Металлоорганические комплексы рутения и осмия как медиаторы электронного переноса для оксидоредуктаз
Диссертация
Изучение кинетики и механизмов ферментативных реакций с участием металлоорганических соединений началось сравнительно недавно и обусловлено, прежде всего, широким использованием этих веществ в создании различного рода биосенсоров, основанных на процессе ферментативного катализа. В основе действия подобного рода биосенсоров лежит перенос электронов между активным центром фермента и электродом… Читать ещё >
Список литературы
- Clark, L.C., Lyons, С., Electrode Systems for Continuous Monitoring in Cardiovascular Surgery. Ann. N. Y. Acad. Sci., 1962. 102: p. 29.
- Turner, A.P.F., Karube, I., Wilson, G.S., Biosensors. Fundamentals and Applications. Oxford University Press: Oxford, New York, Tokyo, 1987.
- Willner, I., Katz, E., Integration of Layered Redox Proteins and Conductive Supports for BioelectronicApplications. Angew. Chem., Int. Ed. Engl., 2000. 39: p. 1118−1218.
- O’Connell, P. J., Guilbault, G.G., Future Trends in Biosensor Research. Analytical Letters 2001, 34, 1063.
- Schuhmann, W, Amperometric enzyme biosensors based on optimised electron-transfer pathways and non-manual immobilisation procedures. Reviews in Molecular Biotechnology 2002, 82, 425.
- Chaubey, A., Malhotra, В J)., Mediated biosensors. Biosens Bioelectron, 2002.17(6−7): p. 441−56.
- Schuhmann, W., Electron-transfer pathways in amperometric biosensors. Ferrocene-modified enzymes entrapped in conducting-polymer layers. Biosensors & Biolectronics 1995, 10, 181.
- Wilson, R., Turner, A.P.F., Glucose oxidase: an ideal enzyme. Biosensors & Bioelectronics, 1992. 7: p. 165−185.
- Hecht, H.J., Kalisz, H.M., Hendle, J., Schmid, R.D., Schomburg, D., Crystal structure of glucose oxidase from Aspergillus niger refined at 2.3 A resolution. J. Mol. Biol., 1993. 229: p.153−172.
- Gibson, Q., Swoboda, В., Massey, V., Kinetics and Mechanism of Action of Glucose Oxidase. J. Biol. Chem., 1964. 239: p. 3927 -3934.
- Weibel, M., Bright, H., The Glucose Oxidase Mechanism. Interpretation of the pH Dependence. J. Biol. Chem., 1971. 246: p. 2734−2744.
- Su, Q., Klinman, J.P., Nature of oxygen activation in glucose oxidase from Aspergillus niger: the importance of electrostatic stabilization in superoxide formation. Biochemistry, 1999. 38(26): p. 8572−81.
- Alexandrouskii, Y.A., Bezhikina, L.V., Radionov, Y.V., Comparative study of the reactions catalyzed by glucose oxidase in the presence of different electron acceptors. Biokhimiya, 1981. 4: p. 708−716.
- Stankovich, M.T., An anaerobic spectroelectrochemical cell for studying the spectral and redox properties offlavoproteins. AnalBiochem, 1980. 109(2): p. 295−308.
- Dunford, H.B., Heme Peroxidases. Wiley-VCH: New York, Chichester, Weinheim, 1999.
- Veitch, N.C., Smith, A.T., Horseradish Peroxidase. Adv. Inorg. Chem. 2000, 51, 107.
- Dolman, D., Newell, G. A., Thurlow, M.D., Dunford, H.B., Kinetic study of the reaction of horseradish peroxidase with hydrogen peroxide. Can. J. Biochem., 1975. 53(5): p. 495−501.
- Gajhede, M., Schuller, D.J., Henriksen, A., Smith, A.T., Poulos, T.L., Crystal structure ofhorseradish peroxidase С at 2.15 .ANG. resolution. Nat. Struct. Biol., 1997. 4(12): p. 1032−1038.
- Henriksen, A., Smith, A.T., Gajhede, M., The structures of the horseradish peroxidase C-ferulic acid complex and the ternary complex -with cyanide suggest how peroxidases oxidize small phenolic substrates. J Biol Chem, 1999. 274(49): p. 35 005−11.
- Brunetti, В., Ugo, P., Moretto, L.M., Martin, C.R., Electrochemistry of phenothiazine and methyl viologen biosensor electron transfer mediators at nanoelectrode ensembles. J. Electroanal. Chem., 2000. 491: p. 166−174.
- Aoyagi, Т., Nakamura, A., Ikeda, H., Ikeda, Т., Mihara, H, Ueno, A., Alizarine yellow-modified cyclodextrine as a guest responsive absorption change sensor. Anal. Chem., 1997. 69: p. 659−663.
