Π ΠΎΠ»Ρ Π±Π΅Π»ΠΊΠ° ΡΠ΅ΠΏΠ»ΠΎΠ²ΠΎΠ³ΠΎ ΡΠΎΠΊΠ° 70 ΠΠΠ Π² Π°ΠΊΡΠΈΠ²Π°ΡΠΈΠΈ Π½Π°ΡΡΡΠ°Π»ΡΠ½ΡΡ ΠΊΠΈΠ»Π»Π΅ΡΠΎΠ²
ΠΠΈΡΡΠ΅ΡΡΠ°ΡΠΈΡ
ΠΠ°ΡΡΡΠ°Π»ΡΠ½ΡΠ΅ ΠΊΠΈΠ»Π»Π΅ΡΡ (NK-ΠΊΠ»Π΅ΡΠΊΠΈ) — ΡΡΠΎ ΠΎΡΠΎΠ±Π°Ρ ΠΏΠΎΠΏΡΠ»ΡΡΠΈΡ Π»ΠΈΠΌΡΠΎΡΠΈΡΠΎΠ² ΡΠΈΡΡΠ΅ΠΌΡ Π²ΡΠΎΠΆΠ΄Π΅Π½Π½ΠΎΠ³ΠΎ ΠΈΠΌΠΌΡΠ½ΠΈΡΠ΅ΡΠ°, ΠΈΠ³ΡΠ°ΡΡΠ°Ρ Π²Π°ΠΆΠ½ΡΡ ΡΠΎΠ»Ρ Π² ΠΏΡΠΎΡΠΈΠ²ΠΎΠΎΠΏΡΡ ΠΎΠ»Π΅Π²ΠΎΠΌ ΠΈ ΠΏΡΠΎΡΠΈΠ²ΠΎΠ²ΠΈΡΡΡΠ½ΠΎΠΌ ΠΈΠΌΠΌΡΠ½ΠΈΡΠ΅ΡΠ΅. NK-ΠΊΠ»Π΅ΡΠΊΠΈ ΡΠΏΠΎΡΠΎΠ±Π½Ρ ΠΎΠΊΠ°Π·ΡΠ²Π°ΡΡ ΠΏΡΡΠΌΠΎΠ΅ ΡΠΈΡΠΎΠ»ΠΈΡΠΈΡΠ΅ΡΠΊΠΎΠ΅ Π΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ Π½Π° ΠΎΠΏΡΡ ΠΎΠ»Π΅Π²ΡΠ΅ ΠΈ Π²ΠΈΡΡΡ-ΠΈΠ½ΡΠΈΡΠΈΡΠΎΠ²Π°Π½Π½ΡΠ΅ ΠΊΠ»Π΅ΡΠΊΠΈ ΠΈ ΠΏΡΠΈΠ½ΠΈΠΌΠ°ΡΡ ΡΡΠ°ΡΡΠΈΠ΅ Π² ΡΠ΅Π³ΡΠ»ΡΡΠΈΠΈ ΠΈΠΌΠΌΡΠ½Π½ΠΎΠ³ΠΎ ΠΎΡΠ²Π΅ΡΠ°. ΠΠ²Π΅ ΡΡΠ½ΠΊΡΠΈΠΎΠ½Π°Π»ΡΠ½ΠΎ ΡΠ°Π·Π»ΠΈΡΠ½ΡΠ΅ ΡΡΠ±ΠΏΠΎΠΏΡΠ»ΡΡΠΈΠΈ NK-ΠΊΠ»Π΅ΡΠΎΠΊ, CD56dimCD16… Π§ΠΈΡΠ°ΡΡ Π΅ΡΡ >
Π‘ΠΏΠΈΡΠΎΠΊ Π»ΠΈΡΠ΅ΡΠ°ΡΡΡΡ
- Multhoff G., Pfister Π., Gehrmann M. et al. A 14-mer Hsp70 peptide stimulates natural killer cell activity. Cell Stress Chaperones, 2001, 6 (4): 337−344.
