Радионуклидно-морфологическая диагностика термогидролиза галогенида металла на примере хлорида алюминия
Диссертация
В 2000 г. в лаборатории гетерогенных процессов химического факультета МГУ им. М. В. Ломоносова, в которой выполнялась данная работа, при выполнении плановых исследований гетерогенных процессов было обнаружено, что при нагревании до 190−230°С частично гидролизованного хлорида алюминия наблюдается самопроизвольное формирование сложно текстурированных частиц из оксида алюминия, которые представляют… Читать ещё >
Список литературы
- Kato Е., Hirano М., Kobayashi Y. et al. Preparation of monodisperse zirconia particles by thermal hydrolysis in highly concentrated solutions // J.Am.Ceram.Soc. 1996. V. 79. N4. P. 972−976.
- Eto N., Matsui K. Manufacture of zirconia fine powders. Патент Японии JP 2 000 143 242 (2000).
- Hirano M., Watanabe S., Kato E. et al. Fabrication, electrical conductivity and mechanical properties of Sc2C>3-doped tetragonal zirconia ceramics // Solid State Ionics. 1998. V. 111. N 1−2. P. 161−169.
- Garbassi F., Balducci L., Ungarelli R. Sol-gel preparation and characterization of spherical Zr02-Si02 particles //J.Non-Cryst.Solids. 1998. V. 223. N 3. P. 190−199.
- Choi J.Y., Kim C.H., Kim D.K. Hydrothermal synthesis of spherical perovskite oxide powders using spherical gel powders // J.Am.Ceram.Soc. 1998. V. 81. N 5. P. 1353−1356.
- Ramanathan S., Roy S.K., Bhat R. et al. Formation of yttria (10 mol %) doped zirconia coating on Zircaloy substrate by sol-gel technique and its characterization //
- Trans.Indian Ceram.Soc. 1997. V. 55. N 5. P. 119−123.
- Kojima Т., Minami J. Method and agent for treatment of wastewater containing hypophosphorous acid ion and phosphorous acid ion by thermal hydrolysis to recover and reuse water // Патент Японии JP 10 085 769 (1998).
- Kato E., Nagai A., Hirano M., Kobayashi Y. Growth of whiskered Zr02 crystals by thermal decomposition of zirconium oxide sulfate pseudo-crystals // J.Mater.Sci. 1997. V. 32. N7. P. 1789−1794.
- Saruhan-Brings В., Mayer L., Schneider H. Method for coating oxidic fiber materials with aluminates, and the high-temperature-resistant coated fibrous materials obtained and their use. Патент Германии DE 19 729 830 (1999).
- Sharipov M.Sh., Sabitov A.M., Bakeev T.B., Sarsekeeva L.A. Thermal hydrolysis of aluminium and iron sulfates // Izv.Minist.Nauki Akad. Nauk Resp. Kaz., Ser.Khim. 1996. N5. P. 59−63.
- Narita E., Matsuno Y., Takahashi S., Umetsu Y. Synthesis of highly crystalline Al-Li layered double hydroxide by homogeneous precipitation method // Nippon Kagaku Kaishi. 2001. N 5. P. 273−279.
- Ryon R., Ah J.S. Manufacture of mesoporous molecular sieve substance having enhanced hydrothermal stability. Патент Японии JP 11 011 936 (1999).
- Park H.K., Kim D.K., Kim Ch.H. Effect of solvent on titania particle formation and morphology in thermal hydrolysis of TiCL* // J.Am.Ceram.Soc. 1997. V. 80. N 3. P. 743−749.
- Raskopf G., Gaunand A. Kinetics of titanium dioxide precipitation from titanyl sulphate solutions by thermal hydrolysis // Recent Progres en Genie des Procedes. 1999. V. 16. N65. P. 99−106.
- Sharipov M.Sh., Sabitov A.M., Sarsekeeva L.A. Thermal hydrolysis in iron (III) sulfate solution // Izv.Minist.Nauki Akad. Nauk Resp.Kaz., Ser.Khim. 1996. N 4. P. 25−32.
- Dai Zh., Chen A., Yang Y. et al. Photocatalyst of ТЮ2 ultrafine powders prepared by thennohydrolysis of TiOSC>4 solution // Zhongguo Fenti Jishu. 2001. V. 7. N2. P. 14−17.
- Mockel H., Giersig M., Willig F. Formation of uniform size anatase nanocrystals from bis (ammonium lactato) titanium dihydroxide by thermohydrolysis // J. Mater.Chem. 1999. V. 9. N 12. P. 3051−3056.
- Lee M.-J., Jce M.-J., Kim H. et al. Studies on preparation of ТЮ2 powder with high purity and fine particles // Han’guk Seramik Hakhoechi. 2000. V. 37. N 10. P. 933−937.
- Hirano M., Inagaki M. Preparation of monodispersed cerium (IV) oxide particles by thermal hydrolysis: influence of the presence of urea and Gd doping on their morphology and growth // J. Mater. Chem. 2000. V. 10. N 2. P. 473−477.
- Svegl F., Orel B. Bukovec P. et al. Spectroelectrochemical and structural properties of electrochromic Co (Al)-oxide and Co (Al, Si)-oxide films prepared by the sol-gel route // J.Electroanal.Chem. 1996. V. 418. N 1−2. P. 53−66.
