
- Tsukahara II., Ishida Т., Mayumi M. Gas-Phase Oxidation of Nitric Oxide: Chemical Kinetics and Rate Constant // Nitric oxide: Biol. Ch. 1999. V. 3, № 3. P. 191−198.
- Huber K.P., Herzberg G. Molecular Spectra and Molecular Structure. IV. Constants of Diatomic Molecules. Van Nostrand Reinhold Co., 1979. P. 716.
- Herzberg, G. Electronic spectra and electronic structure of polyatomic molecules. New York: Van Nostrand, 1966. P. 596.
- Forte E., Van Den Bergh PI. The heat of formation of the nitric oxide dimer and its UV spectrum // Chem. Phys. 1978. V. 30, № 3. P. 325−331.
- Siegbahn P.E.M. An Investigation of N03 as a possible intermediate in the oxidation of nitric oxide//J. Comp. Chem. 1985. V. 6, № 3. P. 182−188.
- Hisatsune I.C., Zafonte L. A kinetic study of some third-order reactions of nitric oxide // J. Phys. Chem. 1969. V. 73, № 9. P. 2980−2989.
- McKee M.L. Ab Initio study of the N2O4 potential energy surface. Computational evidence for a new N204 isomer // J. Am. Chem. Soc. 1995. V. 117, № 5. P. 16 291 637.
- Wang X., Qin Q.-Z., Fan K. Ab initio study on the characterization of N2O4 isomers // J. Mol. Struct. (Theochem). 1998. V. 432. P. 55−62.
- Wang X., Qin Q.-Z. Peroxide linkage N204 molecule: prediction of new ONOONO isomers // Int. J. of Quant. Chem. 2000. V. 76, № 1. P. 77−82.
- Choi Y.M., Lin, M. C. Ab initio study on the termolecular reaction of 2NO + 02 and the complex self-reaction of N02 // 6-th International Conference on Chemical Kinetics. 2005. National Institute of Standards and Technology, Gaithersburg, MD.
- Gadzhiev O.B., Masunov A.E., Ignatov S.K., Razuvaev A.G. Theoretical study of the multiconfiguration PES and reaction mechanism of the NO oxidation // 11-th V.A. Fock Meeting on Quantum and Computational Chemistry. Poster 1467. 2007. Anapa.
- Kukolich S.G. The structure of the nitric oxide dimer // J. Am. Chem. Soc. 1982. V. 104, № 17. P. 4715−4716.
- Iletzler J.R., Casassa M.P., King D.S. Product energy correlations in the dissociation of overtone excited nitric oxide dimer // J. Phys. Chem. 1991. V. 95, № 21. P. 8086−8095.
- Dkhissi A., Lacome N., Perrin A. The NO Dimer // J. Mol. Spectrosc. 1999. V. 194, № 2. P. 156−162.
- Howard B.J., McKellar A.R.W. The v =1 band of (NO) 2 // Mol. Phys. 1993. V. 78, № l.P. 55−72.
- Casassa M.P., Stephenson J.C., King D.S. Vibrational predissociation of the nitric oxide dimer: Total energy distribution in the fragments // J. Chem. Phys. 1986. V. 85, № 4. P. 2333−2334.
- Fischer I., Strobel A., Staecker J., Niedner-Schatteburg G., MUller-Dethlefs K., Bondybey V.E. High resolution photoelcctron spectra of the NO dimer // J. Chem. Phys. 1992. V. 96, № 9. P. 7171 -7182.
- Wade E.A., Cline J.I., Lorenz K.T., Hayden C., Chandler D.W. Direct measurement of the binding energy of the NO dimer // J. Chem. Phys. 2002. V. 116, № 12. P. 4755−4757.
- Dinerman C.E., Ewing G.E. Infrared Spectrum, Structure, and Heat of Formation of Gaseous (NO)2 // J. Chem. Phys. 1970. V. 53, № 2. P. 626−637.
- Demyanenko A.V., Potter A.B., Dribinski V., Reisler H. NO Angular Distributions in the Photodissociation of (NO)2 at 213 nm: Deviations from Axial Recoil // J. Chem. Phys. 2002. V. 117, № 6. P. 2568−2581.
- Bauschlicher C.W., Komornicki A., Roos B. Nitrogen-nitrogen bond in dinitrogen tetroxide // J. Am. Chem. Soc. 1983. V. 105, № 4. P. 745−748. ,
- Mueller J.A., Morton M.L., Curry S.L., Abbatt J.P.D., Butler L.J. Intersystem crossing and nonadiabatic product channels in the photodissociation of N2O4 at 193 nm //J. Phys. Chem. A. 2000. V. 104, № 21. P. 4825−4832.
- Grein F. The electronic spectrum and photodissociation of dinitrogen tetroxide (N204): Multireference configuration interaction studies // J. Chem. Phys. 2010. V. 133, № 14. P. 144 311−9.
- Eisfeld W., Morokuma K. A detailed study on the symmetry breaking and its effect on the potential surface of N03 // J. Chem. Phys. 2000. V. 113, № 14. P. 5587−5597. ,
- Eisfeld W., Morokuma K. Ab initio investigation of the vertical and adiabatic excitation spectrum of N03 //J. Chem. Phys. 2001. V. 114, № 21. P. 9430−9440.
- Eisfeld W., Morokuma K. Theoretical study of the potential stability of the peroxo nitrate radical // J. Chem. Phys. 2003. V. 119, № 9. P. 4682−4688.