- Gross C., Hansch D., Gastpar R., Multhoff G. Interaction of heat shock protein. 70 peptide with NK cells involves the NK receptor CD94. Biol Chem, 2003, 384:1560−1573.
- Multhoff G. Activation of natural killer cells by heat shock protein 70. Int J Hyperthermia, 2002, 18 (6): 576−585.
- Kustanova G.A., Murashev A.N., Karpov V.L. et al. Exogenous heat shock protein 70 mediates sepsis manifestations and decreases the mortality rate in rats. Cell Stress Chaperones, 2006, 11 (3): 276−286.
- Yurinskaya M.M., Vinokurov M.G., Zatsepina O.G. et al. Exogenous heat shock proteins (HSP70) significantly inhibit endotoxin-induced activation of human neutrophils. Dokl Biol Sci, 2009, 426: 298−301.
- Dokladny K, Lobb R., Wharton W. et al. LPS-induced cytokine levels are repressed by elevated expression of HSP70 in rats: possible role of NF-kappaB. Cell Stress Chaperones, 2009 Jun 24. Epub ahead of print.
- Trinchieri G. Biology of Natural Killer Cells. Adv Immunol, 1989, 47: 187−376.
- Π ΠΎΠΉΡ Π., ΠΡΠΎΡΡΠΎΡΡ ΠΠΆ., ΠΠ΅ΠΉΠ» Π. ΠΠΌΠΌΡΠ½ΠΎΠ»ΠΎΠ³ΠΈΡ. ΠΠ΅Ρ. Ρ Π°Π½Π³Π». Π.: ΠΠΈΡ. 2000.
- Kim S., Iizuka Π., Aguila H.L. et al. In vivo natural killer cell activities revealed by natural killer cell-deficient mice. PNAS, 2000, 97 (6): 2731−2736.
- Varma Π’.Π., Lin C.Y., Toliver-Kinsky Π’.Π., Sherwood E.R. Endotoxin-induced gamma interferon production: contributing cell types and key regulatory factors. Clin Diagn Lab Immunol, 2002, 9 (3): 530−543.
- Nguyen K.B., Biron C.A. Synergism for cytokine-mediated disease during concurrent endotoxin and viral challenges: roles for NK and T cell IFN-gamma production. J Immunol, 1999, 162 (9): 5238−5246.
- Π‘Π΅ΠΏΠΈΠ°ΡΠ²ΠΈΠ»ΠΈ Π .Π., ΠΠ°Π»ΠΌΠ°ΡΠΎΠ²Π° Π. Π. Π€ΠΈΠ·ΠΈΠΎΠ»ΠΎΠ³ΠΈΡ Π΅ΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΡΡ ΠΊΠΈΠ»Π»Π΅ΡΠΎΠ². -Π.: ΠΠ΅Π΄ΠΈΡΠΈΠ½Π°-ΠΠ΄ΠΎΡΠΎΠ²ΡΠ΅, 2005.
- O’Connor G.M., Hart O.M. and Gardiner C.M. Putting the natural killer cells in its place. Immunology, 2005, 117: 1−10.
- Fehniger T.A., Cooper M.A., Caliguri M.A. IL-2 and IL-15: immunotherapy for cancer. Cytokine Growth Factor Rev, 2002, 13: 169−183.
- Cooper M.A. Fehniger T.A., Fuchs A. et al. NK cell and DC interactions. Trends Immunol, 2004, 25 (1): 47−52.
- McVicar D.W., Burshtyn D.N. Intracellular signaling by the KIR and Ly49. Science, 2001, 75: 1−9.
- Blery M., Olcese L., Vivier E. Early signaling via inhibitory and activating receptors. Hum Immunol, 2000, 61: 51−64.
- Vales-Gomes M., Reyburn H., Strominger J. Interaction between the human NK receptors and their ligands. Crit Rev Immunol, 2000, 20: 223−244.
- Lopez-Botet M., Bellon Π’., Llano M. et al. Paired inhibitory and triggering NK cell receptors for HLA class I molecules. Hum Immunol, 2000, 61: 7−17.