- Двернякова A.A., Шимановская В. В., Сикорская Е. К. и др. Получение высокочистого анатаза при термогидролизе раствора тетрахлорида титана в присутствии зерен затравки анатаза. Патент СССР SU 1 398 321 (1996).
- Герасимова Л.Г., Охрименко Р. Ф., Жданова Н. М. Поведение титана (IV) в сульфатных растворах // Лакокрас. матер, их примен. 1998. № 10. С. 13−15.
- Hirano M., Fukuda Yu., Iwata H. et al. Preparation and spherical agglomeration of crystalline cerium (IV) oxide nanoparticles by thermal hydrolysis // J.Am.Ceram.Soc. 2000. V. 83. N 5. P. 1287−1289.
- Rigneau P., Bellon K., Zahreddine I., Stuerga D. Microwave flash-synthesis of iron oxides nanoparticles // Eur.Phys.J.: Appl.Phys. 1999. V. 7. N 1. P. 41−43.
- Delestre A., Delteil J., Dirand D. et al. System for heat transfer in a reactor for the conversion of UF6 to uranium oxide. Патент Европы ЕР 1 024 114 (2000).
- Koyasu S., Watanabe A. Manufacture of composite metal oxide for catalyst. Патент Японии JP 2 000 143 244 (2000).
- Lindackers D., Janzen C., Rellinghaus B. et al. Synthesis of AI2O3 and Sn02 particles by oxidation of metal-organic precursors in premixed Н2/О2/АГ low-pressure flames // Nanostruct.Mater. 1999. V. 10. N 8. P. 1247−1270.
- Oka Sh., Saneto N. Manufacture of metal oxide from metal halide by hydrolysis. Патент Японии JP 2 000 007 305 (2000).
- Cuer J.P., Elston J., Teichner S.Sj. Contribution a Г etude de precedes et des proprietes des solides finement divises elabores dans un reacteur a flamme. Etude de la formation de l’alumine // Bull. Soc. Chem. France. 1959. N1. P. 81−88.
- Fujiwara S., Komine N., Jinbo H. Method for manufacturing vitreous silica. Патент Европы ЕР 908 418 (1999).
- Xie Yo., Xia В., Duan L., Tang Yo. Preparation of surface-doped and weakly agglomerated nanometer zirconia. Патент Китая CN 1 259 488 (2000).
- С.Б.Баронов, С. С. Бердоносов, Ю. В. Баронова, И. В. Мелихов. Радиохимическая диагностика термогидролиза трихлорида алюминия // Радиохимия, 2004, принята к публикации.
- Гольданский В.И. Физическая химия позитрона и позитрония. М.: Наука. 1968. 174 с.
- Roth С., Koebrich R. Production of hollow spheres // J. Aerosol. Sci. 1988. V. 19. N 7. P. 939.
- Hoover M.D., Eidson A.F., Mewhinney J.A. et al. Generation and characterization of respirable beryllium oxide aerosols for toxicity studies // Aerosol Sci. Technol. 1988. V. 9. N 1. P. 83−92.
- Koenig H.P., Koch W., Neder L., Graves U. Chemical and physical characterization of metal grinding dusts // J. Aerosol. Sci. 1987. V. 18. N 6. P. 671.
- Leong K.H. Morphological control of particles generated from the evaporation of solution droplets: theoretical considerations // J. Aerosol. Sci. 1987. V. 18. N 5. P. 511.
- Бердоносов С.С., Горелик А. Г. Сублимация в современных химических технологиях: проблемы и достижения // Химическая промышленность. 1993. № 8. С. 47.
- Бердоносов С.С., Копылова И. А., Мелихов И. В. и др. Феномен образования полых микросфер при испарении капель растворов, диспергированных ультразвуком //Неорганические материалы. 1993. Т. 29, № 6. С. 813.
- Бердоносов С.С., Бузин О. И., Мелихов И. В., Богданов А. Г. Топохимический маршрут синтеза текстур в форме полых сфер // Вестн. Моск. ун-та. Серия 2. Химия. 1998. Т. 39. № 2. С. 134.
- Park S.B. Characterization of inorganic particles by atomic force microscopy // Hwahak Konghak. 1999. V. 37. N 6. P. 904.
- Eckert K.-L., Mathey M., Mayer J., et al. Preparation and in vivo testing of porous alumina ceramics for cell carrier applications // Biomaterials. 2000. V. 21. N l.P. 63.
- Бердоносов С.С., Кабанов И. А., Бердоносова Д. Г., Мелихов И. В. Образование нитевидных частиц альфа-железа при восстановлении водородом гидроксохлорида железа (III) // Неорганические материалы. 1999. Т. 35. № 1. С. 61.
- Солодовник В.Д. Микрокапсулирование. М.: Химия. 216 с.
- Plummer J.F. Microspheres (in Encycl. Polym. Sci. Eng. 1987. V. 9. P. 788) Wiley: N.Y.
- Bell P., Brazas R., Ganem D., Maul G.G. Hepatitis delta virus replication generates complexes of large hepatitis delta antigen and antigenomic RNA that affiliate with and alter nuclear domain 10 // J. Virol., 2000. V. 74. N 11. P. 5329.