- Lee E.P.F., Wright T.G. Preliminary initio, study of. the quartet states of the• complex formed between NO (X 2n) and Q2(X 3Sg~) // Chem. Phys. Lett. 2001. V. 347, № 4−6. P. 429−435 .
- Bhatia S.C., Hall J.J.H. A matrix-isolation-infrared spectroscopic study of the reactions of nitric oxide with oxygen and ozone // J. Phys. Chem. 1980- V. 84,№ 24. P. 3255−3259.
- Morris V.R., Bhatia S.C., Hall J.J.II. Ab initio self-consistent field, study of the vibrational spectra for NG3 geometric isomers//J. Phys. Chem. 1990- V. 94, № 19. P. 7418−7423.
- Boehm R.C., Lohr L.L. An ab initio characterization of nitrogen trioxide electronic states // J. Phys. Chem. 1989. V. 93, № 9. P. 3430−3433.
- Ornellas F. R1, Resende S.M., Machado P.B.C., Robcrto-Neto O. A high level theoretical investigation of the N2O4 —" 2NO2 dissociation reaction: Is there a transition-state? // J. Chem. Phys. 2003. V. 118,№ 9. P. 4060−4065.
- Li Y. Multiconfigurational self-consistent field and multireference internally contracted configuration interaction studies on the excited states of weakly bonded N02 dimer (N204)//J. Chem. Phys. 2007. V. 127, 20. P. 204 502−6.
- Chase J.M.W., Curnutt J.L., Downey J.J.R., McDonald R.A., Syverud A.N., Valenzuela E.A. JANAF Thermochemical Tables, 1982 Supplement // J. Phys. Chem. Ref. Data. 1982. V. 11, № 3. P. 695−940.
- Galliker B., Kissner R., Nauser T., Koppenol- W.H. Intermediates in the autoxidation of nitrogen monoxide // Chem. Eur. J. 2009. V. 15, № 25. P. 61 616 168.
- Ohlscn J.R., Laane J. // J. Am. Chem. Soc. 1978. V. 100. P. 6948.
- Beckers H, Zeng X., Willner PI. Intermediates involved in the oxidation of nitrogen monoxide: photochemistry of the cw-N202*02 complex and of 5ym-N204 in solid Ne matrices // Chem. Eur. J. 2010. V. 16, № 5. P. 1506−1520.
- Smith G.R., Guillory W.A. Spectroscopy of the thermal oxidation of NO in solid oxygen at cryogenic temperatures // J. Mol. Spectr. 1977. V. 68, № 2. P. 223−235.
- Meyer W. Methods of electronic structure theory. Mod. Theor. Chem. Plenum: New York, 1977. P. 413.
- Davidson E.R. The world of quantum chemistry in Proceedings of the First International Congress on Quantum Chemistry. Dordrecht: Reidel, 1974. P. 17.
- Buenker R.J., Peyerimhoff S. Energy extrapolation in CI calculations // Theor. Chim. Acta. 1975. V. 39, № 2. P. 217−228.
- Buenker R.J., Peyerimhoff S., Butscher W. Applicability of the multi-reference double-excitation (MRD-CI) method to the calculation of electronic wavefunctions and comparison with related techniques // Mol. Phys. 1978. V. 35, № 3. P. 771 -791.
- Brueckner K.A. Nuclear saturation and two-body forces. II. Tensor Forces // Phys. Rev. 1954. V. 96, № 2. P. 508 516
- Brueckner K.A. Approximate reduction of the many-body problem for strongly interacting particles to a problem of self-consistent fields // Phys. Rev. 1955. V. 97, № 5. P. 1344 1352
- Nesbet R.K. Brueckner’s theory and the method of superposition of configurations // Phys. Rev. 1958. V. 109, № 5. P. 1632 1638
- Meyer W. Theory of self-consistent electron pairs. An iterative method for correlated many-electron wavefunctions // J. Chem. Phys. 1976. V. 64, № 7. P. 2901−2916.
- Shavitt I. Modern Theoretical Chemistry. Methods of Electronic Structure Theory. New York: Plenum Press, 1977. P. 189.
- Dykstra C.E. An examination of the Brueckner condition for the selection of molecular orbitals in correlated wavefunctions // Chem. Phys. Lett. 1977. V. 45, № 3. P. 466−469.
- Moller C., Plesset M.S. Note on an approximation treatment for many-electron systems // Phys. Rev. 1934. V. 46, № 7 P. 618 622
- Hurley A.C. Electron Correlation in Small Molecules. Theoretical Chemistry. Academic Press: London, 1976. P. 304.
- Olsen J., Christiansen O., Koch H., Jorgensen P. Surprising cases of divergent behavior in Moller-Plesset perturbation theory // J. Chem. Phys. 1996. V. 105, № 12. P. 5082−5090.
- He Y., Cremer D. Molecular Geometries at Sixth Order Moller-Plesset Perturbation Theory. At What Order Does MP Theory Give Exact Geometries? // J. Phys. Chem. A. 2000. V. 104, № 32. P. 7679−7688.
- Wilson S., Hubac I. On the use of MP2 theory for electron molecules correlation in atoms and molecules // Mol. Phys. 2001. V. 99, № 21. P. 1813 1816.
- Handy N.C., Knowles P.J., Somasundram K. On the convergence of the Moller-Plesset perturbation series // Theor. Chem. Acc. V. 68, № LP. 87−100.
- Goodson D.Z. Convergent summation of Moller-Plesset perturbation theory // J. Chem. Phys. 2000. V. 112, № 11. P. 4901−4909.