- Bryceson Y.T., March M.E., Ljunggren H.G., Long E.O. Synergy among receptors on resting NK cells for the activation of natural cytotoxicity and cytokine secretion. Blood, 2006, 107: 159−165.
- Vales-Gomes M. Reyburn H., Strominger J. Molecular analyses of the interactions between human NK receptors and their HLA ligands. Hum Immunol, 2000,61:28−38.
- Walzer Π’., Dalod M., Robbins S.H. et al. Natural-killer cells and dendritic cells: «L"union fait la force». Blood, 2005, 106: 2252−2258.
- Diefenbach A., Jensen E.R., Jamieson A.M., Raulet D.H. Rael and H60 ligands of the NKG2D receptor stimulate tumour immunity. Nature, 2001, 413 (6852): 165−71.
- Gonzalez S., Groh V., Spies T. Immunobiology of human NKG2D and its ligands. CTMI, 2006, 298: 121−138.
- Bahram S., Inoko H., Shiina Π’., Radosavljevic M. MIC and other NKG2D ligands: from none to many. Curr Opin Immunol, 2005, 17: 505−509.
- Nedvetzki S., Sowinski S., Eagle R.A. et al. Reciprocal regulation of human natural killer cells and macrophages associated with distinct immune synapses. Blood, 2007, 109 (9): 3776−3785.
- Eagle R.A., Jafferji I., Barrow A.D. Beyond stressed self: evidence for NKG2D ligand expression on healthy cells. Curr Immunol Rev, 2009, 5 (1): 22−34.
- Lee N., Llano M., Carretero M., et al. HLA-E is a major ligand for the natural killer inhibitory receptor CD94/NKG2A. PNAS, 1998, 95 (9): 5199−5204.
- ΠΠ΅Π»ΠΊΠΈ ΠΈΠΌΠΌΡΠ½Π½ΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΡ. ΠΠΎΠ΄ ΡΠ΅Π΄. Π. Π’. ΠΠ²Π°Π½ΠΎΠ²Π°. Π: ΠΠΎΠ»ΠΈΠ³ΡΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΠΉ ΡΡΠ°ΡΡΠΎΠΊ ΠΠΠ₯, 1997, Ρ. 79−95.
- Marmor M.D., Julius Π. Role for lipid rafts in regulating interleukin-2 receptor signaling. Blood, 2001, 98 (5): 1489−1496.
- Rao R., Logan Π., Forrest K. et al. Lipid rafts in cytokine signaling. Cytokine Growth Factor Rev, 2004, 15: 103−110.
- Gesbert F., Delespine-Carmagnat M., Bertoglio J. Recent advances in the understanding of IL-2 signal transduction. J Clin Immunol, 1998, 18 (5), 307−320.
- Ortmann R., Cheng Π’., Visconti R. et al. Janus kinases and signal transducers and activators of transcription: their role in cytokine signaling, development and immunoregulation. Arthritis Res, 2000, 2: 16−32.
- Cacalano N., Johnston J. IL-2 signaling and inherited immunodeficiency. Am J Hum Genet, 1999, 65: 287−293.
- Scott M.J., Godshall C.J., and Cheadle W.G. Jaks, STATs, cytokines and sepsis. Clin, and Diagn. Lab Immunol, 2002, 9 (6): 1153−1159.
- Kisseleva Π’., Bhattacharya S., Braunstein J., Shindler C.W. Signaling through the JAK/STAT pathway, recent advances and future challenges. Gene, 2002, 285: 1−24.
- Bacon C.M., Petricoin III E.F., Ortaldo J.R. et al. Interleukin 12 induces tyrosine phosphorylation and activation of STAT4 in human lymphocytes. PNAS, 1995,92: 7307−7311.
- Hodge D.L., Martines A., Julias J.G. et al. Regulation of nuclear Gamma Interferon gene expression by IL-12 and IL-2 represents a novel form of pΠΎsttranscriptional control. Mol Cell Biol, 2002, 22 (6): 1742−1753.
- Zhang X., Mosser D.M. Macrophage activation by endogenous danger signals. J Pathol, 2008, 214 (2): 161−178.