- Li X., Kato K., Li T. et al. Recombinant hepatitis E Capsid protein self-assembles into a dual-domain T = 1 particle presenting native virus epitopes // Virology. 1999. V. 265. N l.P. 35.
- Сидоров JI.H., Макеев Ю. А. Химия фуллеренов // Соросовский образовательный журнал. 2000. № 5. С. 21.
- Юровская М.А. Методы получения производных фуллерена Сбо Н Соросовский образовательный журнал. 2000. № 5. С. 26.
- Kawahashi N., Matijevic Е. Preparation of hollow spherical particles of yttrium compounds // Colloid Interface Sci. 1991. V. 143. N 1. P. 103.
- Gadalla A.M., Yu H.F. Thermal behavior of Ni (II) nitrate hydrate and its aerosols // J. Term. Anal. 1991. V. 37. N 2. P. 319.
- Liu T.Q., Sakurai O., Mizutani N., Kato M. Preparation of spherical fine ZnO particles by the spray pyrolysis method using ultrasonic atomization techniques // J. Mater. Sci. 1986. V. 21. N 10. P. 3698.
- David A.L. Boron nitride powders formed by aerosol decomposition of poly (borazinylamine) solutions // J. Amer. Ceram. Soc. 1991. V. 74. N 12. P. 3126.
- Yano T. Preparation of SiC particulate dispersed А120з fine powders by pyrolysis method//Bull. Res. Lab. Nucl. React. 1999. V. 23. P. 94.
- Milosevic O.B., Mirkovic M.K., Uskokovic D.P. Characteristics and formation mechanism of ВаТЮз powders prepared by twin-fluid and ultrasonic spray-pyrolysis methods // J. Amer. Ceram. Soc. 1996. V. 79. N 6. P. 1720.
- Adachi K., Masui Т. Патент Японии 11 349 324. 1999.
- Deptula A., Chmielewski A.G., Wood Т.Е. Sol-gel ceramic beads and bubbles a historical perspective, modern fabrication and cost analysis // AdV. Sci. Technol. (Faenza, Italy), 16 (Ceramics: Getting into the 2000's, Pt.D.), 1999. P. 771.
- Enomae Т., Tsujino K. Preparation of spherical calcium carbonate particles and their application to papermaking // Kami Parupu Kenkyu Happyokai Koen Yoshishu, 66th, 1999. P. 142.
- Nishida Sh., Hsu Y.H., Yammada К. Патент Японии 2 000 226 453. 2000.
- Hotta N., Kimura I., Tsukuno A. et al. Synthesis of aluminum nitride by nitridation of floating aluminum particles in nitrogen // Yogyo Kyokaishi. 1987. V. 95. N2. P. 274.
- Minagawa M., Minagawa О. Патент Японии 11 062 117. 1999.
- Matsushita N., Tsuchiya N., Narftsuka K. Hydrothennal synthesis of yttria precursor by the urea method // Shigen to Sozai. 1999. V. 115. N 3. P. 177.
- Minagawa M., Minagawa О. Патент Японии 2 000 240 223. 2000.
- Tani Т., Takatori К., Kamiya N. Патент США 6 004 525. 1999.
- Liu G., Wilcox D.S. Hollow ceramic mullite microspheres obtained by water extraction of water emulsion // Mater. Res. Soc. SymP. Proc. 1994. V. 346. P. 201.
- Lenggoro I.W., Hata Т., Iskandar F. et al. An experimental and modeling investigation of particle production by spray pyrolysis using a laminar flow aerosol reactor//Mater. Res. 2000. V. 15. N 3. P. 733.
- Sakurai O., Mizutani N., Kato M. Microstructure of strontium titanate spherical fine particles prepared by ultrasonic spray pyrolysis of metal alkoxide // Yogyo Kyokaishi. 1986. V. 94. N 8. P. 813.
- Kobayashi J., Itaya Y., Matsuda H., Hasatani M. Drying behaviour of ZrOCl2 solution droplet in Zr02 fine particles production by spray pyrolysis // Bull. Pol. Acad. Sci.: Tech. Sci. 2000. V. 48. N 3. P. 383.
- Vallet-Regi V., Ragel V., Romain J. et al. Texture evolution of Sn02 synthesized by pyrolysis of an aerosol // J. Mater. Res. 1993. V. 8. N 1. P. 138−144.
- Lawton S.A., Theby E.A. Synthesis of vanadium oxide powders by evaporative decomposition of solutions //J. Amer. Ceram. Soc. 1995. V. 78. N 1. P. 104.
- Nadler J.H., Sanders Т. H., Cochran J.K. Aluminium hollow sphere processing // Mater. Sci Forum (Pt. 1. Aluminium Alloys: Their Physical and Mechanical Properties). P. 495.
- Milosevic O., Kakazey N.G., Tomila T.V., Ristic M.M. Morphology and microstructure rearrangement inside ZnO particles processed by the spray pyrolysis method// Sci. Sintering. 2000, 32 (Spec. Issue). P. 159.
- Nagashima K., Wada V., Kato A. Preparation of fine Ni particles by the spray-pyrolysis technique and their film forming properties in the thick film method // J. Mater. Res. 1990. V. 5. N 12. P. 2828.