- Dubinin, A.G., Li, F., Li, Y., Yu, J., Л solid state immobilized enzyme polymer membrane microelectrode for measuring lactate ion concentration. Bioelectrochem. Bioenerg., 1991. 25: p. 131−135.
- Karyakin, A. A., Gitelmacher, O.V., Karyakina, E.E., Prussian blue based first generation biosensors, A high sensitive amperometric electrode for glucose. Anal. Chem., 1995. 67: p. 2419−2423.
- Karyakin, A. A., Karyakina, E.E., Schuhmann, W., Schmidt, H.L., Varfolomeyev, S.D., New amperomtric dehydrogenase electrodes based on electrocatalytic NADH-oxidation atpoly (-methylene bluej-modified electrodes. Electroanal., 1994. 6: p. 821−829.
- Molina, C.R., Boujtita, M., Murr, N.E., A carbon paste electrode modified by entrapped toluidine blue О for amperometric determination ofL-lactate. Anal. Chim. Acta, 1999. 401: p. 155−162.
- Lever, A.B.P., Electrochemical parametrization of metal complex redox potentials, using the ruthenium (III)/ruthenium (II) couple to generate a ligand electrochemical series. Inorg. Chem., 1990. 29(6): p. 1271−85.
- Nakabayashi, Y., Nakamura, K., Kawachi, M., Motoyama, Т., Yamauchi, O., Interactions of glucose oxidase with various metalpolypyridine complexes as mediators of glucose oxidation. J Biol Inorg Chem, 2003. 8(1−2): p. 45−52.
- Hall, J. W., Tucker, D.M., Automated determination of glucose using glucose oxidase and potassium ferrocyanide. Anal Biochem, 1968. 26(1): p. 12−7.
- Bartlett, P.N., Ali, Z., Eastwick-Field, V., Electrochemical immobilization of enzymes. 4. Co-immobilization of glucose oxidase and ferro/ferricyanide in poly (N-methylpyrrole) films. Journal of the Chemical Society, Faraday Transactions 1992, 88, 2677.
- Du, G., Lin, C., Bocarsly, A.B., Electroanalytical Detection of Glucose Using A Cyanometallate Modified Electrode: Requirements for Oxidation of Buried Redox Sites in Glucose Oxidase. Proceedings Electrochemical Society 1993, 93−11,197.
- Taliene, V.R., Ruzgas, Т., Razumas, V., Kulys, J., Chronoamperometric and cyclic voltammetric study of carbon paste electrodes usingferricyanide and ferrocenemonocarboxylic acid. Journal of Electroanalytical Chemistry 1994, 372, 85−89.
- Shul’ga, A. A., Koudelka-Hep, M., de Rooij, N.F., The effect of divalent metal ions on the performance of a glucose-sensitive ENFET using potassium ferricyanide as an oxidising substrate. Sensors and Actuators, B: Chemical 1995, B27,432.
- Dou, X., Ozaki, Y., Raman Study of Enzyme Reactions Using Potassium Ferricyanide as a Reaction Mediator: Quantitative Analysis of Substrates and Measurement ofEnzyme Activity for Glucose Oxidase and Lactate Oxidase. Applied Spectroscopy 1998, 52, 815.
- Marcus, R. A., Electron transfer reactions in chemistry: theory and experiment. Angew. Chem. Int. Ed. Engl., 1993. 32: p. 1111−1121.
- Marcus, R. A., Sutin, N., Electron transfers in chemistry and biology. Biochim. Biophys. Acta, 1985. 811(3): p. 265−322.
- Zahl, A., van Eldik, R., Swaddle, T.W., Cation-independent electron transfer between ferricyanide and ferrocyanide ions in aqueous solution. Inorg Chem, 2002. 41(4): p. 75 764.
- Coury, L.A., Jr., Oliver, B.N., Egekeze, J.O., Sosnoff, C.S., Brumfield, J.C., Buck, R.P., Murray, R.W., Mediated, anaerobic voltammetry of sulfite oxidase. Anal Chem, 1990. 62(5): p. 452−8.
- Yang, L., Coury Jr, L. A., Murray, R.W., Intra-enzyme and mediator cross-reaction electron-transfer reaction kinetics of sulfite oxidase. J. Phys. Chem. 1993, 97,1694.
- Fultz, M.L., Durst, R.A., Mediator compounds for the electrochemical study of biological redox systems: a compilation. Anal. Chim. Acta 1982,140, 1.
- Hoddenbagh, J.M.A., Macartney, D.H., Kinetics of electron-transfer reactions involving the hexacyanoruthenate (4-/3-) couple in aqueous media. Inorg. Chem. 1990,29, 245.
- Meyer, T.J., Taube, H., Electron-transfer reactions of ruthenium ammines. Inorg. Chem. 1968, 7, 2369.