- Leininger M.L., Allen W.D., Schaefer III H.F., Sherrill C.D. Is Moller-Plesset perturbation theory a convergent ab initio method? // J. Chem. Phys. 2000. V. 112, № 21. P. 9213−9222.
- Sergeev A.V., Goodson D.Z. Singularities of Moller-Plesset energy functions // J. Chem. Phys. 2006. V. 124, № 9. P. 94 111−94 122.
- Herman M.S., Hagedorn G.A. Does Moller-Plesset perturbation theory converge? A look at two-electron systems // Int. J. Quant. Chem. 2009. V. 109, № 2. P. 210 225.
- Carsky P., Urban, M. Ab initio calculations methods and applications in chemistry. Lecture Notes in Chemistry. Springer-Verlag: Berlin, 1980. P. 247.
- Sinanoglu O. Many-Electron Theory of Atoms and Molecules // Adv. Chem. Phys. 1964. V. 6, P. 315−412.
- Coester F. Bound states of a many-particle system // Nucl. Phys. 1958. V. 7, № 3. P. 421−424.
- Coester F., Kummel H. Short-range correlations in nuclear wave functions // Nucl. Phys. 1960. V. 17, P. 477−485.
- Cizek J. On the correlation problem in atomic and molecular systems, calculation of wavefunction components in ursell-type expansion using quantum-field theoretical methods // J. Chem. Phys. 1966. V. 45, № 11. P. 4256−4269.
- Bartlett R.J. Coupled-cluster approach to molecular structure and spectra: a step toward predictive quantum chemistry // J. Phys. Chem. 1989. V. 93, № 5. P. 16 971 708.
- Noga J., Bartlett R.J. The full CCSDT model for molecular electronic structure // J. Chem. Phys. 1987. V. 86, № 5. P. 7041−7052.
- Noga J., Bartlett, R. J. Erratum: The full. CCSDT model for molecular electronic structure // J. Chem. Phys. 1988. V. 89, P. 3401−3413.
- Purvis G.D., Bartlett R.J. A full coupled-cluster singles and doubles model: The inclusion of disconnected triples // J. Chem. Phys. 1982. V. 76, № 4. P. 19 101 922.
- Chiles R.A., Dykstra C.E. An electron pair operator approach to coupled cluster wave functions. Application to He2, Be2, and Mg2 and comparison with CEPA methods//J. Chem. Phys. 1981. V. 74, № 8. P. 4544−4561.
- Raghavachari K., Trucks G.W., Pople J.A., Head-Gordon M. A fifth-order perturbation comparison of electron correlation theories // Chem. Phys. Lett. 1989. V. 157, № 6. P. 479−483.
- Curtiss L.A., Raghavachari K., Trucks G.W., Pople J.A. Gaussian-2 theory for molecular energies of first- and second-row compounds // J. Chem. Phys. 1991. V. 94, № 11. P. 7221−7230.
- Curtiss L.A., Raghavachari K., Redfern P.C., Pople J.A. Assessment of Gaussian-2 and density functional theories for the computation of enthalpies of formation // J. Chem. Phys. 1997. V. 106, № 3 P. 1063−1072.
- Curtiss L.A., Redfern P.C., Raghavachari K., Pople J.A. Assessment of Gaussian2 and density functional theories for the computation of ionization potentials and electron affinities //J. Chem. Phys. 1998. V. 109, № 1. P. 42−51.
- Curtiss L.A., Raghavachari K., Redfern P.C., Pople J.A. Assessment of Gaussian3 and density functional theories for a larger experimental test set // J. Chem.Phys. 2000. V. 112, № 17. P. 7374−7382.
- Curtiss L.A., Raghavachari K., Redfern P.C., Pople J.A. Assessment of Gaussian-3 and density-functional theories on the G3/05 test set of experimental energies // J. Chem. Phys. 2005. V. 123, № 12. P. 124 107−124 111.
- Nyden M.R., Petersson G.A. Complete basis set correlation energies. I. The asymptotic convergence of pair natural orbital expansions // J. Chem. Phys. 1981. V. 75, № 4. P. 1843−1851.
- Petersson G.A., Al-Laham M.A. A complete basis set model chemistry. II. Open-shell systems and the total energies of the first-row atoms // J. Chem. Phys. 1991. V. 94, № 9. P. 6081−6092.
- Petersson G.A., Tensfeldt T.G., Montgomery J., J., A. A complete basis set model chemistry. III. The complete basis set-quadratic configuration interaction family of methods // J. Chem. Phys. 1991. V. 94, № 9. P. 6091 -6104.
- Montgomery J., J. A., Ochterski J.W., Petersson G.A. A complete basis set model chemistry. IV. An improved atomic pair natural orbital method // J. Chem. Phys. 1994. V. 101, № 7. P. 5900−5908.
- Montgomery J., J. A., Frisch M.J., Ochterski J.W., Petersson G.A. A complete basis set model chemistry. VI. Use of density functional geometries and frequencies // J. Chem. Phys. 1999. V. 110, № 6: P. 2822.
- Montgomery J., J. A., Frisch J.W., Ochterski J.W., Petersson G.A. A complete basis set model chemistry. VII. Use of the minimum population localization method // J. Chem. Phys. 2000. V. 112, № 15. P. 6532−6549.
- Ruedenberg K., MCSCF studies of chemical reactions. I. Natural reaction orbitals and localized reaction orbitals. Quantum Science. New York: Plenum, 1976. P. 505−515.
