Помощь в написании студенческих работ
Антистрессовый сервис

Процессы переноса заряда в пленках гексацианоферрата индия (III)

ДиссертацияПомощь в написанииУзнать стоимостьмоей работы

К числу интересных редокс-активных соединений, используемых для модификации поверхности электродов, относятся полиядерные гексацианоферратные комплексы ряда переходных металлов. Для пленок гексацианоферратов переходных металлов относительно давно установлен смешанный ионно-электронный тип проводимости. Однако факторы, управляющие такими потоками, или в общем смысле — механизмы переноса заряда… Читать ещё >

Процессы переноса заряда в пленках гексацианоферрата индия (III) (реферат, курсовая, диплом, контрольная)

Содержание

  • СПИСОК СОКРАЩЕНИЙ
  • 1. ОБЗОР ЛИТЕРАТУРЫ
    • 1. 1. основы теоретического описания процессов переноса заряда в редокс-полимерах
      • 1. 1. 1. Общая характеристика модифицированных электродов
      • 1. 1. 2. Модельные представления о процессе переноса заряда в пленках редокс-полимеров
      • 1. 1. 3. Электрохимические методы исследования процессов переноса заряда в пленках редокс-полимеров
  • I. Циклическая вольтамперометрия
  • II. Хроноамперометрия
  • III. Спектроскопия фарадеевского импеданса
    • 1. 2. Электрохимические свойства пленок гексацианоферратов переходных металлов
      • 1. 2. 1. Синтез электроактивных пленок гексацианоферратов металлов
      • 1. 2. 2. Состав и структура пленок на основе гексацианоферратов переходных металлов
      • 1. 2. 3. Процессы переноса заряда в пленках гексацианоферратов переходных металлов

Исследование электродных процессов в пленках электроактивных органических и неорганических соединений, осажденных на поверхности электрода, получило широкое развитие в последние десятилетия, став самостоятельным и интенсивно развивающимся направлением современной электрохимии. Интерес к изучению электродов с иммобилизированными на их поверхности проводящими полимерными соединениями обусловлен широкими возможностями их реализации в различных прикладных аспектах в качестве электродных материалов для создания новых источников энергии, электрохромных покрытий, для электрокатализа важных реакций, электроаналитических определений и для защиты от коррозии. Совокупность отличительных характеристик модифицированных электродов может обеспечить реализацию устройств, отличающихся рядом полезных свойств, таких как миниатюрность и селективность действий. Наряду с практической важностью исследования, такого рода системы представляют самостоятельный научный интерес для исследования механизмов переноса заряда в редокс-активных материалах.

К числу интересных редокс-активных соединений, используемых для модификации поверхности электродов, относятся полиядерные гексацианоферратные комплексы ряда переходных металлов. Для пленок гексацианоферратов переходных металлов относительно давно установлен смешанный ионно-электронный тип проводимости. Однако факторы, управляющие такими потоками, или в общем смысле — механизмы переноса заряда в системах со смешанной ионно-электронной проводимостью во многом остаются неясными.- несмотря на достаточно продолжительную историю соответствующих исследований. До настоящего времени исследования в этой области характеризуются преимущественно поиском новых систем, изучением структуры и стехиометрии их электродных реакций, исследованием возможностей практического использования. Гораздо меньшее число работ посвящено изучению количественных характеристик протекающих в пленках процессов, теоретическому и экспериментальному исследованию закономерностей транспорта заряда в этих системах. Между тем, редокс-полимерные пленки и, в частности, пленки гексацианоферратов переходных металлов в силу достаточно хорошей воспроизводимости их структурных и электрохимических свойств наиболее удобны для детального анализа явлений переноса в системах со смешанной ионно-электронной проводимостью. Варьирование состава таких систем, условий их синтеза позволяет целенаправленно управлять электроактивными свойствами пленок гексацианоферратов металлов. Это преимущество дает возможность рассматривать данную группу соединений как удобные модельные объекты для изучения влияния структурно-химических факторов на процессы переноса заряда в редокс-полимерах.

1. ОБЗОР ЛИТЕРАТУРЫ.

выводы.