- Kato A., Hirata Y. Sintering behaviour of beta-type alumina powders prepared by spray-pyrolysis technique and electrical conductivity of sintered body // Kyushu UniV. 1985. V. 45. N4. P. 251.
- Sebillotte-Arnaud L. Gelified, rich in solvent cosmetic and/or dermatological composition containing hollow spheres. Европейский патент 692 241. 1996.
- Kumar К., Petriovich A., Williams C., Van der Sande J.B. Chemically homogeneous fine-grained Mn-Zn ferrites by spray drying // J. Appl .Phys. 1989. V. 95. N5. P. 2014.
- Zhao X., Zheng В., Gu H. et al. Preparation of phase homogeneous Mn-Zn ferrite powder by spray pyrolysis // J. Mater. Res. 1999. V. 14. N 7. P. 3073−3082.
- Gadalla A.M., Yu H.F. Thermal decomposition of Fe (III) nitrate and its aerosol // J. Mater. Res. 1990. V. 5. N 6. P. 1233.
- Kaczmarek W.A., Calca A., Ninham B.W. Preparation of fine, hollow, spherical BaFei20i9 powders//Mater. Chem. Phys. 1992. V. 32. N 1. P. 43.
- Che S., Takada K., Mizutani N. Formation of spherical dense nickel particles by pyrolyzing the aerosol of an ammine complex solution in nitrogen atmosphere // J. Mater. Sci. Lett. 1998. V. 17. N 14. P. 1227.
- Che S.-L., Takada K., Takashima K. et al. Preparation of dense spherical Ni particles and hollow NiO particles by spray pyrolysis // J. Mater. Sci. 1999. V. 34. N 6. P. 1313−1318.
- Matsuda H., Kumazawa K., Miyoshi K. et al. Preparation of cobalt oxide fine particles from various aqueous solutions by spray pyrolysis // Kagaku Kogaku Ronbunshu. 1990. V. 16. N 2. P. 286.
- Roman J., Fabian J.C., Labeau M. et al. Synthesis, structure, and gas sensitivity properties of Sn02-Cu0 mixture phase obtained by pyrolysis of an aerosol // J. Mater. Res. 1997. V. 12. N2. P. 560.
- Majumdar D., Shefelbine T.A., Kodas T.T., Glicksman H.D. Copper (I) oxide powder generation by spray pyrolysis // J. Mater. Res. 1996. V. 11. N 11. P. 2861.
- Kang Y.C., Park S.B. Preparation of zinc oxide-dispersed silver particles by spray pyrolysis of colloidal solution // Mater. Lett. 1999. V. 40. N 3. P. 129.
- Nonaka К., Hayashi S., Okada K. et al. Characterization and control of phase segregation in the fine particles of ВаТЮз and SrTi03 synthesized by the spray pyrolysis method//J. Mater. Res. 1991. V. 6. N 8. P. 1750.
- Yaparpalvi R., Loyalka S.K., Tompson R.V. Aerosol synthesis of spherical PbO particles//J. Mater. Sci. Lett. 1994. V. 13. N 10. P. 749.
- Vallet-Regi M., Pena J., Martinez A., Gonzalez-Calbet J.M. Influence of the synthetic method on the Ti02 texture // Solid State Ionics. 1993. V. 63−64, N 1−4. P. 201.
- Mando R. Патент Японии 9 001 938. 1997.
- Pluym T.C., Lyons S.W., Powell Q.H. et al. Palladium metal and palladium oxide particle production by spray pyrolysis // Mater. Res. Bull. 1993. V. 28. N 4. P. 369 376.
- Carnes C.L., Klabunde K.J. Synthesis, isolation, and chemical reactivity studies of nanocrystalline zinc oxide // Langmuir. 2000. V. 16. P. 3764.
- Бердоносов С.С., Кабанов И. А., Бердоносова Д. Г. и др. Образование полых твердых микрочастиц при взаимодействии газа с веществом, содержащимся в переносимых воздушным потоком микрокаплях раствора // Коллоидный журнал. 2001. Т. 63. № 1. С. 4−8.
- Tani Т., Takatori К., Kamura М. Патент Японии 2 000 203 830. 2000.
- Bigi A., Boanini Е., Borghi М. et al. Synthesis and hydrolysis of octacalcium phosphate: effect of sodium polyacrylate // J. Inorg. Biochem. 1999. V. 75. N 2. P. 145−151.
- Yu H.-F., Gadalla A.M. Preparation of NiFe20.4 powder by spray pyrolysis of nitrate aerosols in NH3 // J. Mater. Res. 1996. V. 11. N 3. P. 663.
- Liang M.-H., Hu Ch.-T., Chang H.-Yi, Lin I.-N. Ва (гпш№>2/з)Оз ceramics synthesized by spray pyrolysis teclmique // Ferroelectrics. 1999. V. 231. N 1−4. P. 831.
- Бердоносов C.C. и др. Патент РФ № 2 051 010. 1993.
- Nozawa М., Motomiya К., Tohji К., Matsuoka I. Novel method for preparation of hollow spheres. I. Calcium carbonate hollow spheres with calcium carbonate binder //Nippon Kagaku Kaishi. 1993. N 4. P. 309.
