ΠΠ΅ΡΠΎΠ΄ ΠΈ ΡΠΈΡΡΠ΅ΠΌΠ° ΠΎΠ±ΡΠ°Π±ΠΎΡΠΊΠΈ Π΄ΠΈΠ½Π°ΠΌΠΈΡΠ΅ΡΠΊΠΈΡ ΠΌΠ΅Π΄ΠΈΡΠΈΠ½ΡΠΊΠΈΡ ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½ΠΈΠΉ
ΠΠΈΡΡΠ΅ΡΡΠ°ΡΠΈΡ
ΠΠ΅ΡΠ΅ΡΠ±ΡΡΠ³, Π΄Π΅ΠΊΠ°Π±ΡΡ 2011; ΠΡΠ΅ΡΠΎΡΡΠΈΠΉΡΠΊΠ°Ρ ΠΊΠΎΠ½ΡΠ΅ΡΠ΅Π½ΡΠΈΡ «ΠΠ°ΡΠ΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΠ΅ΡΠΎΠ΄Ρ Π Π°ΡΠΏΠΎΠ·Π½Π°Π²Π°Π½ΠΈΡ ΠΠ±ΡΠ°Π·ΠΎΠ² — 2011», Π³. ΠΠ΅ΡΡΠΎΠ·Π°Π²ΠΎΠ΄ΡΠΊ, ΡΠ΅Π½ΡΡΠ±ΡΡ 2011; ΠΊΠΎΠ½ΡΠ΅ΡΠ΅Π½ΡΠΈΡ ΠΡΠΎΡΠ΅ΡΡΠΎΡΡΠΊΠΎ-ΠΏΡΠ΅ΠΏΠΎΠ΄Π°Π²Π°ΡΠ΅Π»ΡΡΠΊΠΎΠ³ΠΎ ΡΠΎΡΡΠ°Π²Π° — 2011β³, Π‘Π°Π½ΠΊΡ-ΠΠ΅ΡΠ΅ΡΠ±ΡΡΠ³ΡΠΊΠΈΠΉ ΠΠΎΡΡΠ΄Π°ΡΡΡΠ²Π΅Π½Π½ΡΠΉ ΠΠ»Π΅ΠΊΡΡΠΎΡΠ΅Ρ Π½ΠΈΡΠ΅ΡΠΊΠΈΠΉ Π£Π½ΠΈΠ²Π΅ΡΡΠΈΡΠ΅Ρ «ΠΠΠ’Π», Π³. Π‘Π°Π½ΠΊΡ-ΠΠ΅ΡΠ΅ΡΠ±ΡΡΠ³, ΡΠ½Π²Π°ΡΡ 2011; ΠΌΠ΅ΠΆΠ΄ΡΠ½Π°ΡΠΎΠ΄Π½Π°Ρ ΠΊΠΎΠ½ΡΠ΅ΡΠ΅Π½ΡΠΈΡ «ΠΠ½ΡΠ΅Π»Π»Π΅ΠΊΡΡΠ°Π»ΠΈΠ·Π°ΡΠΈΡ ΠΠ±ΡΠ°Π±ΠΎΡΠΊΠΈ ΠΠ½ΡΠΎΡΠΌΠ°ΡΠΈΠΈ 2010», Π³. ΠΠ°ΡΠΎΡ, ΠΠΈΠΏΡ… Π§ΠΈΡΠ°ΡΡ Π΅ΡΡ >
Π‘ΠΏΠΈΡΠΎΠΊ Π»ΠΈΡΠ΅ΡΠ°ΡΡΡΡ
- JI. Π¨Π°ΠΏΠΈΡΠΎ, ΠΠΆ. Π‘ΡΠΎΠΊΠΌΠ°Π½ (2009). ΠΠΎΠΌΠΏΡΡΡΠ΅ΡΠ½ΠΎΠ΅ Π·ΡΠ΅Π½ΠΈΠ΅. Π.: ΠΠΠΠΠ. ΠΠ°Π±ΠΎΡΠ°ΡΠΎΡΠΈΡ Π·Π½Π°Π½ΠΈΠΉ.
- Enkelmann, W. (1991). Obstacle detection by evaluation of optical flow fields from image sequences. Image and Vision Computing, 9(3), 160−8.
- DeSouza, G. N. and ΠΠ°ΠΊ, A. C. (2002). Vision for mobile robot navigation: A survey. IEEE Trans. Pattern Anal. Mach. Intell, 24(2), 237−267.