В результате проведенного исследования электрохимических свойств пленок гексацианоферрата индия (III) в растворах нитратов лития, натрия, калия и аммония сделаны следующие выводы:

1. Установлено, что электрохимическое поведение пленок гексацианоферрата индия (III) зависит от концентрации фонового электролита в растворах для синтеза. Различие в электрохимическом поведении обусловлено формированием разных по составу пленок гексацианоферрата индия (III). Электрохимический синтез в условиях высокой концентрации ионов калия приводит к преимущественному формированию однородной по составу пленки гексацианоферрата индия (тип 1), в то время как понижение концентрации ионов калия приводит к образованию смешанных по составу пленок ГИ (тип 2).

2. Найдено, что наблюдаемые в высокочастотной области спектра фарадеевского импеданса пленок гексацианоферрата индия (III) параметры полуокружности зависят от природы материала электрода (платина и стеклоуглерод) и характера обработки его поверхности. Это свидетельствует о том, что в этой области частот основной вклад в импеданс пленок связан с переносом заряда на границе раздела электрод/пленка.

3. Установлен диффузионно-миграционный контроль переноса заряда в толще пленки гексацианоферрата индия (III). Из данных хроноамперометрических и импедансных измерений проведена оценка эффективных коэффициентов диффузии переносчиков заряда (электронов и катионов) в пленках гексацианоферрата индия (III) для растворов разных фоновых электролитов.

4. Обнаружен эффект связывания катионов фонового электролита с отрицательно заряженными фрагментами пленки гексацианоферрата индия (III).

5. Проведено экспериментальное моделирование неоднородных по составу бислойных пленок с помощью последовательного синтеза гексацианоферратов железа (III) и никеля (II). На хроноамперограммах таких модельных пленок выявляются отклики, сходные с таковыми для пленки гексацианоферрата индия (III) типа 2, что говорит о правильности сделанных нами предположений о формировании сложных по составу пленок гексацианоферрата индия (III).