- Nozawa M., Yamaoka Sh., Tohji K., Matsuoka I. Novel preparation method of hollow spheres. III. Quartz hollow spheres with Ni (OH)2 binder // Nippon Kagaku Kaishi. 1995. N5. P. 343.
- Hamada R., Peng Y., Masui T. Preparation of cerium oxide hollow particles // Adachi Ginya. Kidorui. 1999. V. 34. P. 120.
- Wilcox D.L., Liu J.G., Look J.L. Патент США 5 492 870. 1996.
- Yang X., Chaki Т.К. Hollow lead zirconate titanate microspheres prepared by sol-gel/emulsion technique // Mater. Sci. Eng., V. В 39. N 2. P. 123.
- Wada K., Wilson M., Kakuto Y., Wada S. Synthesis and characterization of a hollow spherical form of monolayer alluminosilicate // Claus Clay Miner. 1988. V. 36. P. 11.
- Yamaguchi Т., Nakai Т., Takeda K. Synthesis process and structure of Al/Mg-modified silica gel particles // Shigen to Sozai. V. 116. N 1. P. 56.
- Okada K., Ishino H., Takei T. et al. Thermal stability of porous AbCb-SiCb ceramics prepared by spray pyrolysis method. Process. Fabr. Adv. Mater. VI, Proc. Symp., 6th (1998). 1997. N 1. P. 1003.
- Schulle W., Rudolph K., Borner F.-D. Application of vibrational densification for the manufacture of ceramic high-temperature filter materials. WerkstofFwoche '98. В. VII: SymP.9, Keram.: SymP.14, Simul. Keram., 1998. S. 705.
- Раков Э.Г. Методы получения углеродных нанотрубок // Успехи химии. 2000. Т. 69, № 1.С. 41−59.
- Тарасов Б.П., Гольдшлегер Н. Ф., Моравский А. П. Водородсодержащие углеродные нанотрубки // Успехи химии. 2001. Т. 70, № 2. С. 149−167.
- Ebbesen T.W. Carbon nanotubes // Ann. Rev. Mater. 1994. V. 24. P. 235−264.
- Ebbesen T.W. Carbon nanotubes // Phys. Today. 1996. V. 49, N 6. P. 26−32.
- Елецкий A.B. Углеродные нанотрубки // Успехи физ. наук. 1997. Т. 167, № 9. С. 945−972.
- Лозовик Ю.Е., Попов A.M. Образование и рост углеродных наноструктур -фуллеренов, наночастиц, нанотрубок и конусов // Успехи физ. наук. 1997. Т. 167, № 7. С. 751−774.
- Thostenson Е.Т., Ren Z.F., Chou T.W. Advances in the science and technology of carbon nanotubes and their composites: a review // Composites Sci. Technol. 2001. V. 61. P. 1899−1912.
- А.Л.Ивановский. Квантовая химия в материаловедении. Нано-тубулярные формы вещества. Изд-во УрО РАН, Екатеринбург, 1999
- Rubio A., Corkill J.L., Cohen M.L. Theory of graphitic boron nitride nanotubes // Phys. Rev. B. 1994. V. 49. P. 5081−5084.
- Blase X., Rubio A., Louie S.G., Cohen M.L. Stability and band gap constancy of boron-nitride nanotubes // Europhys. Lett. 1994. V. 28. P. 335−340.
- Miyamoto Y., Rubio A., Louie S.G. Electronic properties of tubule forms of hexagonal BC3 //Phys. Rev. B. 1994. V. 50. P. 18 360−18 366.
- Chopra N.G., Luyken R.J. Boron nitride nanotubes // Science. 1995. V. 269, N 5226. P. 966−967.
- Loiseau A., Willaime F., Demoncy N. et al. Boron Nitride Nanotubes with Reduced Numbers of Layers Synthesized by Arc Discharge // Phys. Rev. Lett. 1996. V. 76. P. 4737−4740.
- Loiseau A., Willaime F., Demoncy N., et al. Boron nitride nanotubes // Carbon.1998. V. 36, N5−6. P. 743−752.
- Saito Y., Square M.M., Pentagon, and Heptagon Rings at BN Nanotube Tips // J. Phys. Chem. A. 1999. V. 103, N 10. P. 1291−1293.
- Saito Y., Maida M., Matsumoto T. Structures of Boron Nitride Nanotubes with Single-Layer and MultilayersProduced by Arc Discharge // Jpn. J. Appl. Phvs. 1.1999. V. 38, N 1A. P. 159−163.
- Cumings J., Zettl A. Mass-production of boron nitride double-wall nanotubes and nanococoons // Chem. Phys. Lett. 2000. V. 316, N 3−4. P. 211−216.
- Science of Fullerenes and Carbon Nanotubes. (Eds M.S.Dresselhaus, G. Dresselhaus, P. Eklund). Academic Press, San-Diego, CA, 1996
- Carbon Nanotubes. Preparation and Properties. (Ed. T.W.Ebbessen). CRC Press, New York, 1996
- Saito R., Dresselhaus G., Dresselhaus M.S. Physical Properties of Carbon Nanotubes. Imperial College Press, London, 1998
- The Science and Technology of Carbon Nanotubes. (Eds K. Tanaka, T. Yamabe, K. Fuku). Elsevier, Oxford, 1999
- Shimizu Y., Moriyoshi Y., Komatsu S. et al. Concurrent preparation of carbon, boron nitride and composite nanotubes of carbon with boron nitride by a plasma evaporation method// Thin Solid Films. 1998. V. 316, N 1−2. P. 178−184.