- Gerosa F., Baldani-Guerra Π., Nisii C. et al. Reciprocal activating interaction between natural killer cells and dendritic cells. J Exp Med, 2002, 195 (3): 327−333.
- Sawaki J., Tsutsui H., Hayashi N. et al. Type 1 cytokine/chemokine production by mouse NK cells following activation of their TLR/MyD88-mediated pathways. Int Immunol, 2007, 19: 311−320.
- Luque I., Reyburn H., Strominger J. Expression of the CD80 and CD86 molecules enhances cytotoxicity by human natural killer cells. Hum Immunol, 2000,61: 721−728.
- Muzio M., Bosisio D., Polentarutti N. et al. Differential expression and regulation of Toll-like receptors (TLR) in human leukocytes: selective expression of TLR3 in dendritic cells. J Immunol, 2000, 164: 5998−6004.
- Tu Z., Bozorgzadeh A., Pierce R.H. et al. TLR-dependent cross talk between human Kupffer cells and NK cells. J Exp Med, 2008, 205 (1): 233−244.
- Goodier M.R., Londei M. Lipopolysaccharide stimulates the proliferation of human CD56+CD3″ NK cells: a regulatory role of monocytes and IL-10. J Immunol, 2000, 165: 139−147
- Hartl U. Molecular chaperones in protein folding. Nature, 1996, 381: 571−80.
- Asea A., Rehli M., Kabingu E. et al. Novel signal transduction pathway utilized by extracellular HSP70. J Biol Chem, 2002, 277 (17): 15 028−15 034.
- Schmitt E., Gehrmann M., Brunet M. et al. Intracellular and extracellular functions of heat shock proteins: repercussions in cancer therapy. J Leukoc Biol, 2007,81: 15−25.
- Benjamin I.J., McMillan D.R. Stress (heat shock) proteins: molecular chaperones in cardiovascular biology and disease. Circ Res, 1998, 83 (2): 117−132.
- Basu S., Binder J.R., Suto R. et al. Necrotic but not apoptotic cell death releases heat shock proteins, which deliver a partial maturation signal to dendritic cells and activate the NF-ΠΊΠ pathway. Int. Immunol, 2000, 12 (11): 1539−1546.
- Walsh R.C., Koukoulas I. Garnham A. et al. Exercise increases serum Hsp72 in humans. Cell Stress Chaperones, 2001, 6 (4): 386−393.
- Fleshner M., Campisi J., Amiri L., Diamond D.M. Cat exposure induces both intra- and extracellular Hsp72: The role of adrenal hormones. Psychoneuroendocrinol, 2004, 29: 1142−1152.
- Asea A. Heat shock proteins and Toll-like receptors. S. Bauer, G. Hartmann (eds.), Toll-like receptors and innate immunity. Handbook of Experimental Pharmacology.
- Asea A. Initiation of the immune response by extracellular Hsp72: chaperokine activity of Hsp72. Curr Immunol Rev, 2006, 2 (3): 209−215.
- Srivastava P. Roles of heat-shock proteins in innate and adaptive immunity. Nature reviews. Immunology, 2002, 2: 185−194.
- Robert J. Evolution of heat shock protein and immunity. Dev Comp Immunol, 2003, 27: 449−464.
- Tsan M.-F., Gao B. Cytokine function of heat shock proteins. Am J Physiol Cell Physiol, 2004, 286: 739−744.
- Matzinger P. Tolerance, danger and the extended family. Annu Rev Immunol, 1994, 12:991−1045.
- Beg A.A. Endogenous ligands of Toll-like receptors: implications for regulating inflammatory and immune responces. Trends Immunol, 2002, 23 (11): 509−512.
- Matzinger P. The danger model: a renewed sense of self. Science, 2002, 296: 301−305.
- Zylicz M., King F.W., Wawrzynow A. Hsp70 interactions with the p53 tumour suppressor protein. EMBO J, 2001, 20 (17): 4634−4638.
- Arnold-Schild D., Hanau D., Spehner D. et al. Receptor-mediated endocytosis of heat shock proteins by professional antigen-presenting cells. J Immunol, 1999, 162:3757−3760.