Показать весь текст

Список литературы

  1. Skotheim Т.A., Elsenbaumer R.L., Reynolds J.R. Handbook of Conducting Polymers. // Marcel Dekker. New York. 1998. 1075 p.
  2. Abruna H.D. Coordination Chemistry in Two Dimensions: Chemically Modified Electrodes. // Coord. Chem. Rev. 1988. V. 86. pp. 135−89.
  3. Chidsey C.E.D., Murray R.W. Redox Capacity and Direct Current Electron Conductivity in Electroactive Materials. // J. Phys. Chem. 1986. V. 90. No. 7. pp. 1479−1484.
  4. Mathias M.F., Haas O. An Alternating Current Impedance Model Including Migration and Redox Site Interactions at Polymer-Modified Electrodes. // J. Phys. Chem. 1992. V. 96. No. 7. pp. 3174−3182.
  5. В.В., Рубашкин А. А., Воротынцев М. А. Равновесные свойства системы: электрод, модифицированный электроактивной полимерной пленкой / раствор электролита. // Электрохимия. 1997. Т. 33. № 8. с. 945 955.
  6. Murray R. W. Chemically Modified Electrodes. // Electroanalytical Chemistry (Ed. A.J.Bard) V.13, Marcel Dekker, N.Y., 1984. pp. 20−201.
  7. A.M. Полярографические методы в аналитической химии. Пер. с англ., М.: Химия, 1983. 328 с.
  8. В.В., Тихомирова А. В., Кондратьев В. В., Рубашкин А. А. Хроноамперометрический анализ процессов переноса заряда в пленках Берлинской лазури. // Электрохимия. 1999. Т. 35. № 10. с. 1184−1192.
  9. Johnson B.W., Read D.C., Christensen P., Hamnett A., Armstrong R.D. Impedance Characteristics of Conducting Polythiophene Films. // J. Electroanai. Chem. 1994. V. 364. pp. 103−109.
  10. Albery W.J., Elliott C.M., Mount A.R. A Transmission Line Model for Modified Electrodes and Thin Layer Cells. // J. Electroanai. Chem. 1990. V. 288. pp. 15−34.
  11. Albery W.J., Mount A.R. Application of a Transmission Line Model to1. pedance Studies on a Poly (vinylferrocene)-modified Electrode. // J. Chem. Soc. Faraday Trans. 1993. V. 89. pp. 327−331.
  12. Gao Z., Zhou X., Wang G., Li P., Zhao Z. Potassium Ion-Selective Electrode Based on a Cobalt (II)-Hexacyanoferrate Film-Modified Electrode. // Anal. Chim. Acta. 1991. У. 244. pp. 39−48.
  13. Liu S-Q., Xu J-J., Chen H-J. Electrochemical Behaviour of Nanosized Prussian Blue Self- Assembled on Au Electrode Surface. // Electrochem. Com. 2002. V. 4. pp. 421−425.
  14. Lin R.-J., Toshima N. Spectroelectrochemistry of New Prussian Blue Films Prepared by a Cast Method. // Bull. Chem. Soc. Jpn. 1991. Vol. 64. No. 1. pp. 136−148.
  15. Dostal A., Hermes M., Scholz F. The Formation of Bilayered Nickel-Iron, Cadmium-Iron and Cadmium-Silver Hexacyanoferrates by an Electrochemically Driven Insertion-Substitution Mechanism. // J. Electroanal. Chem. 1996. V. 415. pp. 133−141.
  16. Kulesza P.J., Faszynska M. Indium (III)-Hexacyanoferrate (III, II) as an Inorganic Material Analogous to Redox-Polymers for Modification of Electrode Surfaces. // Electrochim. Acta. 1989. V. 34. pp. 1749−1753.
  17. Humphrey B.D., Sinha S., Bocarsly A.B. Diffuse Reflectance Spectroelectrochemistry as a Probe of the Chemically Derivatized Electrode Interface. The Derivatized Nickel Electrode. // J. Phys. Chem. 1984. V. 88. No. 4. pp. 736−743.
  18. Siperko L.M., Kuwana T. Electrochemical and Spectroscopic Studies of Metal Hexacyanometallate Films. I. Cupric Hexacyanoferrate. // J. Electrochem. Soc. 1983. V. 130. No. 2. pp. 396−402.
  19. Gao Z., Wang G., Li P., Zhao Z. Electrochemical and Spectroscopic Studies of Cobalt-Hexacyanoferrate Film Modified Electrodes. // Electrochim. Acta.1991. V. 36. No. l.pp. 147−152.
  20. Moon S.B., Xidis A., Neff V.D. Kinetics of Electrolysis of Transition-Metal Hexacyanide Films and Reduction of Silver Ferricyanide. // J. Phys. Chem. 1993. V. 97. No. 8. pp. 1634−1638.
  21. M.M., Иванов В. Д. Модифицирование платинового и графитового электродов пленками гексацианоферрата кобальта. // Электрохимия. 2000. Т. 36. № 5. с. 564−572.