- Doine, H., Swaddle, T.W., Pressure effects on the rate of electron transfer between trisfl, 10-phenanthroline)iron (II) and-(III) in aqueous solution and in acetonitrile. Can. J. Chem. 1988, 66, 2763.
- Cheung, E., English, A.M., Reductions by ferrocytochrome с peroxidase: 5. Kinetics of ferricyanide reduction. Can. J. Chem. 1995, 73,1181.
- Pladziewicz, J.R., Espenson, J.H., Electron transfer reactions of ferrocenes. J. Phys. Chem. 1971,75, 3381.
- Nielson, R.M., Hupp, J. Т., Electron Self-Exchange Kinetics for a Water-Soluble Ferrocenium/Ferrocene Couple: Rate Modulation via Charge Dependent Calix6. arene-p-sulfonate Encapsulation. Inorg Chem, 1996. 35(5): p. 1402−1404.
- Holzwarth, J., Juergensen, H., Salt effects on completely diffusion-controlled redox reactions between transition metal complex ions. Berichte Bunsen Gesellschaft Phys. Chem. 1974, 78, 526.
- Creaser, I.I., Sargeson, A.M., Zanella, A.W., Outer-sphere electron-transfer reactions involving caged cobalt ions. Inorg. Chem. 1983, 22,4022.
- Grace, M.R., Swaddle, T.W., Kinetics of the tris (l, 10-phenanthroline)cobalt (III/II) self-exchange reaction in aqueous solution at variable pressure. Inorg. Chem. 1993, 32, 5597.
- Cass, A.E.G., Davis, G., Francis, G.D., Hill, H.A.O., Aston, W.J., Higgins, I.J., Plotkin, E.V., Scott, L.D.L., Turner, A.P.F., Ferrocene-mediated enzyme electrode for amperometric determination of glucose. Anal. Chem., 1984. 56(4): p. 667−71.
- Cass, A.E.G., Davis, G., Green, M.J., Hill, H.A.O., Ferricinium ion as an electron acceptor for oxido-reductases. J. Electroanal. Chem. 1985, 190, 117.
- Nicholson, R.S., Shain, I., Theory of Stationary Electrode Polarography. Single Scan and Cyclic Methods Applied to Reversible, Irreversible, and Kinetic Systems. Anal. Chem. 1964, 36, 706.
- Bartlett, P.N., Tebbutt, P., Whitaker, R. GKinetic aspects of the use of modified electrodes and mediators in bioelectrochemistry. Progr. React. Kinet. 1991,16, 55.
- Antiochia, R, Lavagnini, I., Magno, F, A General Method for the Electrochemical Evaluation of the Bimolecular Rate Constant in Enzyme Catalyzed Reaction Kinetics. Electroanalysis 2001, 13, 601.
- Bartlett, P.N., Pratt, K.F.E, A study of the kinetics of the reaction between ferrocene monocarboxylie acid and glucose oxidase using the rotating-disc electrode. J. Electroanal. Chem. 1995, 397, 53.
- Forrow, N.J., Sanghera, G.S., Walters, S. J., The influence of structure in the reaction of electrochemically generated ferrocenium derivatives with reduced glucose oxidase. J. Chem. Soc., Dalton Trans. 2002, 3187.
- Vaastroebiezen, S.A.M., Janssen, A.P.M., Janssen, L.J. J., Solubility of oxygen in glucose solutions. Anal. Chim. Acta 1993, 280, 217.
- Ryabov, A.D., Firsova, Y.N., Nelen, M.I., Ferricenium salts as true substrates of glucose oxidase: a steady-state kinetic study. Appl. Biochem. Biotechnol., 1997. 61(½, Biocatalysis-95): p. 25−37.
- Tegoulia, V., Gnedenko, B.B., Ryabov, A.D., Ferricenium salts insteadofdioxygen in glucose oxidase catalysis. A direct interaction and analytical implications. Biochem Mol Biol Int, 1993. 31(4): p. 769−75.
- Male, КВ., Luong, J.H., Tram, M., Application of a novel 1,1 '-dimethylferricinium dye for the determination of uric acid in urine. Appl Biochem Biotechnol, 1994. 44(1): p. 91 100.
- Fersht, A., Enzyme Structure and Mechanism. Freeman: New York, 1985.
- Келети, Т., Основы ферментативной кинетики. Мир: Москва, 1980.
- Fersht, A., Structure and mechanism in protein science: a guide to enzyme catalysis and protein folding. Freeman: New York, 1999.
- Ryabov, A.D., Amon, A., Gorbatova, R.K., Ryabova, E.S., Gnedenko, В.В., Mechanism of a «jumping off’ferricenium in glucose oxidase-D-glucose-ferrocene micellar electrochemical systems. J. Phys. Chem., 1995. 99: p. 14 072.