- Π. Π€ΠΎΡΡΠ°ΠΉΡ, Π. ΠΠΎΠ½Ρ (2004). ΠΠΎΠΌΠΏΡΡΡΠ΅ΡΠ½ΠΎΠ΅ Π·ΡΠ΅Π½ΠΈΠ΅. Π‘ΠΎΠ²ΡΠ΅ΠΌΠ΅Π½Π½ΡΠΉ ΠΏΠΎΠ΄Ρ ΠΎΠ΄. ΠΠ·Π΄Π°ΡΠ΅Π»ΡΡΠΊΠΈΠΉ Π΄ΠΎΠΌ «ΠΠΈΠ»ΡΡΠΌΠ΅».
- Π. Π―Π½Π΅ (2007). Π¦ΠΈΡΡΠΎΠ²Π°Ρ ΠΎΠ±ΡΠ°Π±ΠΎΡΠΊΠ° ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½ΠΈΠΉ. Π’Π΅Ρ Π½ΠΎΡΡΠ΅ΡΠ°.
- Zhang, Y. (2006). Advances in image and video segmentation. In IRM Press.
- Viitaniemi, V. and Laaksonen, J. (2008). Techniques for image classification, object detection and object segmentation. In, pages xx-yy.
- Lucas, B. D. and Kanade, T. (1981). An iterative image registration techniquewith an application to stereo vision. In, pages 674−679.
- Beauchemin, S. and Barron, J. (1995). The computation of optical-flow., 27(3), 433−467.
- Horn, Π. K. P. and Schunck, B. G. (1981). Determining optical flow. ARTIFICAL1. TELLIGENCE, 17, 185−203.
- Horn, B. and Schunck, B. (1993). Determining optical flow: A retrospective., 59(1−2), 81−87.12 ho Kim, Y., Martinez, A. M. and ΠΠ°ΠΊ, A. C. (2005). Robust motion estimationunder varying illumination. Image and Vision Computing, 23.
- Elad, M., Teo, P. and Hel Or, Y. (2005). On the design of filters forgradient-based motion estimation., 23(3), 345−365.
- L.M. Biberman, ed. Electro Optical Imaging: System performance and modeling. SPIE, Bellingham, WA, 2001
- Pock, T., Unger, M., Cremers, D. and Bischof, H. (2008). Fast and exact solution of total variation models on the gpu. In, pages 1−8.
- Bruhn, A. (2006). Variational Optic Flow Computation: Accurate Modellingand Efficient Numerics. PhD thesis, Saarland University. 109
- Simoncelli, E. P. (1994). Design of multi-dimensional derivative filters. In In
- First International Conference on Image Processing, pages 790−793.
- Aubert, G., Deriche, R. and Kornprobst, P. (1999). Computing optical flow via variational techniques. SI AM Journal on Applied Mathematics, 60(1), 156−182.
- H. Burkhardt and S. Siggelkow. Invariant features in pattern recognition -fundamentals and applications. In C. Kotropoulos and I. Pitas eds., Nonlinear Model-Based Image/Video Processing and Analisys, pp. 269−307. John Wiley&Sons, 2001
- Zach, C., Pock, T. and Bischof, H. (2007). A duality based approach for realtime tv-11 optical flow. In In Ann. Symp. German Association Patt. Recogn, pages 214−223.
- Alvarez, L., Deriche, R., Papadopoulo, T. and Sanchez, J. (2007). Symmetrical dense optical flow estimation with occlusions detection. International Journal of Computer Vision, 75(3), 371−385.
- Wedel, A., Pock, T., Zach, C., Bischof, H. and Cremers, D. (2009). An improved algorithm for tv-11 optical flow., pp. 23−45.
- N. Christiani and J. Shawe-Taylor. An Introduction to Suppor Vector Machines. Cambridge Univercity Press, Cambridge, 2000.
- Bruhn, A., Weickert, J., Kohlberger, T. and Schnorr, C. (2006). A multigrid platform for real-time motion computation with discontinuity-preserving variational methods. Int. J. Comput. Vision, 70(3), 257−277.
- Konrad, J. and Dubois, E. (1988). Multigrid bayesian estimation of image motion fields using stochastic relaxation. In, pages 354−362.
- Bruhn, A., Weickert, J., Feddern, C., Kohlberger, T. and Schnorr, C. (2003). Real-time optic flow computation with variational methods. In In CAIP 2003, pages 222−229.
- M.J. Riedl. Optical Design Fundamentals for Infrared Systems. SPIE, Bellingham, WA, 2001
- A.Bruhn and J. Weickert (2005). Towards ultimate motion estimation: Combining highest accuracy with real-time performance. In In Proc. 10th International Conference on Computer Vision, Vol. 1, pages 749−755.
- Amiaz, T. and Kiryati, N. (2005). Dense discontinuous optical flow via contour-based segmentation. In ICIP, pages III: 1264−1267.