  22. Wang P., Wang X., Ren С., Zhu G. Surface Renewable Graphite Organosilicate Composite Electrode Containing Indium (III) Hexacyanoferrate (II/III). // J. Mater. Chem. 2000. V. 10. pp. 2863−2867.
  23. Wang P., Yuan Y., Zhu G. Surface Renewable Cobalt (II) Hexacyanoferrate -Modified Graphite Organosilicate Electrode and its Electrocatalytic Oxidation of Thiosulfate. // Fresenius’Journal of Anal. Chem. 2001. V. 369. № 2. pp. 153−158.
  24. Hermes M., Scholz F. The Electrochemical Determination of Ammonium Based on the Selective Inhibition of the Low-Spine Iron (II)/(III) System of Prussian Blue. // J. Solid State Electrochem. 1997. V. 1. pp. 215−220.
  25. Keggin J.F., Miles F.D. Structures and Formulas of the Prussian Blues and Related Complexes. // Nature. 1936. V. 137. p. 577.
  26. Buser H.J., Schwarzenbach D., Petter W., Ludi A. The Crystal Structure of Prussian Blue: Fe4Fe (CN)6.3 xH20. // Inorg. Chem. 1977. V. 16. No. 11. pp. 2704−2710.
  27. Christens en P. A., Hamnett A., Higgins S.J. A Study of Electrochemically Grown Prussian Blue Using Fourier- Transform Infra -Red Spectroscopy. // J. Chem. Soc. Dalton Trans. 1990. pp. 2233−2238.
  28. Hamnett A., Christensen P.A., Higgins S.J. Analysis of Electrogenerated Films by Ellipsometry and Infrared Spectrometry. // Analyst. 1994. V. 119. No. 5. pp. 735−747.
  29. С.Я., Пономарева Н. Б., Голубок О. А., Малев В. В., Кондратьев В. В. СТМ-визуализация поверхности электрохимически осажденных пленок берлинской лазури. // Электрохимия. 1998. Т. 34. № I.e. 90−96.
  30. Sugimura Н., Shimo N., Kitamura N., Masuhara H, Itaya K. Topographical Imaging of Prussian Blue Surfaces by Direct-Mode Scanning Electrochemical Microscopy. // J. Electroanal. Chem. 1993. V. 346. pp. 147−160.
  31. И.В., Сейфер Г. Б., Харитонов Ю. Я., Кузнецов В. Г., Корольков А. П. Химия ферродианидов. М., «Наука», 1971, 320 с.
  32. Sato О., Einaga Y., Iyoda Т., Fujishima A., Hashimoto К. Cation-Driven Electron Transfer Involving a Spin Transition at Room Temperature in a Cobalt Iron Cyanide Thin Film. //J. Phys. Chem. B. 1997. V. 101. No. 20. pp. 3903−5.
  33. E.B., Денисова T.A., Максимова Л. Г., Зубков В. Г., Большакова Г. А., Суриков В. Т., Соколова Л. Л. Молекулярная сорбция на ферроцианидах олова (II). // Ж. Неорганической Химии. 1997. Т. 42. № 3. с. 365−370.
  34. М.В., Денисова Т. А., Зубков В. Г., Максимова Л. Г. Электронное строение и химическая связь в гексацианоферрате свинца. // Ж. Структурной Химии. 2000. Т. 41. № 6. с. 1123−1131.
  35. Dong S., Jin Z. Electrochemistry of Indium Hexacyanoferrate Film Modified Electrodes. // Electrochim. Acta. 1989. V. 34. № 7. pp. 963−968.
  36. Cataldi T.R.I., De Benedetto G.E., Bianchini A. X-ray Photoelectron Spectroscopic Investigation and Electrochemistry of Polynuclear Indium (III) Hexacyanoferrate Films. // J. Electroanal. Chem. 1998. V. 448. No. 1. pp. 111−117.
  37. В.В., Кондратьев В. В., Левин О. В., Малев В. В. Циклическая вольтамперометрия и импеданс электродов, модифицированных пленками гексацианоферрата индия (III). // Электрохимия. 2002. Т. 38. № 11. с. 1319−1326.
  38. М.М., Смирнов Ю. Е., Микли В., Малев В. В. Структурное исследование пленок гексацианоферрата кобальта, синтезированных из комплексного электролита, // Электрохимия. 2001. Т. 37. № 9. с. 10 651 075.
  39. NeffV.D. Electrochemical Oxidation and Reduction of Thin Films of Prussian Blue. // J. Electrochem. Soc. 1978. V. 125. No. 6. pp. 886−7.
  40. Ellis D., Eckhoff M., Neff V.D. Electrochromism in the Mixed-Valence
  41. Hexacyanides. 1. Voltammetric and Spectral Studies of the Oxidation and Reduction of Thin Films of Prussian Blue. // J. Phys. Chem. 1981. V. 85. No. 9. pp. 1225−1231.
  42. Fuller M. W., Le Broeq M.F., Leslie E., Wilson I.R. the Fotolysis of Aqueous Solutions of Potassium Hexacyanoferrate (III). // Aust. J. Chem. 1986. V. 39. p. 1411−1419.