- Goral, V.N., Nelen, M.I., Ryabov, A. DFerrocene andferricenium ion as versatile photometric titrants of H202 and D-glucose in the presence of peroxidase and glucose oxidase. A ferrocene-peroxidase stairway. Anal. Lett., 1995. 28(12): p. 2139−48.
- Micheel, В., Bierwolf, D., Randt, A., Franz, H., Mohr, J., Antigen-Antibody React., Contrib. Symp. Immunol., 4th 1971, 72.
- Epton, R., Hobson, M.E., Marr, G., Enzyme catalysed oxidation of ferrocene compounds. J. Organomet. Chem. 1977,134, C23.
- Epton, R., Hobson, M.E., Marr, G., Oxidation of ferrocene and some substituted ferrocenes in the presence of horseradish peroxidase. J. Organomet. Chem. 1978,149, 231.
- Epton, R., Hobson, M.E., Marr, G., Catalytic activity of poly (acryloylmorpholine)-immobilized horseradish peroxidase in organic/aqueous solvent mixtures. Enzyme and Microbial Technology 1979,1, 37.
- Frew, J.E., Harmer, M.A., Hill, H.A.O., Libor, S.I., method for estimation of hydrogen peroxide based on mediated electron transfer reactions of peroxidases at electrodes. J. Electroanal. Chem. 1986, 201, 1.
- Ryabov, A.D., Goral, V.N., Steady-state kinetics, micellar effects, and the mechanism of peroxidase-catalyzed oxidation of n-alkylferrocenes by hydrogen peroxide. JBIC, J. Biol. Inorg. Chem., 1997. 2(2): p. 182−190.
- Dequaire, М., Limoges, В., Moiroux, J., Saveant, J.M., Mediated electrochemistry of horseradish peroxidase. Catalysis and inhibition. J Am Chem Soc, 2002. 124(2): p. 24 053.
- Martinek, K., Yatsimirsky, A.K., Levashov, A.V., Berezin, I.V., in Micellization, Solubilization, and Microemulsions (K. L. Mittal, ed.), Vol. 2, p. 489. Plenum Press, New York, London, 1977.
- Goral, V.N., Ryabov, A.D., Reactivity of the horseradish peroxidase compounds I and II toward organometallic substrates. A stopped-flow kinetic study of oxidation of ferrocenes. Biochem. Mol. Biol. Int., 1998. 45(1): p. 61−71.
- Gray, H.B., Winkler, J.R., Electron transfer in proteins. Annu. Rev. Biochem., 1996. 65: p. 537−561.
- Childs, R.E., Bardsley, W.G., The steady-state kinetics of peroxidase with 2,2'-azino-di-(3-ethyl-benzthiazoline-6-sulphonic acid) as chromogen. Biochem. J. 1975, 145, 93.
- Ozaki, S.-i., Ortiz de Montellano, P.R., Molecular Engineering of Horseradish Peroxidase: Thioether Sulfoxidation andStyrene Epoxidation by Phe-41 Leucine and Threonine Mutants. J. Am. Chem. Soc., 1995.117(27): p. 7056−64.
- Sadeghi, S. J., Gilardi, G., Cass, A.E., Mediated electrochemistry of peroxidases—effects of variations in protein and mediator structures. Biosens Bioelectron, 1997. 12(12): p. 1191−8.
- Hasinoff, B.B., Dunford, H.B., Kinetics of the oxidation offerrocyanide by horseradish peroxidase compounds I andII. Biochemistry, 1970. 9(25): p. 4930−9.
- Cooper, J.M., Bannister, J.V., McNeil, C.J., A kinetic stidy of the catalysed oxidation of 1 3-dimethylferrocene ethylamine by cytochrome с peroxidase. J. Electroanal. Chem. 1991,312, 155.
- Liu, A., Leese, D.N., Swarts, J.C., Sykes, A.G., Reduction of Escherichia coli ribonucleotide reductase submit R2 with eight water-soluble ferrocene derivatives. Inorg. Chim. Acta 2002,337, 83.
- Swarts, J.C., Sykes, A.G., Kinetic studies on the reduction of the R2 protein ofE. coli ribonucleotide reductase by Co (sep).2+ and [Co (9-aneN3)2]2+. Inorg. Chim. Acta 1996, 242, 165.
- Gray, H.B., Winkler, J.R., Biological Systems. Electron Transfer in Chemistry 2001, 3, 3.
- Bjerrum, M.J., Casimiro, D.R., Chang, I.J., Di Bilio, A.J., Gray, H.B., Hill, M.G., Langen, R, Mines, G.A., Skov, L.K., Winkler, J. R, Wuttke, D.S., Electron transfer in ruthenium-modified proteins. J. Bioenerg. Biomembr., 1995. 27(3): p. 295−302.
- Millett, F., Durham, В., Design of photoactive ruthenium complexes to study interprotein electron transfer. Biochemistry, 2002. 41(38): p. 11 315−24.