- Amiaz, T., Lubetzky, E. and Kiryati, N. (2007). Coarse to over-fine optical flow estimation., 40(9), 2496−2503.
- Brox, T., Bruhn, A., Papenberg, N. and Weickert, J. (2004). High accuracy optical flow estimation based on a theory for warping. In ECCV, pages Vol IV: 25−36.
- Weickert, J. and Schnorr, C. (2001). Variational optic flow computation with a spatio-temporal smoothness constraint. J. Math. Imaging Vis., 14(3), 245−255.
- Papenberg, N., Bruhn, A., Brox, T., Didas, S. and Weickert, J. (2006). Highly accurate optic flow computation with theoretically justified warping. Int. J. Comput. Vision, 67(2), 141−158.
- Lempitsky, V., Roth, S. and Rother, C. (2008). Fusionflow: Discrete-continuous optimization for optical flow estimation. In 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'08). Anchorage, USA.
- Zimmer, H., Bruhn, A., Weickert, J., Valgaerts, L. and Salgado, A. et al. (2009). Complementary optic flow. In Cremers, D., Boykov, Y., Blake, A. and
- Schmidt, F. R., editors, EMMCVPR, number 5681 in Lecture Notes in Computer Science, pages 207−220.
- Werlberger, M., Trobin, W., Pock, T., Wedel, A. and Cremers, D. et al. (2009). Anisotropic huber-11 optical flow. In Proceedings of the British Machine Vision Conference (BMVC). London, UK. to appear.
- Glocker, B., Paragios, N., Komodakis, N., Tziritas, G. and Navab, N. (2008). Optical flow estimation with uncertainties through dynamic mrfs. In CVPR .
- Weber, J., Malik, J., Devadas, S. and Michel, P. (1994). Robust computation of optical flow in a multi-scale differential framework. International Journal of Computer Vision, 14, 12−20.
- Castro, E. D. and Morandi, C. (1987). Registration of translated and rotated images using finite fourier transforms. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-9(5), 700−703. Fourier Transforms.
- Alvarez, L., Weickert, J. and Sanchez, J. (2000). Reliable estimation of dense optical flow fields with large displacements. International Journal of Computer Vision, 39(1), 41−56.
- Duda R.O., D. Stork, and P. Hart. 2000. Pattern Classification. John Wiley & Sons, New York.
- Jain, R. Duin and J. Mao. 2000. Statistical pattern recognition, a review. IEEE-TPAMI. 22(l):4−37
- Anandan, P. (1989). A computational framework and an algorithm for the measurement of visual motion. International Journal of Computer Vision, 2(3), 283−310.
- Bruhn, A., Weickert, J. and Schnorr, C. (2005). Lucas/kanade meets horn/schunck: combining local and global optic flow methods. Int. J. Comput. Vision, 61(3), 211−231.
- Black, M. J. (1994). Recursive non-linear estimation of discontinuous flow fields. In ECCV, pages A:138−145.
- Black, M. J., Yacoob, Y. and Ju, S. X. (1997). Recognizing human motion using parameterized models of optical flow. In Motion-Based Recognition, pages Chapter 11.
- Black, M. J. and Jepson, A. (1996). Estimating optical flow in segmented images using variable-order parametric models with local deformations. IEEE Transactions on Pattern Analysis and Machine Intelligence, 18, 972−986.
- Π. ΠΠ»ΡΠ±Π΅ΡΡ (1977). Π Π΅Π³ΡΠ΅ΡΡΠΈΡ, ΠΏΡΠ΅Π²Π΄ΠΎΠΈΠ½Π²Π΅ΡΡΠΈΡ ΠΈ ΡΠ΅ΠΊΡΡΡΠ΅Π½ΡΠ½ΠΎΠ΅ ΠΎΡΠ΅Π½ΠΈΠ²Π°Π½ΠΈΠ΅. ΠΠΎΡΠΊΠ²Π° ΠΠ°ΡΠΊΠ°. Π€ΠΈΠ·ΠΌΠ°ΡΠ»ΠΈΡ.
- Alvarez, L., Weickert, J. and Sanchez, J. (1999). A scale-space approach to nonlocal optical flow calculations. In Scale Space, pages 235−246.
- Cremers, D. and Soatto, S. (2005). Motion competition: A variational approach to piecewise parametric motion segmentation. International Journal of Computer Vision, 62(3), 249−265.
- D.A. Forsyth and J. Ponce. Computer Vision, a Modern Approach. Prentice Hall, Upper Sadie River, NJ, 2003.
- Tzeng, S. and Wei, L.-Y. (2008). Parallel white noise generation on a gpu via cryptographic hash. In I3D '08: Proceedings of the 2008 symposium on Interactive 3D graphics and games, pages 79−87. New York, NY, USA.