- Shavitt L., Rosenberg B.J., Palalikit S. Graph theoretical concepts for the unitary group approach to the many-electron correlation problem // Int. J.Quant. Chem., Symp. 1977. V. 10 № 11. P. 131−148.
- Cioslowski J., Quantum-Mechanical Prediction of Thermochemical Data, Understanding Chemical Reactivity. Kluwer Academic: Dordrecht, 2001. P. 272.
- Shavitt L. Matrix element evaluation in the unitary group approach to the electron correlation problem // Int. J. Quant. Chem., Symp. 1978. V., № 12. P. 5−32.
- Murphy R.B., Messmer R.P. Generalized Moller—Plesset perturbation theory applied to general MCSCF reference wave functions // Chem. Phys. Lett. 1991. V." 183, № 5. P. 443−448.
- Murphy R.B., Messmer R.P. Generalized Moller-Plesset and Epstein-Nesbet perturbation theory applied to multiply bonded molecules // J. Chem. Phys. 1992. V. 97, № 9. P. 4170−4187.
- Roos B.O., Fulscher, M., Malmqvist, P.-A., Merchan, M., Serrano-Andres, L. Quantum Mechanical Electronic Structure Calculations with Chemical Accuracy. Kluver Academic Publishers, Dordrecht, 1995. P. 402.
- Murphy R.B., Messmer R.P. Correlation in first-row transition metal atoms using generalized Moller-Plesset perturbation theory // J. Chem. Phys. 1992. V. 97, № 6. P. 4974−4982.
- Messmer R.P., Patterson C.H. Long bonds in silicon clusters: a failure of conventional Moller-Plesset perturbation theory? // Chem. Phys. Lett. V. 192, № 2−3. P. 277−282.
- Wolinski K., Pulay P. Generalized Moller-Plesset perturbation theory: Second order results for two-configuration, open-shell excited singlet, and doublet wave functions // J. Phys. Chem. 1989. V. 90, № 7. P. 3647−3656.
- Hirao K. State-specific multireference Moller—Plesset perturbation treatment for singlet and triplet excited states, ionized states and electron attached states of H20 // Chem. Phys. Lett. 1993. V. 201, № 1−4. P. 59−66.
- Kozlowski P.M., Davidson E.R. Considerations in constructing a multireference second-order perturbation theory // J. Chem. Phys. 1994. V. 100, № 3. P. 36 723 681.
- Buenker R.J., Peyerimhoff S.D. Individualized configuration selection in CI calculations with subsequent energy extrapolation // Theor. Chim. Acta. 1974. V. 35, № l.P. 33−51.
- Grimme S., Waletzke M. Multi-reference Moller-Plesset theory: computational, strategies for large molecules // Phys. Chem. Chem. Phys. 2000. V. 2, № 10. P. 2075−2081.
- Hohenberg P., Kohn W. Inhomogeneous electron gas // Phys. Rev. 1964. V. 136, № 3B. P. B864 -B871
- Levy M. Universal variational functionals of electron densities, first-order density matrices, and natural spin-orbitals and solution of the v-representability problem // Proc. Natl. Acad. Sei. USA. 1979. V. 76, № 12. P. 6062−6065.
- Kohn W., Sham L'.J. Self-consistent equations including exchange and correlation effects // Phys. Rev. 1965. V. 140, № 4A. P. Al 133 Al 138
- Korth M., Grimme S. «Mindless» DFT benchmarking // J. Chem. Theory Comput. 2009. V. 5, № 4. P. 993−1003.
- Goerigk L., Grimme S. A General database for main group thermochemistry, kinetics, and noncovalent interactions assessment of common andreparameterized (meta-)GGA density functionals // J. Chem. Theory Comput. 2009. V. 6, № l.P. 107−126.
- Goerigk L., Grimme S. A thorough benchmark of density functional methods for general main group thermochemistry, kinetics, and noncovalent interactions // Phys. Chem. Chem. Phys. 2011. V. 13. P. 6670−6688.
- Zhao Y., Truhlar D.G. Density functional theory for reaction energies: test of meta and hybrid meta functionals, range-separated functionals, and other highperformance functionals // J. Chem. Theory Comput. 2011. V. 7, № 3. P. 669−676.
- Perdevv J.P., Burke K., Ernzerhof M. Generalized gradient approximation made simple // Phys. Rev. Lett. 1996. V. 77, № 18. P. 3865 3868
- Perdew J.P., Burke K., Ernzerhof M. Generalized gradient approximation made simple: reply// Phys. Rev. Lett. 1997. V. 78, P. 1396 1396
- Staroverov V.N., Scuseria G.E., Tao J., Perdew J.P. Theoretical methods and algorithms comparative assessment of a new nonempirical density functional: Molecules and hydrogen-bonded complexes // J. Chem. Phys. 2003. V. 119, № 23. P. 12 129−12 142.
- Becke A.D. Density-functional exchange-energy approximation with correct asymptotic behavior// Phys. Rev. A. 1988. V. 38, № 6. P. 3098 3100
- Lee C., Yang C., Parr R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density // Phys. Rev. B 1988. V. 37, № 37. P. 785−789
- Ilandy N.C., Schaefer III H.F. On the evaluation of analytic energy derivatives for correlated wave functions // J. Chem. Phys. 1984. V. 81, № 11. p. 5031−5042.
- Van Voorhis T., Scuseria G.E. A novel form for the exchange-correlation energy functional//J. Chem. Phys. 2001. V. 109, № 2. P. 400−415.