- Durr, H., Bossmann, S., Rutheniumpolypyridine complexes. On the route to biomimetic assemblies as models for the photosynthetic reaction center. Acc Chem Res, 2001. 34(11): p. 905−17.
- Berglund, J., Pascher, Т., Winkler, J.R., Gray, H. B, Photoinduced Oxidation of Horseradish Peroxidase. J. Am. Chem. Soc., 1997. 119: p. 2464−2469.
- Farhangrazi, Z.S., Fossett, M.E., Powers, L.S., Ellis, W.R., Jr., Variable-Temperature Spectroelectrochemical Study of Horseradish Peroxidase. Biochemistry, 1995. 34(9): p. 2866−71.
- Yamada H., Yamazaki I., Proton Balance In Conversions Between Five Oxidation-Reduction States of Horseradish Peroxidase. Arch. Biochem. Biophys., 1974: p. 728 738.
- Zhang, C., Haruyama, Т., Kobatake, E., Aizawa, M., Evaluation of substituted 1,10-phenanthroline complexes of osmium as mediator for glucose oxidase of Aspergillus niger. Anal. Chim. Acta, 2000. 408: p. 225−232.
- Degani, Y., Heller, A., Electrical communication between redox centers of glucose oxidase and electordes via electrostatically and covalently bound redox polymers. Am. Chem. Soc., 1989. Ill: p. 2357−2358.
- Gregg, B.A., Heller, A., Cross-linked redox gels containing glucose oxidase for amperometric biosensor applications. Anal Chem, 1990. 62(3): p. 258−63.
- Pishko, M.V., Katakis, I., Lindquist, S.E., Ye, L., Gregg, B. A., Heller, A., Direct electron exchange between graphite electrodes and an adsorbed complex of glucose oxidase and an osmium-containing redox polymer. Angew. Chem. 1990, 102.
- Gregg, B. A., Heller, A., Redox polymer films containing enzymes. 2. Glucose oxidase containing enzyme electrodes. J. Phys. Chem., 1991. 95: p. 5976−5980.
- Gregg, B. A., Heller, A., Redoxpolymer films containing enzymes. 2. Glucose oxidase containing enzyme electrodes. J. Phys. Chem., 1991. 95: p. 5970−5975.
- Pishko, M.V., Michael, A.C., Heller, A., Amperometric glucose microelectrodes prepared through immobilization of glucose oxidase in redox hydrogels. Anal Chem, 1991. 63(20): p. 2268−72.
- Heller, A., Electrical connection of enzyme redox centers to electrodes. J. Phys. Chem., 1992. 96(9): p. 3579−87.
- Heller, A., Electrical wiring of redox enzymes. Acc. Chem. Res., 1990. 23(5): p. 128−34.
- Ohara, T. J., Rajagopalan, R, Heller, A., Glucose electrodes based on crosslinked Os (bpy)2Cl.+/2+ complexedpoly (l-vinylimidazole) films. Polymeric Materials Science and Engineering 1993,70,182.
- Ye, L., Hammerle, M., Olsthoorn, A.J.J., Schuhmann, W., Schmidt, H.-L., Duine, J.A., Heller, A., High current density «wired» quinoprotein glucose dehydrogenase electrode. Anal. Chem. 1993, 65,238.
- Ryabov, A.D., Roznyatovskaya, N.V., Suwinska, K., Revenco, M., Ershov, A.Y., Submitted.
- Ryabova, E.S., Csoregi, E., Ryabov, A.D., Influence of biologically relevant ligands on oxidation of reduced glucose oxidase by electrochemically generated RuIII (bpy)2XY. complexes. J. Mol. Catal. B: Enzym., 2000.11(2−3): p. 139−145.
- Kurova, V.S., Ershov, A.Y., Ryabov, A.D., Russian Chemical Bulletin (Translation of Izvestiya Akademii Nauk, Seriya Khimicheskaya) 2001, 50,1849.
- Seddon, E.A., Seddon, K.R., The Chemistry of Ruthenium. Elsevier, 1984.
- Danilowicz, C., Corton, E., Battaglini, F., Osmium complexes bearing functional groups: building blocks for integrated chemical systems. J. Electroanal. Chem. 1998, 445, 89.
- Shklover, V., Zakeeruddin, S.M., Nesper, R, Fraser, D., Gratzel, M., Tris-(4,4'-dimethoxy-2,2'-bipyridine)osmium (II), amperometricproperties and crystal structure. Inorg. Chim. Acta, 1998. 274: p. 64−72.
- Fraser, D.M., Zakeeruddin, S.M., Graetzel, M., Towards mediator design. II. Optimization of mediator global charge for the mediation of glucose oxidase of Aspergillus niger. J. Electroanal. Chem., 1993. 359(1−2): p. 125−39.
- Chen, L., Gorski, W., Bioinorganic composites for enzyme electrodes. Anal Chem, 2001. 73(13): p. 2862−8.