- Golberg D., Bando Y., Eremets M. et al. Nanotubes in boron nitride laser heated at high pressure // Appl. Phys. Lett. 1996. V. 69, N 14. P. 2045−2047.
- Yu D.P., Sun X.C., Lee C.S. et al. Synthesis of boron nitride nanotubes by means of excimer laser ablation at high temperature // Appl. Phys. Lett. 1997. V. 72, N 16. P. 1966−1968.
- Lee R.S., Gavilett J., de la Chapelle M.L. et al. Catalyst-free synthesis of boron nitride single-wall nanotubes with a preferred zig-zag configuration // Phys. Rev. B. 2001. V. 64. P. 121 405−121 409.
- Golberg D., Bando Y., Kurashima K., Sasaki T. Fullerene and onion formation under electron irradiation of boron-doped graphite // Carbon. 1999. V. 37, N 2. P. 293−299.
- Vereshchagin V.I., Sergeev M.A., Semukhin B.S., Borodin Y.V. Boron Nitride with Packets of Nanotubes for Microcomposite Ceramics // Ref. Ind. Ceram. 2000. V. 41, N 11. P. 440−443.
- Terrones M., Benito A.M., Manteca-Diego C. et al. Pyrolytically grown BxCyNz nanomaterials: nanofibres and nanotubes // Chem. Phys. Lett. 1996. V. 257, N 5−6. P. 576−582.
- Kohler-Redlich Ph., Terrones M., Manteca-Diego C. et al. Stable BC2N nanostructures: low-temperature production of segregated C/BN layered materials // Chem. Phys. Lew. 1999. V. 310, N 5−6. P. 459−465.
- Sen R., Satishkumar B.C., Govindaraj A. et al B-C-N, C-N and B-N nanotubes produced by the pyrolysis of precursor molecules over Co catalysts // Chem. Phys. Lett. 1998. V. 287, N5−6. P. 671−676.
- Satishkumar B.C., Govindaraj A., Harikumar K.R. et al. Boron-carbon nanotubes from the pyrolysis of C2H2-B2H6 mixtures // Chem. Phys. Lett. 1999. V. 300, N 3−4. P. 473−477.
- Terrones M., Grobert N., Olivares J. et al. Controlled production of aligned-nanotube bundles//Nature. 1997. V. 388. P. 52−55.
- Ma R.Z., Bando Y., Sato Т., Kurashima K. Growth, Morphology, and Structure of Boron Nitride Nanotubes // Chem. Mater. 2001. V. 13, N 9. P. 2965−2971.
- Ma R.Z., Bando Y., Sato T. CVD synthesis of boron nitride nanotubes without metal catalysts // Chem. Phys. Lett. 2001. V. 337, N 1−3. P. 61−64.
- Han W., Bando Y., Kurashima K., Sato T. Synthesis of boron nitride nanotubes from carbon nanotubes by a substitution reaction // Appl. Phys. Lett. 1998. V. 73, N 21. P. 3085−3087.
- Han W., Bando Y., Kurashima K., Sato T. Boron-doped carbon nanotubes prepared through a substitution reaction // Chem. Phys. Lett. 1999. V. 299, N 5. P. 368−373.
- Golberg D., Bando Y., Han W. et al. Single-walled B-doped carbon, B/N-doped carbon and BN nanotubes synthesized from single-walled carbon nanotubes through a substitution reaction // Chem. Phys. Lett. 1999. V. 308, N 3−4. P. 337−342.
- Han W., Bando Y., Kurashima K., Sato T. Formation of Boron Nitride (BN) Fullerene-Like Nanoparticles and (BN)xCy Nanotubes Using Carbon Nanotubes as Templates // Jpn. J. Appl. Phys. 2. 1999. V. 38, N 7A. P. L755-L757.
- Golberg D., Han W., Bando Y. et al. Fine structure of boron nitride nanotubes produced from carbon nanotubes by a substitution reaction // J. Appl. Phys. 1999. V. 86, N 4. P. 2364−2366.
- Golberg D., Bando Y., Kurashima K., Sato T. MoCVpromoted synthesis of multi-walled BN nanotubes from С nanotube templates // Chem. Phys. Lett. 2000. V. 323, N 1−2. P. 185−191.
- Golberg D., Bando Y., Bourgeois L. et al. Large-scale synthesis and HRTEM analysis of single-walled B- and N-doped carbon nanotube bundles // Carbon. 2000. V. 38, N14. P. 2017−2027.
- Golberg D., Bando Y., Kurashima K., Sato T. Synthesis, HRTEM and electron diffraction studies of B/N-doped С and BN nanotubes // Diam. Relat. Mater. 2001. V. 10, N l.P. 63−67.
- Golberg D., Bando Y., Kurashima K., Sato T. Ropes of BN multi-walled nanotubes // Solid State Commun. 2000. V. 116, N 1. P. 1−6.