- Basu S., Binger R.J. Ramalingam Π’., Srivastava P.K. CD91 is a common receptor for heat shock proteins gp96, hsp90, hsp70 and calreticulin. Immunity, 2001, 14: 303−313.
- Creswell P., Ackerman A.L., Giodini A. et al. Mechanisms of MHC class I-restricted antigen processing and cross-presentation. Immunol rev, 2005, 207: 145 157.
- Rock K.L., Shen L. Cross-presentation: underlying mechanisms and role in immune surveillance. Immunol rev, 2005, 207: 166−183.
- Brode S., Macary P.A. Cross-presentation: dendritic cells and macrophages bite off more than they can chew! Immunology, 2004, 112: 345−351.
- Wakehama D.E., Ybe J.A., Brodsky F.M., Hwang P.K. Molecular structures of proteins involved in vesicle coat formation. Traffic, 2000, 1: 393−398.
- ΠΠ°ΡΠ³ΡΠ»ΠΈΡ Π.Π., ΠΡΠΆΠΎΠ²Π° Π. Π. ΠΠ²ΠΎΠΉΠ½Π°Ρ ΡΠΎΠ»Ρ ΡΠ°ΠΏΠ΅ΡΠΎΠ½ΠΎΠ² Π² ΠΎΡΠ²Π΅ΡΠ΅ ΠΊΠ»Π΅ΡΠΊΠΈ ΠΈ Π²ΡΠ΅Π³ΠΎ ΠΎΡΠ³Π°Π½ΠΈΠ·ΠΌΠ° Π½Π° ΡΡΡΠ΅ΡΡ. Π¦ΠΈΡΠΎΠ»ΠΎΠ³ΠΈΡ, 2009, 51: 219−227.
- Becker Π’., Hartl F.U., Wieland F. CD40, an extracellular receptor for binding and uptake of Hsp70-peptide complexes. J Cell Biol, 2002, 158 (7): 1277−1285.
- Johnson J.D. and Fleshner M. Releasing signals, secretory pathways, and immune function of endogenous extracellular heat shock protein 72. J Leukoc Biol, 2006, 79: 425−434.
- Broadley S.A., Hartl F.U. The role of molecular chaperones in human misfolding diseases. FEBS Lett, 2009, 583: 2647−2653.
- ΠΠ²Π΄ΠΎΠ½ΠΈΠ½ Π.Π., ΠΠ΅Π΄Π²Π΅Π΄Π΅Π²Π° Π. Π. ΠΠ½Π΅ΠΊΠ»Π΅ΡΠΎΡΠ½ΡΠΉ Π±Π΅Π»ΠΎΠΊ ΡΠ΅ΠΏΠ»ΠΎΠ²ΠΎΠ³ΠΎ ΡΠΎΠΊΠ° 70 ΠΈ Π΅Π³ΠΎ ΡΡΠ½ΠΊΡΠΈΠΈ. Π¦ΠΈΡΠΎΠ»ΠΎΠ³ΠΈΡ, 2009, 51 (2): 130−136.
- Osterloh A., Breloer Π. Heat shock proteins: linking danger and protein recognition. Med Microbiol Immunol, 2008, 197: 1−8.
- Campisi J., Leem Π’.Π., Fleshner M. Stress-induced extracellular Hsp72 is a functionally significant danger signal to the immune system. Cell Stress Chaperones, 2003, 8 (3): 272−286.
- Thery C., Regnault A., Garin J. et al. Molecular characterization of dendritic cell-derived exosomes: selective accumulation of the heat shock protein hsc73. J Cell Biol, 1999, 147 (3): 599−610.
- Mambula S.S., Stevenson M.A., Ogawa K., Calderwood S.K. Mechanisms of Hsp70 secretion: crossing membranes without a leader. Methods, 2007, 43: 168 175.
- Mambula S.S., Calderwood S.K. Heat shock protein 70 is secreted from tumor cells by a nonclassical pathway involving lysosomal endosomes. J Immunol, 2006, 177: 7849−7857.
- Khashayar Farsad. Exosomes: novel organelles implicated in immunomodulation and apoptosis. Yale J Biol Med, 2002, 75: 95−101.