- Morris, N. A., Cardosi, M.F., Birch, B. J., Turner, A.P.F., An electrochemical capillary fill device for the analysis of glucose incorporating glucose oxidase and ruthenium (III) hexamine as mediator. Electroanalysis 1992,4,1.
- Battaglini, F., Calvo, E. J., Enzyme catalysis at hydrogel-modified electrodes with soluble redox mediator. J. Chem. Soc., Faraday Trans. 1994, 90, 987.
- Villahermosa, R.M., Kuciauskas, D., Mayo, E.I., Lewis, N.S., Winkler, J.R., Gray, H.B., in «Abstr. Pap. Am. Chem. Soc.», Vol. 221st, p. INOR, 2001.
- Ohara, T.J., Vreeke, M.S., Battaglini, F., Heller, A., Bienzyme sensors based on «electrically wired"peroxidase. Electroanalysis 1993, 5, 825.
- Constable, E.C., Holmes, J.M., A cyclometalated analog of tris (2,2'-bipyridine)ruthenium (II). J. Organomet. Chem., 1986. 301(2): p. 203−8.
- Omae, I., OrganometallicIntramolecular-coordination Compounds. Elsevier Science Publishers: Amsterdam, New York, 1986.
- Ryabov, A.D., Mechanisms of Intramolecular Activation of C-H Bonds in Transition-Metal Comlexes. Chem. Rev. 1990, 90,403.
- Cope, A.C., Siekman, R.W., Formation of covalent bonds from platinum or palladium to carbon by direct substitution. J. Am. Chem. Soc., 1965. 87: p. 3272−3273.
- Ryabov, A.D., Cyclopalladated complexes in organic synthesis. Synthesis, 1985(3): p. 233−52.
- Pfeffer, M., Reactions of cyclopalladated compounds andalkynes: new pathways for organic synthesis? Reel. Trav. Chim. Pays-Bas, 1990. 109(12): p. 567−76.
- Spencer, J., Pfeffer, M., State of the art in selective hetero- and carbocyclic syntheses mediated by cyclometalated complexes. Adv. Met.-Org. Chem., 1998. 6: p. 103−144.
- Van Koten, G., Van Leeuwen, P.W.N.M., Homogeneous catalysis with transition metal complexes. Stud. Surf. Sci. Catal., 1999. 123(Catalysis: An Integrated Approach (2nd Edition)): p. 289−342.
- Herrmann, W. A., Bohm, V.P.W., Reisinger, C.-PApplication of palladacycles in Heck type reactions. J. Organomet. Chem., 1999. 576(1−2): p. 23−41.
- Beletskaya, I.P., Cheprakov, A.V., The Heck Reaction as a Sharpening Stone of Palladium Catalysis. Chem. Rev. (Washington, D. C.), 2000. 100(8): p. 3009−3066.
- Ryabov, A.D., Kazankov, G.M., Kurzeev, S.A., Samuleev, P.V., Polyakov, V.A., Enantioselective cleavage of activated amino acid esters promoted by chiral palladacycles. Inorg. Chim. Acta, 1998. 280(1−2): p. 57−61.
- Kurzeev, S.A., Kazankov, G.M., Ryabov, A.D., Increased catalytic activity of primary amine palladacycles in biomimetic hydrolysis ofN-t-BOC-S-methionine p-nitrophenyl ester. Inorganica Chimica Acta, 2000. 305(1): p. 1−6.
- Serrano, J.L., Ed., Metallomesogens, Synthesis, Properties, and Applications. VCH: Weinheim, New York, Basel, 1996.
- Hudson, S.A., Maitlis, P.M., Calamitic metallomesogens: metal-containing liquid crystals with rodlike shapes. Chem. Rev., 1993. 93(3): p. 861−85.
- Albrecht, M., Lutz, M., Spek, A.L., van Koten, G., Organoplatinum crystals for gas-triggered switches. Nature (London), 2000. 406(6799): p. 970−974.
- Constable, E.C., Hannon, M.J., Solvent effects in the reactions of 6-phenyl-2,2'-bipyridine with ruthenium (II). Inorg. Chim. Acta, 1993. 211(1): p. 101−10.
- Reveco, P., Medley, J.H., Garber, A.R., Bhacca, N. S., Selbin, J., Study of a cyclometalated complex of ruthenium by 400-MHz two-dimensional proton NMR. Inorg. Chem., 1985. 24(7): p. 1096−9.
- Fernandez, S., Pfeffer, M., Ritleng, V., Sirlin, C., An Effective Route to Cycloruthenated N-Ligands under Mild Conditions. Organometallics, 1999.18(12): p. 2390−2394.