- Becke A.D. Density-functional thermochemistry. III. The role of exact exchange // J. Chem. Phys. 1993. V. 98, № 7. P. 5648−5661.
- Stephens P.J., Devlin F.J., Chabalovvski C.F., Frisch M.J. Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional // J. Phys. Chem. 1994. V. 98, № 45. P. 11 623−11 627.
- Becke A.D. Density-functional thermochemistry. V. Systematic optimization of exchange-correlation functionals // J. Chem. Phys. 1997. V. 107, № 20. P. 85 548 561.
- Hamprecht F.A., Cohen A.J., Tozer D.J., Handy N.C. Development and assessment of new exchange-correlation functionals // J. Chem. Phys. 1998. V. 109, № 15. P. 6264−6281.
- Wilson P.J., Bradley T.J., Tozer D.J. Hybrid exchange-correlation functional determined from thermochemical data and ab initio potentials // J. Chem. Phys. 2001. V. 115, № 20. P. 9233−9249.
- Hoe W.-M., Cohen A.J., Handy N.C. Assessment of a new local exchange functional OPTX// Chem. Phys. Lett. 2001. V. 341, № 3−4. P. 319−328.
- Xu X., Goddard W.A.I. The X3LYP extended density functional for accurate descriptions of nonbond interactions, spin states, and thermochemical properties // Proc. Natl. Acad. Sci. U.S.A. 2004. V. 101, № 6. P. 2673−2683.
- Becke A.D. Density-functional thermochemistry. IV. A new dynamical correlation functional and implications for exact-exchange mixing // J. Chem. Phys. 1996. V. 104, № 17. P. 1040−1052.
- Adamo C., Barone V. Adamo C. Exchange functionals with improved long-range behavior and adiabatic connection methods without adjustable parameters: The mPW and mPWIPW models // J. Chem. Phys. 1998. V. 108, № 2. P. 664−672.
- Kang J.K., Musgrave C.B. Prediction of transition state barriers and enthalpies of reaction by a new hybrid density-functional approximation // J. Chem. Phys. 2001. V. 115, № 24. P. 11 040−11 047.
- Strassner T., Taige M.A. Evaluation of functionals 03LYP, KMLYP, and MPW IK in comparison to B3LYP for selected transition-metal compounds // J. Chem. Theory and Comput. 2005. V. 1, № 5. P. 848−855.
- Grafenstein J., Cremer D. Development of a CAS-DFT method covering non-dynamical and dynamical electron correlation in a balanced way // Mol. Phys. 2005. V. 103, № 2. P. 279−308.
- Grimme S., Waletzke M. A combination of Kohn-Sham density functional theory and multi-reference configuration interaction methods // J. Chem. Phys. 1999. V. 111, № 13. P. 5645−5656.
- Davidson E.R., Clark A. Spin polarization and annihilation for radicals and diradicals // Int. J. of Quant. Chem. 2005. V. 103, № 1. P. 1−9.
- Jensen F. Polarization consistent basis sets: Principles // J. Chem. Phys. 2001. V. 115, № 20. P. 9113−9126.
- Jensen F. Theoretical methods and algorithms polarization consistent basis sets. II. Estimating the Kohn-Sham basis set limit // J. Chem. Phys. 2002. V. 116, № 17. P. 7372−7380
- Jensen F. Theoretical methods and algorithms polarization consistent basis sets.
- I. The importance of diffuse functions // J. Chem. Phys. 2002. V. 117, № 20. P. 9234−9241.
- Jensen F. Theoretical methods and algorithms polarization consistent basis sets.1. The basis set convergence of equilibrium geometries, harmonic vibrational frequencies, and intensities // J. Chem. Phys. 2003. V. 118, № 6. P. 2459−2464.
- Jensen F., Helgaker T. Theoretical methods and algorithms polarization consistent basis sets. V. The elements Si-Cl // J. Chem. Phys. 2004. V. 121, № 8. P. 34 633 471.
- Jensen F. Polarization consistent basis sets. 4: The Elements He, Li, Be, B, Ne, Na, Mg, Al, and Ar// J. Phys. Chem. A. 2007. V. 111, № 44. P. 11 198−11 204.
- Gadzhiev O.B., Ignatov S.K., Razuvaev A.G., Masunov A.E. Quantum chemical study of trimolecular reaction mechanism between nitric oxide and oxygen in the gas phase // J. Phys. Chem. A. 2009. V. 113, № 32. P. 9092−9101.
- Ess D.II., Wheeler S.E., Iafe R.G., Xu L" Celebi-Oleiim N., Houk K.N. Bifurcations on potential energy surfaces of organic reactions // Angew. Chem. Int. Ed. Engl. 2008. V. 47, № 40. P. 7592−7601.
- Valtazanos P., Ruedenberg K. Bifurcations and transition states // Theor. Chim. Acta. 1986. V. 69, № 4. P. 281−307.
- Quapp W., Pleidrieh, D. Analysis of the concept of minimum energy path on the potential energy surface of chemically reacting systems // Theor. Chim. Acta. 1984. V. 66, P. 245−260.
- Kliesch W. Potential energy surface exploration with equilibrial paths. Part I: Theory//J. Math. Chem. 2000. V. 28, № 1−3. P. 91−112.
- Kliesch W. Potential energy surface exploration with equilibrial paths. Part II: Application //J. Math. Chem. 2000. V. 28, № 1−3. P. 113−138.