- Alder G.M., Austen B.M., Bashford C.L. et al. Heat shock proteins induce pores in membranes. Biosci Rep, 1990, 10 (6): 509−18.
- Arispe N., Doh M., Simakova O. et al. Hsc70 and Hsp70 interact with phosphatidylserine on the surface of PC 12 cells resulting in a decrease of viability. FASEBJ., 2004, 18: 1636−1645.
- Vega V.L., Rodrigues-Silva M., Frey T. et al. Hsp70 translocates into the plasma membrane after stress and is released into the extracellular environment in a membrane-associated form that activates macrophages. J Immunol, 2008, 180: 4299−4307.
- Casey D.G., Lysaght J., James T. et al. Heat shock protein derived from a non-autologous tumour can be used as an anti-tumour vaccine. Immunology, 2003, 110: 105−111.
- Goldstein M.G., Li Z. Heat-shock proteins in infection-mediated inflammation-induced tumorigenesis. J Hematol Oncol, 2009, 2: 5.
- Valentinas Π., Capobianco A., Esposito F. et al. Human recombinant heat shock protein 70 affects the maturation pathways of dendritic cells in vitro and has an in vivo adjuvant activity. J Leukoc Biol, 2008, 84: 199−206.
- Asea A. Chaperokine-induced signal transduction pathways. Exerc Immunol Rev, 2003, 9: 25−33.
- Medzhitov R., Preston-Hurlburt P., Janeway C.A. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity, Nature, 1997, 388: 394−397.
- Palsson-Mcdermott E.M., O’Neill L.A. Signal transduction by the lipopolysaccharide receptor, Toll-like receptor-4. Immunology, 2004, 113: 153 162.
- Takeda K., Akira S. Roles of Toll-like receptors in innare immune responces. Genes Cells. 2001, 6: 733−742.
- Raetz C.R., Whitfield C. Lipopolysaccharide endotoxins. Annu Rev Biochem, 2002, 71: 635−700.
- Ferwerda Π., McCall M.B., Verheijen K. et al. Functional consequences of Toll-like receptor 4 polymorphisms. Mol Med, 2008, 14 (5−6): 346−352.
- Janeway C.A. How the immune system works to protect the host from infection: a personal view. PNAS, 2001, 98 (13): 7461−7468.
- Bangen J.M. Schade F.U., Flohe S.B. Diverse regulatory activity of human heat shock proteins 60 and 70 on endotoxin-induced inflammation. Biochem and Biophys Res Commun, 2007, 359 (3): 709−715
- Bausinger H., Lipsker D., Ziylan U. et al. Endotoxin-free heat-shock protein 70 fails to induce APC activation. Eur J Immunol, 2002, 32 (12): 3708−3713.
- Triantafilou K., Triantafilou M., Ladha S. et al. Fluorescence recovery after photobleaching reveals that LPS rapidly transfers from CD 14 to hsp70 and hsp90 on the cell membrane. J Cell Sci, 2001, 114 (13): 2535−2545.
- Wallin R.P., Lundqvist A., More S.H. et al. Heat-shock proteins as activators of the innate immune system. Trends Immunol, 2002, 23 (3): 130−135.
- Chen H., Wu Y., Zhang Y. et al. Hsp70 inhibits lipopolysaccharide-induced NF-kB activation by interacting with TRAF6 and inhibiting its ubiquitinilation. FEBS Lett, 2006, 580: 3145−3152.
- Davies E.L., Bacelar M.M., Marshall M.J. et al. Heat shock proteins form part of a danger cascade in response to lipopolysaccharide and GroEL. Clin Exp Immunol, 2006, 145: 183−189.
- Aneja R., Odoms K., Dunsmore K. et al. Extracellular heat shock protein-70 induces endotoxin tolerance in THP-1 cells. J Immunol, 2006, 177: 7184−7192.
- Multhoff G., Mizzen L., Winchester C. C et al. Heat shock protein 70 (Hsp70) stimulates proliferation and cytolytic activity of natural killer cells. Exp Hematol, 1999, 27: 1627−1636.