- Jameson, G.B., Muster, A., Robinson, S.D., Wingfield, J.N., Ibers, J.A., Cyclometalated formazan derivatives of ruthenium and osmium: structure ofRu ((o-C6H4)N:NC (Ph):NNPh)(CO)(PPh3)2. Inorg. Chem. 1981, 20, 2448−56.
- Kalinin, V.N., Usatov, A.V., Zakharkin, L.I., Metalloorg. Шт. 1989, 2, 54−66.
- Beley, M., Collin, J.P., Sauvage, J.P., Highly coupled mixed-valence dinuclear ruthenium and osmium complexes with a bis-cyclometalating terpyridine analog as bridging ligand. Inorg. Chem. 1993, 32, 4539−43.
- Wen, T.B., Cheung, Y. K, Yao, J., Wong, W.-T., Zhou, Z.Y., Jia, G., Vinylidene and Carbyne Complexes Derived from the Reactions ofOsCl (PPh3)(PCP) (PCP = 2,6-(PPh2CH2)2C6H3) with Terminal Acetylenes. Organometallics 2000, 19, 3803−3809.
- Bennett, M.A., Clark, A.M., Contel, M., Rickard, C.E.F., Roper, W.R., Wright, L.J., Cyclometallated complexes of ruthenium and osmium containing the o-C6H4PPh2 ligand. J. Organomet. Chem. 2000, 601,299−304.
- Majumder, K., Peng, S.-M., Bhattacharya, S., Cyclometallation and NN bond cleavage of 2-(arylazo)phenols by osmium. Synthesis, structure and redox properties. J. Chem. Soc., Dalton Trans. 2001,284−288.
- Gusev, D.G., Dolgushin, F.M., Antipin, M.Y., Cyclometalated Osmium Complexes Containing a Tridentate PCP Ligand. Organometallics 2001,20, 1001−1007.
- Das, A., Basuli, F., Falvello, L. R, Bhattacharya, S., Unusual Transformation ofN-Arylbenzohydroxamic Acids Mediated by Osmium. Formation of Organometallic Complexes of Osmium (III). Inorg. Chem. 2001, 40,4085−4088.
- Ohara, T.J., Rajagopalan, R, Heller, A., Glucose Electrodes Based on Cross-Linked Os (bpy)2CI.+/2+ Complexed Poly (1 -vinylimidazole) Films. Anal. Chem., 1993. 65: p. 3512−3517.
- Black, D.S.C., Deacon, G.B., Edwards, G.L., Gatehouse, B.M., Ruthenium carbonyl complexes I. Synthesis of Ru (CO)2(bidentate)22+ complexes. Austr. J. Chem. 1993, 46, 1323−36.
- Zelonka, R.A., Baird, M.C., Benzene Complexes ofRuthenium (II). Can. J. Chem., 1972. 50: p. 3063−3072.
- Athur, Т., Stephenson, T. A., Synthesis ofbinuclear hydroxo- and alkoxo-bridged arene complexes of ruthenium (II) andosmium (II). J. Organomet. Chem. (1981), 208(9), 38 987.
- George, P., Chemical nature of the second hydrogen peroxide compound formed by cytochrome с peroxidase and horse-radish peroxidase. Biochem. J., 1953. 54: p. 267−76.
- Ohlsson, P. J., Paul, K.G., The molar absorptivity of horseradish peroxidase. Acta Chem. Scand., Ser. B, 1976. B30(4): p. 373−5.
- Everse, J., E., E.K., В., G.M., Peroxidases in chemistry and biology. 1991: CRC.
- Dunford, H.B., Peroxidases. Adv. Inorg. Biochem., 1982. 4: p. 41−68.
- English, A.M., Tsaprailis, G., Catalytic structure-function relationships in heme peroxidases. Adv. Inorg. Chem., 1995. 43: p. 79−125.
- Patel, P.K., Mondal, M.S., Modi, S., Behere, D.V., Kinetic studies on the oxidation of phenols by the horseradish peroxidase compound II. Biochim. Biophys. Acta, 1997. 1339(1): p. 79−87.
- Dunford, H.B., Adeniran, A. J., Hammett .rho.sigma. correlation for reactions of horseradish peroxidase compoundII with phenols. Arch. Biochem. Biophys., 1986. 251(2): p. 536−42.
- Folkes, L.K., Candeias, L.P., Interpretation of the reactivity ofperoxidase compounds I andII with phenols by the Marcus equation. FEBS Lett., 1997. 412(2): p. 305−308.
- Sun, W., Ji, X., Kricka, L.J., Dunford, H.B., Rate constants for reactions of horseradish peroxidase compounds landIIwith 4-substitutedarylboronic acids. Can. J. Chem., 1994. 72(10): p. 2159−62.
- Bohne, C., MacDonald, I.D., Dunford, H.B., Transient state kinetics of the reactions of isobutyraldehyde with compounds I and II of horseradish peroxidase. J. Biol. Chem., 1987. 262(8): p. 3572−8.