- Quapp W., Hirsch, M., Heidrich, D. An approach to reaction path branching using valley-ridge inflection points of potential-energy surfaces // Theor. Chem: Acc. 2004. V. 112, P. 40−51.
- Bettinger H.F., Kaiser R.I. Reaction of benzene and boron atom: mechanism of formation of benzoborirene and hydrogen atom // J. Phys. Chem. A 2004. V. 108, P. 4576−4586.
- Marcus R.A. Global potential energy contour plots for chemical reactions, multiple reaction paths, bifurcations, and applicability of transition-state theory // J. Phys. Chem. 1991. V. 95, P. 8236−8243.
- Carpenter B.K. Intramolecular dynamics for the organic chemist // Acc. Chem. Res. 1992. V. 25, 11. P. 520−528.
- Carpenter B.K. Dynamic behavior of organic reactive intermediates // Angew. Chem. Int. Ed. Engl. 1998. V. 37, 24. P. 3340−3350.
- Sun L., Hase W.L., Song K. Trajectory studies of SN2 nucleophilic substitution. 8. Central barrier dynamics for gas phase CI" + CH3C1 // J. Am. Chem. Soc. 2001. V. 123, № 24. P. 5753−5756.
- Cheon S., Song K., Hase W.L. Central barrier recrossing dynamics of the CI" +CD3C1 SN2 reaction // J. Mol. Struct.: THEOCHEM. 2006. V. 771, № 1−3. P. 2731.
- Hase W.L. Simulations of gas-phase chemical reactions: applications to SN2 nucleophilic substitution // Science. 1994. V. 266, № 5187. P. 998−1002.
- Pearson R.G. Symmetry rules for chemical reactions // Acc. Chem. Res. 1971. V. 4, № 4. P. 152−160.
- Singleton D.A., Hang C., Szymanski M.J., Greenwald E.E. A new form of kinetic isotope effect, dynamic effects on isotopic selectivity and regioselectivity // J. Am. Chem. Soc. 2003. V. 125, № 5. P. 1176−1177.
- Quapp W. How does a reaction path branching take place? A classification of bifurcation events // J. Mol. Struct. 2004. V. 695−696, P. 95−101.
- Carpenter B.K. Nonstatistical dynamics in thermal reactions of polyatomic molecules // Ann. Rev. Phys. Chem. 2005. V. 56, № 1. P. 57−89.
- Hirsch M., Quapp, W., Heidrich, D. The set of valley-ridge inflection points on the potential energy surface of water // Phys. Chem. Chem. Phys. 1999. V. 1, P. 5291−5299.
- Quapp W., Melnikov, V. Valley ridge inflection points on the potential energy surfaces of H2S, II2Se and H2CO // Phys. Chem. Chem. Phys. 2001. V. 3, P. 27 352 741.
- Taketsugu T., Tajima N., Hirao K. Approaches to bifurcating reaction path // J. Chem. Phys. 1996. V. 105, № 5. P. 1933−1939.
- Taketsugu T., Yanaia T., Hirao K., Gordon M.S. Dynamic reaction path study of SiH4+F-—>SiH.jF~ and the Berry pseudorotation with valley-ridge inflection // J. Mol. Struct.: THEOCHEM. 1998. V. 451, № 1−2. P. 163−177.
- Kumeda Y., Taketsugu T. Isotope effect on bifurcating reaction path: Valley-ridge inflection point in totally symmetric coordinate // J. Chem. Phys. 2000. V. 113, № 2. P. 477−484.
- Sun J.-Q., Ruedenberg K. Gradient extremals and steepest descent lines on potential energy surfaces // J. Chem. Phys. 1993. V. 98, № 12. P. 9707−9714.
- Sun J.-Q., Ruedenberg K. Locating transition states by quadratic image gradient descent on potential energy surfaces // J. Chem. Phys. 1994. V. 101, № 3. P. 21 572 167.
- Lasorne B., Dive, G., Lauvergnat, D., Desouter-Lecomte, M. Wave packet dynamics along bifurcating reaction paths // J. Chem. Phys. 2003. V. 118, № 13. P. 5831−5840.
- Leach A.G., Houk K.N. Diels-Alder and ene reactions of singlet oxygen, nitroso compounds and triazolinediones: transition states and mechanisms from contemporary theory // Chem. Comm. 2002. V., № 12. P. 1243−1255.
- Castano O., Palmeiro R., Frutos L.M., Luisandres J. Role of bifurcation in the bond shifting of cyclooctatetracne. // J. Comput. Chem. 2002. V. 23, № 7. P. 732 736.
- Joo H., Kraka E., Quapp W., Cremer D. The mechanism of a barrierless reaction: hidden transition state and hidden intermediates in the reaction of methylene with ethene // Mol. Phys. 2007. V. 105, № 19. P. 2697 2717.
- Kraka E., Cremer D. Mechanism and dynamics of organic reactions: 1,2-H shift in methylchlorocarbene // J. Phys. Org. Chem. 2002. V. 15, № 8. P. 431−447. •
- Lasorne B., Dive G., Desouter-Lecomte M. Wave packets in a bifurcating region of an energy landscape: Diels-Alder dimerization of cyclopentadiene // J. Chem. Phys. 2005. V. 122, № 18. P. 184 304−10.
- Papakondylis A., Mavridis A. A Theoretical investigation of the structure and bonding of diazomethane, CH2N2 // J. Phys. Chem. A. 1998. V. 103, №> 9. P. 1255−1259.