- Han W.-Q., Cumings J., Huang X.S. et al. Synthesis of aligned BxCyNz nanotubes by a substitution-reaction route // Chem. Phys. Lett. 2001. V. 346, N 5−6. P. 368−372.
- Stephan O., Bando Y., Loiseau A. et al. Formation of small single-layer and nested BN cages under electron irradiation of nanotubes and bulk material // Appl. Phys. A. 1998. V. 67, N l.P. 107−111.
- Smith B.W., Monthioux M., Luzzi D.E. Carbon nanotube encapsulated fullerenes: a unique class of hybrid materials // Chem. Phys. Lett. 1999. V. 315, N 12. P. 31−36.
- Hirahara K., Suenaga K., Bandow S. et al. One-Dimensional Metallofullerene Crystal Generated Inside Single-Walled Carbon Nanotubes // Phys. Rev. Lett. 2000. V. 85. P. 5384−5387.
- Louchev O.A., Sato Y. Nanotube self-organization: Formation by step-flow growth // Appl. Phys. Lett. 1999. V. 74, N 2. P. 194−196.
- Golberg D., Bando Y., Kurashima K., Sato T. Synthesis and characterization of ropes made of BN multiwalled nanotubes // Scr. Mater. 2001. V. 44, N 8−9. P. 15 611 565.
- Golberg D., Bando Y., Bourgeois L. et al. Insights into the structure of BN nanotubes // Appl. Phys. Lett. 2000. V. 77, N 13. P. 1979−1981.
- Bando Y., Ogawa K., Goiberg D. Insulating 'nanocables': Invar Fe-Ni alloy nanorods inside BN nanotubes // Chem. Phys. Lett. 2001. V. 347, N 3−6. P. 349−354.
- Pham-Huu C., Keller N., Ehret G., Ledoux M.J. The first preparation of silicon carbide nanotubes by shape memory synthesis and their catalytic potential // J. Catal. 2001. V. 200 P. 400−410.
- Бартницкая T.C., Олейник Г. С., Покропивный A.B., Покропивный В. В. Письма в ЖЭТФ, 69, 145 (1999)
- Terauchi М., Tanaka М., Suzuki К. et al. Production of zigzag-type BN nanotubes and BN cones by thermal annealing // Chem. Phys. Lett. 2000. V. 324, N 5−6. P. 359−364.
- Bourgeois L., Bando Y., Sato T. Tubes of rhombohedral boron nitride // J. Phys. D. 2000. V. 33, N 15. P. 1902−1908.
- Подберезская H.B., Магрилл С. А., Первухин H.B., Борисов С. В. Кристаллохимия дихалькогенидов состава МХ2 // Журн. структ. Химии. 2001. Т. 42, № 4. С. 783−817.
- Margulis L., Salitra G., Tenne R., Talianker M. Nested fullerene-like structures // Nature. 1993. V. 365. P. 113−114.
- Remskar M., Skraba Z., Cleton F. et al. MoS2 as microtubes // Appl. Phys. Lett. 1996. V. 69, N3. P. 351−353.
- Remskar M., Skraba Z., Cleton F. et al. MoS2 microtubes: an electron microscopy study // Surf. Rev. Lett. 1998. V. 5, N 1. P. 423−426.
- Galvan D.H., Rangel R., Alonso G. Experimental and Theoretical Studies of Micro-Structural Instabilities in WS2 Undergoing Electron Irradiation // Fullerene Sci. Technol. 1998. V. 6, N 6. P. 1025−1035.
- Galvan D.H., Rangel R., Adem E. Fullerene Sci. Technol. 1999. V. 7. P. 805 806.
- Mackie E.B., Galvan D.H., Adem E. et al. Production of WS2 nanotubes by an activation method //Adv. Mater. 2000. V. 12, N 7. P. 495−498.
- Feldman Y., Wasserman E., Srolovitz D.J., TenneR. High Rate, Gas Phase Growth of M0S2 Nested Inorganic Fullerenes and Nanotubes // Science. 1995. V. 267. P. 222−225.
- Feldman Y., Fray G.L., Homyonfer M. et al. Bulk Synthesis of Inorganic Fullerene-like MS2 (M = Mo, W) from the Respective Trioxides and the Reaction Mechanism // J. Am. Chem. Soc. 1996. V. 118, N 23. P. 5362−5367.
- Zhu Y.Q., Hsu W.K., Grobert N. et al. Production of WS2 Nanotubes // Chem. Mater. 2000. V. 12, N 5. P. 1190−1194.
- Rapoport L., Bilik Y., Feldman Y. et al. Hollow nanoparticles of WS2 as potential solid-state lubricants //Nature. 1997. V. 387. P. 791−793.
- Sen R., Govindaraj A., Suenaga K. et al. Encapsulated and hollow closed-cage structures of WS2 and M0S2 prepared by laser ablation at 450−1050°C // Chem. Phys. Lett. 2001. V. 340, N 3−4. P. 242−248.
- Chhowalla M., Amaratuga G.A.J. Thin films of fullerene-like M0S2 nanoparticles with ultra-low friction and wear//Nature. 2000. V. 407. P. 164−167.