- Burner, U., Obinger, C., Transient-state and steady-state kinetics of the oxidation of aliphatic and aromatic thiols by horseradish peroxidase. FEBS Lett., 1997. 411(2,3): p. 269−274.
- Davies, N.R., Mullins, T.L., Substitution reactions of some bis (2,2'-bipyridine) and mixed 2,2'-bipyridine, 2,2'2"-terpyridine complexes of ruthenium (II). Aust. J. Chem., 1967. 20(4): p. 657−68.
- Johnson, E.C., Sullivan, B.P., Salmon, D.J., Adeyemi, S.A., Meyer, T. J., Synthesis and properties of the chloro-bridged dimer (bpy)2RuCl.22+ and its transient 3+ mixed-valence ion. Inorg. Chem., 1976.17: p. 2211.
- Allen, L.R., Craft, P.P., Durham, В., Walsh, J., Substitution reactions of ruthenium (II) complexes containing 2,2'-bipyridine and 1,10-phenanthroline. Inorg. Chem., 1987. 26(1): p. 53−6.
- Moyer, B.A., Meyer, T. J., Properties of the oxo/aqua system (bpy)2(py)Ru02+/(bpy)2(py)Ru (0H2)2+. Inorg. Chem., 1981. 20(2): p. 436−44.
- Ryabova, E.S., Goral, V.N., Csoregi, E., Mattiasson, В., Ryabov, A.D., Coordinative approach to mediated electron transfer: ruthenium complexed to native glucose oxidase. Angew. Chem., Int. Ed., 1999. 38(6): p. 804−807.
- Walsh, C., Flavin coenzymes: at the crossroads of biological redox chemistry. Acc. Chem. Res., 1980. 13(5): p. 148−55.
- Treadway, J.A., Meyer, T.J., Preparation of CoordinativelyAsymmetrical Ruthenium (II) Polypyridine Complexes. Inorg. Chem., 1999. 38(10): p. 2267−2278.
- Suarez, A., Vila, J.M., Gayoso, E., Gayoso, M., Acta Cient. Compostelana, 1983. 20: p. 173.
- Hiraki, K., Fuchita, Y., Nakaya, H., Takakura, S., Preparations and characterization of cyclopalladated complexes of l-ethyl-2-phenylimidazole. Bull. Chem. Soc. Jpn., 1979. 52: p. 2531.
- Dalton Trans., 2000: p. 271.
- Navarro-Ranninger, C., Zamora, F., Lopez-Solera, I., Monge, A., Masaguer, J.R., Cyclometallated complexes ofPd (II) andPt (II) with 2-phenylimidazoline. J. Organomet. Chem., 1996. 506: p. 149.
- Zamora, F., Luna, S., Amo-Ochoa, P., Martinez-Cruz, L.A., Vegas, A., A way to obtain cyclopalladation of unsubstituted 2-phenylimidazole derivatives. J. Organomet. Chem., 1996. 522: p. 97.
- Job, D., Dunford, H. B., Substituent effect on the oxidation of phenols and aromatic amines by horseradish peroxidase compound I. Eur. J. Biochem., 1976. 66(3): p. 607−14.
- Lukachova, L.V., Karyakin, A.A., Ivanova, Y.N., Karyakina, E.E., Varfolomeyev, S.D., Non-aqueous enzymology approach for improvement of reagentless mediator-based glucose biosensor. Analyst, 1998. 123: p. 1981.
- Razumiene, J., Niculescu, M., Ramanavicius, A., Laurinavicius, V., Csoregi, E., Direct Bioelectrocatalysis at Carbon Electrodes Modified with Quinohemoprotein Alcohol Dehydrogenase from Gluconobacter sp. 33. Electroanalysis, 2002. 1: p. 43−49.
- Ikeda, Т., Kobayashi, D., Matsushita, S., Sagara, Т., Niki, K., Bioelectrocatalysis at electrodes coated with alcohol dehydrogenase, a quinohemoprotein with heme с serving as a built-in mediator. J. Electroanal. Chem., 1993. 361: p. 221.
- Gaspar, S., Bontidean, I., Collins, A., Niculescu, M., Nistor, C., Sukharev, V., Ryabov, A.D., Csoregi, E., In Recent Res. Dev. Anal. Chem.- Pandalai, S. G., Ed.- Transworld Research Network: Kerala, India, 2002. 2: p. 33−59.
- Курова, B.C. Диссертация. Московский Государственный Университет им. М. В. Ломоносова, 2002.
- Laemmel, А.-С., Collin, J.-P., Sauvage, J.-P., Serie He Chimie/Chemistry. C. R. Acad. Sci. ed. Vol. 3. 2000, Paris. 43.
- Hui, J.W.-S., Wong, W.-T., Ruthenium 1996. Coordination Chemistry Reviews, 1998. 172: p.389−436.