- Caramella P., Quadrelli P., Toma L. An unexpected bispericyclic transition structure leading to 4+2 and 2+4 cycloadducts in the endo dimerization of cyclopentadiene // J. Am. Chem. Soc. 2002. V. 124, № 7. P. 1130−1131.
- Bally Т., Sastry G.N. Incorrect dissociation behavior of radical ions in-density functional calculations 11 J .Phys. Chem. A. 1997. V. 101, № 43. P. 7923−7925.
- Griifenstein J., Kraka E., Filatov M., Cremer D. Can unrestricted density-functional theory describe open shell singlet biradicals? // Int. J. Mol. Sci. 2002. V. 3, № 4. P. 360−394.
- Программа расчета CFOUR (Coupled-Cluster techniques for Computational Chemistry) Stanton J.F. и др. URL: http://www.cfour.de (дата обращения: 14.04.2011).
- Watts J.D., Gauss J., Bartlett R.J. Open-shell analytical energy gradients for triple excitation many-body, coupled-cluster methods: MBPT (4), CCSD+T (CCSD), CCSD (T), and QCISD (T) // Chem. Phys. Lett. 1992. V. 200, № 1−2. P. 1−7.
- Harding M.E., Metzroth Т., Gauss J., Auer A.A. Parallel calculation of CCSD and COSD (T) analytic first and second derivatives // J. Chem. Theory Comput. 2007. V. 4, № l.P. 64−74.
- Feller D. The use of systematic sequences of wave functions for estimating the complete basis set, full configuration interaction limit in water // J. Chem. Phys. 1993. V. 98, № 9. P. 7059−7071.
- Helgaker Т., Klopper W., Koch H., Noga J. Basis-set convergence ofxorrelated calculations on water// J. Chem. Phys. 1997. V. 106, № 23. P. 9639−9646.
- East A.L.L., Allen W.D. The heat of formation ofNCO // J. Chem. Phys. 1993. V. 99, № 6. P. 4638−4650.
- Schuurman M.S., Muir S.R., Allen W.D., Schaefer III H.F. Toward subchemical accuracy in computational thermochemistry: Focal point analysis of the. heat of formation ofNCO and' H, N, C, 0. isomers // J. Chem. Phys. 2004. V. 120, № 24. P. 11 586−11 599.
- Tajti A., Szalay P.G., Csaszar A.G., Kallay M., Gauss J., Valeev E.F., Flowers B.A., Vazquez J., Stanton J.F. HEAT: High accuracy extrapolated ab initio thermochemistry // J. Chem. Phys. 2004. V. 121, № 23. P. 11 599−11 613.
- Klopper W., Manby F.R., Ten-Node S., Valeev E.F. R12 methods in explicitly correlated molecular electronic structure theory // Int. Rev. Phys. Chem. 2006. V. '25, № 3. P. 427−468.
- Szalay P.G., Bartlett R.J. Multi-reference averaged quadratic coupled-cluster method: a size-extensive modification of multi-reference CI // Chem. Phys. Lett. 1993. V. 214, № 5. P. 481−488.
- West A.C., Kretchmer J.S., Sellner В., Park K., Hase W.L., Lischka H., Windus T.L. 0(3P) + C2H4 potential energy surface: study at the multireference level // J .Phys. Chem. A~ 2009. V. 113, № 45. P. 12 663−12 674.
- Malick D.K., Petersson G.A., Montgomery J.J.A. Transition states for chemical reactions 1. Geometry and classical barrier height // J'. Chem. Phys. 1998. V. 108, № 14. P. 5704−5713.
- Dunning J.T.PI., Peterson K.A. Approximating the basis set dependence of coupled cluster calculations: Evaluation of perturbation theory approximations for stable molecules // J. Chem. Phys. 2000. V. 113, № 18. P. 7799−7808.
- Martin J.M.L. On the effect of core correlation on the geometry and harmonic frequencies of small polyatomic molecules // Chem. Phys. Lett. 1995. V. 242, № 3. P. 343−350.
- Helgaker T., Gauss J., Jorgensen P., Olsen J. The prediction of molecular equilibrium structures by the standard electronic wave functions // J. Chem. Phys. 1997. V. 106, № 15. P. 6430−6440.
- Neese F., Hansen A., Wennmohs F., Grimme S. Accurate theoretical chemistry with coupled pair models // Acc. Chem. Res. 2009. V. 42, № 5. P. 641−648.
- Kallay M., Surjan P.R. Higher excitations in coupled-cluster theory // J. Chem. Phys. 2001. V. 115, № 7. P. 2945−2954.
- Kallay M., Gauss J. Approximate treatment of higher excitations in coupled-cluster theory // J. Chem. Phys. 2005. V. 123, № 21. P. 214 105−13.
- Bartlett R.J., How and why coupled-cluster theory became the pre-eminent method in an ab into quantum chemistry. Theory and Applications of Computational Chemistry. Amsterdam: Elsevier, 2005. P. 1191−1221.
- Raghavachari K., Trucks G.W., Pople J.A., Replogle E. Highly correlated systems: Structure, binding energy and harmonic vibrational frequencies of ozone // Chem. Phys Lett. 1989. V. 158, № 3−4. P. 207−212.
- Raghavachari K., Anderson J.B. Electron correlation effects in molecules // J. Phys. Chem. 1996. V. 100, № 31. P. 12 960−12 973.
- Watts J.D., Bartlett R.J. Coupled-cluster calculations of structure and vibrational frequencies of ozone: Are triple excitations enough? // J. Chem. Phys. 1998. V. 108, № 6. P. 2511−2514.