- ΠΠΈΠΌΡΠΎΡΠΈΡΡ. ΠΠ΅ΡΠΎΠ΄Ρ. ΠΠΎΠ΄ ΡΠ΅Π΄. ΠΠΆ. ΠΠ»Π°ΡΡΠ°. ΠΠ΅Ρ. Ρ Π°Π½Π³Π». Π.: ΠΠΈΡ, 1990.
- Nekrasov Π. N. Entropy of protein sequences: an integral approach. J Biomol Struct Dyn, 2002, 20: 87−92.
- Nekrasov A. N. Analysis of the information structure of protein sequences: a new method for analyzing the domain organization of proteins. J Biomol Struct Dyn, 2004,21: 615−623.
- Robertson M.J., Cochran K.J., Cameron C. Characterization of a cell line, NKL, derived from an aggressive human natural killer cell leukemia. Exp Hematol, 1996, 24 (3): 406−415.
- Gong J.H., Maki G., Klingemann H.G. Characterization of a human cell line (NK-92) with phenotypical and functional characteristics of activated natural killer cells. Leukemia, 1994: 8 (4): 652−658.
- Guzhova I.V., Amholdt A.C.V., Darieva Z.A. et al. Effects of exogenous stress protein 70 on the functional properties of human promonocytes through binding to cell surface and internalization. Cell Stress Chaperones, 1998, 3 (1): 6777.
- Alekseeva L., Nekrasov A., Marchenko A. et al. Cryptic B-cell epitope identification through informational analysis of protein sequenses. Vaccine, 2007, 25: 2688−2697.
- Nekrasov A.N., Radchenko V.V., Shuvaeva T.M. et al. The novel approach to the protein design: active truncated forms of human 1-CYS peroxiredoxin. J Biomol Struct Dyn. 2007, 24 (5): 455−462.
- Takai Y., Kaibuchi K., Tsuda Π’., Hoshijima M. Role of protein kinase Π‘ in transmembrane signaling. J Cell Biochem, 1985, 29(2): 143−55.
- Radons J., Multhoff G. Immunostimulatory functions of membrane-bound and exported heat shock protein 70. Exerc Immunol Rev, 2005, 11: 17−33.
- Gross C., Schmidt-Wolf I.G., Nagaraj S. Heat shock protein 70-reactivity is associated with increased cell surface density of CD94/CD56 on primary natural killer cells. Cell Stress Chaperones, 2003, 8 (4): 348−360.
- Wang Y., Kelly C.G., Singh M. et al. Stimulation of Thl-polarizing cytokines, C-C chemokines, maturation of dendritic cells, and adjuvant function by the peptide binding fragment of heat shock protein 70. J Immunol, 2002, 169: 2422−2429.
- Wang Y., Whittall Π’., McGowan E. et al. Identification of stimulating and inhibitory epitopes within the heat shock protein 70 molecule that modulate cytokine production and maturation of dendritic cells. J Immunol, 2005, 174: 3306−3316.
- Qiao Y., Liu Π., Li Z. Activation of NK cells by extracellular heat shock protein 70 through induction of NKG2D ligands on dendritic cells. Cancer Immun, 2008, 8: 12.
- Eisner L., Fliigge P.F., Lozano J. et al. The endogenous danger signals HSP70 and MICA cooperate in the activation of cytotoxic effector functions of NK cells. J Cell Mol Med, 2009, Feb 4 Epub ahead of print.
- Erbse A., Mayer M.P., Bukau B. Mechanism of substrate recognition by Hsp70 chaperones. Biochem Soc Trans, 2004, 32 (4): 617−621.
- Donawho Π‘., Kripke M.L. Immunogenicity and cross-reactivity of syngeneic murine melanomas. Cancer Commun, 1990- 2 (3): 101−107.
- Croll A.D., Siggins K.W., Morris A.G., Pither J.M. The induction of IFN-gamma production and mRNAs of interleukin 2 and IFN-gamma by phorbol esters and calcium ionophore. Biochem Biophys Res Commun, 1987, 146 (3): 927−33.