- Simoncelli, E. P. (1993). Bayesian multi-scale differential optical flow. In IEEE Workshop on Image and Multidimensional Signal Processing, pages 128−129.
- Black, M. J. and Anandan, P. (1991). Robust dynamic motion estimation over time. IEEE Proceedings of Computer Vision and Pattern Recognition, pp. 296 302.
- Castro, E. D. and Morandi, C. (1987). Registration of translated and rotated images using finite fourier transforms. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-9(5), 700−703. Fourier Transforms.
- Brox, Π’., Bruhn, A. and Weickert, J. (2006). Variational motion segmentation with level sets. In ECCV, pages I: 471183.
- Werlberger, M., Trobin, W., Pock, T., Wedel, A. and Cremers, D. et al. (2009). Anisotropic Huber-Ll optical flow. In Proceedings of the British Machine Vision Conference (BMVC). London, UK.
- Luettgen, M. R., Karl, W. C. and Willsky, A. S. (1993). Efficient multiscale regularization with applications to the computation of optical flow. IEEE Transactions on image processing, 3, 41−64.
- Black M. J. Anandan, P. (1996). The robust estimation of multiple motions: Parametric and piecewise-smooth flow fields. COMPUTER VISION AND IMAGE UNDERSTANDING, 63(1), 75−104.
- NVIDIA (2008b). NVIDIA CUDA C Programming Best Practices Guide 2.O.
- Roth, S. and Black, M. J. (2007). On the spatial statistics of optical flow. Int. J. Comput. Vision, 74(1), 33−50.
- Bell, W. N., Olson, L. N. and Schroder, J. (2008). Pyamg: Algebraic multigrid solvers in python. Version 1.0.
- Sanner M. F. Stoffler D., O. A. J. (2002). Viper, a visual programming environment for python. In In Proceedings of the 10th International Python conference, pages 103−115.
- Che, S., Boyer, M., Meng, J., Tarjan, D. and Sheaffer, J. W. et al. (2008). A performance study of general-purpose applications on graphics processors using cuda. J. Parallel Distrib. Comput., 68(10), 1370−1380.
- B. Jahne, ed. Image Sequence Analysis to Investigate Dynamic Processes, Lecture Notes in Computer Science, 2005. Springer, Berlin.
- Black, M. J. and Anandan, P. (1996). The robust estimation of multiple motions: parametric and piecewise-smooth flow fields. Comput. Vis. Image Underst., 63(1), 75−104.
- Memin, E. and Perez, P. (1998). Dense estimation and object-based segmentation of the optical flow with robust techniques. IEEE Transactions on Image Processing, 7(5), 703−719.
- Ryoo, S., Rodrigues, Π‘. I., Stone, S. S., Baghsorkhi, S. S. and Ueng, S.-Z. et al. (2008). Program optimization space pruning for a multithreaded gpu. In Soffa, M. L. and Duesterwald, E., editors, CGO, pages 195−204.
- Weiss, B. (2006). Fast median and bilateral filtering. ACM Trans. Graph., 25(3), 519−526.
- Zach, C., Pock, T. and Bischof, H. (2007). A duality based approach for realtime tv-11 optical flow. In Pattern Recognition (Proc. DAGM), pages 214−223. Heidelberg, Germany.
- Π’. ΠΠΎΡΠΌΠ΅Π½, Π§. ΠΠ΅ΠΉΠ·Π΅ΡΡΠΎΠ½, P. Π ΠΈΠ²Π΅ΡΡ, Π. Π¨ΡΠ°ΠΉΠ½ (2007). ΠΠ»Π³ΠΎΡΠΈΡΠΌΡ: ΠΏΠΎΡΡΡΠΎΠ΅Π½ΠΈΠ΅ ΠΈ Π°Π½Π°Π»ΠΈΠ·. ΠΠΈΠ»ΡΡΠΌΠ΅.
- Huang, Π’., Yang, G. and Tang, G. (1979). A fast two-dimensional medianfiltering algorithm., 27, 13−18.75 (2007). Optimizing parallel reductiion in cuda. .
- Adams, R. and Bischof, L. (1994). Seeded region growing. IEEE Transactions on Pattern Analysis and Machine Intelligence, 16(6), 641−647.
- D.G. Mitchell and M.S. Cohen. MRI Principles. Saunders, Philadelphia, 2001
- Baronti, S., Casini, A., Lotti, F., Favaro, L. and Roberto, V. (1990). Variable pyramid structures for image segmentation., 49(3), 346−356.
- Baker, S., Scharstein, D., Lewis, J. P., Roth, S. and Black, M. J. et al. (2007). A database and evaluation methodology for optical flow. In ICCV, pages 1−8.