- Stanton J.F. On the vibronic level structure in the N03 radical. I. The ground electronic state // J. Chem. Phys. 2007. V. 126, № 13. P. 134 309−20.
- Kowalski K., Piecuch P. A comparison of the renormalized and active-space coupled-cluster methods: Potential energy curves of BH and F2 // Chem. Phys Lett. 2001. V. 344, № 1−2. P. 165−175.
- Piecuch P., Kucharski S.A., Kowalski K., Musial M. Efficient computer implementation of the renormalized coupled-cluster methods: The R-CCSDT., R-CCSD (T), CR-CCSD[T], and CR-CCSD (T) approaches // Comp. Phys. Comm. 2002. V. 149, № 2. P. 71−96.
- Brenner L.J., Senekowitsch J., Wyatt R.E. Coupled cluster calculation of the inplane harmonic force field of benzene // Chem. Phys Lett. 1993. V. 215, № 1−3. P. 63−71.
- Pavvlowski F., Halkier A., Jorgensen P., Bak K.L., Helgaker T., Klopper W. Accuracy of spectroscopic constants of diatomic molecules from ab initio calculations // J. Chem. Phys. 2003. V. 118, № 6. P. 2539−2549.
- Denis P.A. On the performance of CCSD (T) and CCSDT in the study of molecules with multiconfigurational character: halogen oxides, I ISO, BN and 03 // Chem. Phys Lett. 2004. V. 395, № 1−3. P. 12−20.
- Denis P.A., Ventura O.N. CCSDT study of the fluoroperoxyl radical, FOO // Chem. Phys Lett. 2004. V. 385, № 3−4. P. 292−297.
- Feller D., Sordo J. A. A CCSDT study of the effects of higher order correlation on spectroscopic constants. I. First row diatomic hydrides // J. Chem. Phys. 2000. V. № 112, 13. P. 5604−5610.
- Hino O., Kinoshita T., Chan G.K.-L., Bartlett R.J. Tailored coupled cluster singles and doubles method applied to calculations on molecular structure and harmonicvibrational frequencies of ozone // J. Chem. Phys. 2006. V. 124, № 11. P. 114 311 114 318.
- Leininger M.L., Schaefer III H.F. Molecular geometry and vibrational frequencies of ozone from compact variational wave functions explicitly including triple and quadruple substitutions // J. Chem. Phys. 1997. V. 107, № 21. P. 9059−9062.
- Parr R.G., Yang, W. Density-functional theory of atoms and molecules. New York: Oxford University Press, 1989. P. 352.
- Schipper P.R.T., Gritsenko O.V., Baerends E.J. Kohn-Sham potentials and exchange and correlation energy densities from one- and two-electron density matrices for Li2, N2, and F2 // Phys. Rev. A. 1998. V. 57, № 3. P. 1729−1742.
- Polo V., Grafenstein J., Kraka E., Cremer D. Influence of the self-interaction error on the structure of the DFT exchange hole // Chem. Phys. Lett. 2002. V.352, № 56. P. 469−478.
- He Y., Grafenstein J., Kraka E., Cremer D. What correlation effects are covered by density functional theory? // Mol. Phys. V. 98, № 20. P. 1639 1658.-.
- Grafenstein J., Cremer D. The combination of density functional theory with multi-configuration methods CAS-DFT // Chem. Phys. Lett. 2000. V. 316, № 56. P. 569−577.
- Гаджиев О.Б., Игнатов C.K., Масунов А. Э. Диссоциация двуядерных систем: разработка метода CAS-SCF-DFT // «Современная химическая физика», XXI симпозиум. 2009. Туапсе. С. 82.
- Veryazov V., Malmqvist P.A., Roos В.О. How to select active space for multiconfigurational quantum chemistry? // Int. J. Quant. Chem. 2011. doi: 10.1002/qua.23 068.
- McClelland B.W., Gundersen G., Hedberg K. Reinvestigation of the structure of dinitrogen tetroxide, N20. b by gaseous electron diffraction // J. Chem. Phys. 1972. V. 56, № 9. P. 4541−4545.
- Stanton J.F. Why CCSD (T) works: a different perspective // Chem. Phys Lett. 1997. V. 281, № 1−3. P. 130−134.
- Helgaker Т., Klopper W., Tew D.P. Quantitative quantum chemistry // Mol. Phys. 2008. V. 106, № 16. P. 2107 2143.
- Meerts W.L., Dymanus A. The hyperfine A-doubling spectrum of l4N, 60 and 15N160 // J. Mol. Spectr. 1972. V. 44, № 2. P. 320−346.
- Krim L., Lacome N. The NO Dimer, 14N and l5N isotopomers isolated in argon matrix: a near-, mid-, and far-infrared study // J. Phys. Chem. A. 1998. V. 102, № 13. P. 2289−2296.
- Bolduan F., Jodl H.J., Loewenschuss A. Raman study of solid N204: Temperature induced autoionization // J. Chem. Phys. 1984. V. 80, № 5. P. 1739−1743.
- M. E. Jacox, Vibrational and Electronic Energy Levels of Polyatomic Transient Molecules, Monograph 3, J. Phys. Chem. Ref. Data, 1994. P. 461.
- Bettens R.P.A. Comparison of fundamental and harmonic frequencies of first-row closed-shell diatomics calculated using full ab initio methods and composite methods // J .Phys. Chem. A. 2004. V. 108, № 10. P. 1826−1829.