  43. Oh /., Lee H., Yang H., Kwak J. Ion and Water Transport in Prussian Blue Film Investigated with Electrochemical Quartz Crystal Microbalance. // Electrochem. Com. 2001. V. 3. pp. 274−280.
  44. В.В., Тихомирова А. В., Яковлева С. В., Малев В. В. Влияние природы катиона фонового электролита на параметры переноса заряда в пленках берлинской лазури. // Электрохимия. 2000. Т. 36. № 5. с. 587 598.
  45. Xidis A., Neff V.D. On the Electronic Conduction in Dry Thin Films of Prussia Blue, Prussian Yellow and Everitt’s Salt. // J. Electrochem. Soc. 1991. V. 138. № 12. pp. 3637−3642.
  46. Feldman B.J., Murray R. W. Electron Diffusion in Wet and Dry Prussian Blue Films on Interdigitated Array Electrodes. // Inorg. Chem. 1987. V. 26. pp. 1702−1708.
  47. Carpenter M.K., Conell R.S. A Single Film Electrochromic Device. // J. Electrochem. Soc. 1990. V. 137. pp. 2464−2467.
  48. Plichon V., Besbes S. Electrochemical Iinvestigations of K±free Prussian Blue Films. // Electrochim. Acta. 1992. V. 37. pp. 501−507.
  49. Crumbliss A.L., Lugg P. S., Morosoff N. Alkali Metal Cation Effects in Prussian Blue Surface Modified Electrode. // Inorg. Chem. 1984. V. 84. pp. 4701−4708.
  50. Hamnett A., Higgins S.J., Mortimer R.S., Rosseinsky D.R. A Study of the Electrodeposition and Subsequent Potential Cycling of Prussian Blue Films Using Ellipsometry. HZ. Electroanai. Chem. 1988. V. 255. pp. 315−324.
  51. Garcia-Jareno J.J., Navarro-Laboulais J., Vicente F. Charge Transport in Prussian Blue Films Deposited on ITO Electrodes. // Electrochim. Acta. 1996. V. 41. №. 6. pp. 835−841.
  52. Garcia-Jareno J.J., Navarro-Laboulais J., Roig A.F., Scholl PL, Vicente F. Impedance Analysis of Prussian Blue Films Deposited on ITO Electrodes. // Electrochim. Acta. 1995. V. 40. № 9. pp. 1113−1119.
  53. Viehbeck A., DeBerry D. W. Electrochemistry of Prussian Blue Films on Metal and Semiconductor Electrodes. // J. Electrochem. Soc. 1985. V. 132. No. 6. pp. 1369−1375.
  54. Garcia-Jareno J.J., Navarro-Laboulais J'., Sanmatias A., Visente F. The Correlation Between Electrochemical Impedance Spectra and Voltammograms of PB Films in Aqueous NH4C1 and CsCl. // Electrochim. Acta. 1998. V. 43. № 9. pp. 1045−1052.
  55. Bharathi S., Joseph J., Jeyakumar D., Prabhakara Rao G. Modified Electrodes with Mixed Metal Hexacyanoferrates. // J. Electroanai. Chem. 1991. V. 319. pp. 341−345.
  56. Bacskai J'., Martinusz K., Czirok E., Inzelt G., Kulesza P., Malik M.A. Polynuclear Nickel Hexacyanoferrates: Monitoring of Film Growth and Hydrated Counter-Cation Flux/Storage During Redox Reactions. // J. Electroanai. Chem. 1995. V. 385. pp. 241−248.
  57. Cataldi T.R.I., Guascito R., Salvi A.M. XPS Study and Electrochemical Behaviour of the Nickel Hexacyanoferrate Film Electrode upon Treatment in Alkaline Solutions. // J. Electroanai. Chem. 1996. V. 417. pp. 83−88.
  58. Chen S.-M. Preparetion, Characterization, and Electrocatalytic Oxidation
  59. Properties of Iron, Cobalt, Nickel, and Indium Hexacyanoferrate. // J. Electroanal. Chem. 2002. V. 521. pp. 29−52.
  60. Cataldi T.R.I., De Benedetto G.E. On the Ability of ruthenium to Stabilize Polynuclear Hexacyanometallate Film Electrodes. // J. Elecrtroanal. Chem. 1998. V. 458. pp. 149−154.
  61. Kulesza P.J., Jedral Т., Galus Z. A New Development in Polynuclear Inorganic Films: Silver (I)/"Crosslinked" Nickel (II)-Hexacyanoferrate (III, II) Microstructures. // Electrochim. Acta. 1989. V. 34. № 6. pp. 851−853.
  62. Kulesza P.J., Malik M.A., Zamponi S., Berrettoni M., Marassi R. Electrolyte Cation Dependent Colouring, Electrochromism and Thermochromism of Cobalt (II) Hexacyanoferrate (III, II). II J. Electroanal. Chem. 1995. V. 397. No. ½. P. 287.
  63. Kulesza P.J., Malik M.A., Miecznikowski K., Wolkiewicz A., Zamponi S., Berrettoni M., Marassi R. Countercation-Sensitive Electrochromism of Cobalt Hexacyanoferrate Films. // J. Electrochem. Soc. 1996. V. 143. No. 1. pp. LI0−2.
  64. Gao Z., Bobaska J., Ivaska A. Electrochemical Impedance Spectroscopy of Cobalt-Hexacyanoferrate Film Modified Electrode. // Electrochim. Acta. 1993. V. 38. №. 2/3. pp. 379−385.
  65. Joseph J., Gomathi H., Rao G.P. Electrodes Modified with Cobalt Hexacyanoferrate. // J. Electroanal. Chem. Interfacial Electrochem. 1991. V. 304. № 1−2. pp. 263−269.
  66. Chen S.-M. Characterization and Electrocatalytic Properties of Cobalt Hexacyanoferrate Films. // Electrochim. Acta. 1998. V. 43. № 21−22. pp. 3359−3369.
  67. Kahlert H., Scholz F. Graphite Silver (I) Hexacyanoferrate (III) Composite Electrode for Determination of Iron (III) Ions. II Electroanal. 1997. V. 9. № 12. pp. 922−925.
  68. Jin Z., Dong S. Spectroelectrochemical Studies of Indium Hexacyanoferrate Film Modified Electrodes. // Electrochim. Acta. 1990. V. 35. № 6. pp. 10 571 060.
  69. Csahok E., Vieil E., Inzelt G. Probe Beam Deflection Study of the Transport of Ions During the Redox Reaction of Indium Hexacyanoferrate Films. // J. Electroanal. Chem. 1998. V. 457. pp. 251−255.
  70. Liu S., Wang Y., Zhu G., DongS. Study of Cupric Hexacyanoferrate Modified Platinum Electrodes Using Probe Beam Deflection and Electrochemical Quartz Crystal Microbalance Techniques. // Electrochim. Acta. 1997. V. 42. № 12. pp. 1795−1800.
  71. Vorotyntsev M.A. Impedance of Thin Films with Two Mobile Charge Carriers. Interfacial Exchange of Both Species with Adjacent Media. Effect of the Double Layer Charges. II Electrochim. Acta. 2002. V. 47. pp. 2071−2079.
  72. Bisquert J. Analysis of the Kinetics of Ion Intercalation. Ion Trapping Approach to Solid State Relaxation Processes. // Electrochim. Acta. 2002. V. 47. pp. 2435−2449.
  73. Bisquert J., Vikhrenko V.S. Analysis of the Kinetics of Ion Intercalation. Two State Model Describing the Coupling of Solid State Ion Diffusion and Ion Binding Processes. // Electrochim. Acta. 2002. V. 47. pp. 2435−2449.
  74. Itaya K, Uchida L, Neff V.D. Electrochemistry of Polynuclear Transition Metal Cyanides: Prussian Blue and its Analogues. // Acc. Chem. Res. 1986. V. 19. No. 6. pp. 162−8.
  75. Cui X., Hong L., Lin X. Electrochemical Preparation, Characterization and Application Electrodes Modified with Hybrid Hexacyanoferrates of Copperdjiiu V’UL/ai I. i/ o. v^ilCiiA. /, vv 1*. V. ^J^t' i x ^ x .
  76. ДобошД. Электрохимические константы. M.: Мир, 1980. 27−36 с.
  77. В.И. Равновесие и кинетика электродных реакций комплексов металлов. JL: Химия. 1985. 76 с.
  78. Goldstein E.L., Van de Mark M.R. Electrode Cleaning and Anion Effects on ks for K3Fe (CN)6 Couple. // Electrochim. Acta. l982.V.27.pp.l079−1085.
  79. Bindra P., Gerischer H., Peter L.M. The Dependence of the Rate of the Fe (CN)63"/4″ Couple on Ionic Strength in Concentrated Solutions. // J. Electro anal. Chem. 1974. V.57.pp.435−438.
  80. Kuta J., Yeager E. The Influence of Cation on the Electrode Kinetics of Ferricyanide-Ferrocyanide Sysytem on the Rotating Gold Electrode.// J. Electroanal. Chem. 1975. V.59.pp.110−112.
  81. Vorotyntsev M.A., Vieil E., Heinze J. Charging Process in Polypyrrole Films: Effects of Ion Association. // J. Electroanal. Chem. 1998. V. 450. pp. 121 141.
  82. MM. Автореферат на соискание ученой степени кандидата химических наук, Санкт-Петербург, СПбГУ, 2000.
  83. Schwudke D., Stofier R., Scholz F. Solid-Sate Electrochemical, X-Ray and Spectroscopic Characterization of Substitutional Solid Solution of Iron-Copper Hexacyanoferrates. // Electrochem. Commun. 2002. V. 2. pp. 301 306.
  84. Kasem K.K., Hazen R., Spaulding R.M. Electrochemical Studies on Substituted Iron-Hexacyanoiron (III) Bi-Layered Thin Films at Glassy Carbon Electrode/Electrolyte Interface. // Interface Science. 2002. V. 10. pp. 261−269.
Заполнить форму текущей работой