- Rothschild A., Sloan J., York A.P.E. et al. Encapsulation of WC within 2H-WS2 inorganic fullerene-like cages // Chem. Commun. 1999. N 4. P. 363−364.
- Fray G.L., Elani S., Homoyonfer M. et al. Optical-absorption spectra of inorganic flillerenelikeMS2 (M=Mo, W) //Phys. Rev. B. 1998. V. 57. P. 6666−6671.
- Remskar M., Skraba Z., Regula M. et al. New Crystal Structures of WS2: Microtubes, Ribbons, and Ropes // Adv. Mater. 1998. V. 10, N 3. P. 246−249.
- Rothschild A., Popovitz-Biro R., Lourie O., Tenne R. Morphology of Multiwall WS2 Nanotubes //J. Phys. Chem. B. 2000. V. 104, N 38. P. 8976−8981.
- Zhu Y.Q., Hsu W.K., Terrones H. et al. Morphology, structure and growth of WS2 nanotubes //J. Mater. Chem. 2000. V. 10, N 11. P. 2570−2577.
- Remskar M., Skraba Z., Sanjines R., Levy F. Syntactic coalescence of WS2 nanotubes // Appl. Phys. Lett. 1999. V. 74, N 24. P. 3633−3635.
- Tal O., Remskar M., Tenne R., Haase G. The effect of substrate topography on the local electronic structure of WS2 nanotubes // Chem. Phys. Lett. 2001. V. 344, N 5−6. P. 434−440.
- Rothschild A., Cohen S.R., Tenne R. WS2 nanotubes as tips in scanning probe microscopy // Appl. Phys. Lett. 1999. V. 75, N 25. P. 4025−4027.
- Rothschild A., Sloan J., Tenne R. Growth of WS2 Nanotubes Phases // J. Am. Chem. Soc. 2000. V. 122, N 21. P. 5169−5179.
- Mackie E.B., Galvan D.H., Migone A.D. Methene Adsorption on planar WS2 and on WS2-fullerene and -nanotube containing samples // Adsorbtion — J. Intern. Adsorb. Soc. 2000. V. 6, N 12. P. 169−174.
- Galvan D.G., Rangel R., Adem E. WSe2 nanotubes, they formation by electron irradiation // Fuilerene Sci. Technol. 2000. V. 8, N 1−2. P. 9−15.
- Galvan D.G., Kim J.H., Maple M.B., Adem E. Effect of the electronic irradiation in the production of NbSe2 nanotubes // Fuilerene Sci. Technol. 2001. V. 9, N 2. P. 225−232.
- Galvan D.G., Rangel R., Adem E. Formation of MoTe2 Nanotubes by Electron Irradiation // Fuilerene Sci. Technol. 1999. V. 7, N 3. P. 421−426.
- Galvan D.G., Kim J.H., Maple M.B. et al. Formation of NbSe2 nanotubes by electron irradiation // Fuilerene Sci. Technol. 2000. V. 8, N 3. P. 143−151.
- Flores E., Tlahuice A., Adem E., Galvan D.G. Optimization of the electron irradiation in the production of MoTe2 nanotubes // Fuilerene Sci. Technol. 2001. V. 9, N 1. P. 9−16.
- Nath M., Rao C.N.R. MoSe2 and WSe2 nanotubes and related structures // Chem. Commun. 2001. N 21. P. 2236−2237.
- Jiang Y., Wu Y., Yuan S.W. et al. Preparation and characterization of CuInS2 nanorods and nanotubes from an elemental solvothermal reaction // J. Mater. Res. 2001. V. 16, N 10. P. 2805−2809.
- Liu Y.F., Zeng J.H., Zhang W.H. et al. Solvothermal route to Bi3Se4 nanorods at low temperature//J. Mater. Res. 2001. V. 16, N 12. P. 3361−3365.
- Antonelli D.M., Ying J.Y. Synthesis and Characterization of Hexagonally Packed Mesoporous Tantalum Oxide Molecular Sieves // Chem. Mater. 1996. V. 8, N 4. P. 874−881.
- Antonelli D.M., Nakamura A., Ying J.Y. Ligand-Assisted Liquid Crystal Templating in Mesoporous Niobium Oxide Molecular Sieves // Inorg. Chem. 1996. V. 35, N 11. P. 3126−3136.
- Wong M.S., Ying J.Y. Amphiphilic Templating of Mesostructured Zirconium Oxide // Chem. Mater. 1998. V. 10, N 8. P. 2067−2077.
- Luca V., Hook J.M. Study of the Structure and Mechanism of Formation through Self-Assembly of Mesostructured Vanadium Oxide // Chem. Mater. 1997. V. 9, N 12. P. 2731−2744.
- Liu P., Moudrakovski I.L., Liu J., Sayari A. Mesostructured Vanadium Oxide Containing Dodecylamine±// Chem. Mater. 1997. V. 9, N 11. P. 2513−2520.
- Chirayil Т., Zavalij P.Y., Whittingham M.S. Hydrothermal Synthesis of Vanadium Oxides // Chem. Mater. 1998. V. 10, N 10. P. 2629−2640.
- Ayral A., Guizard C. Preparation of Sol-Gel Derived S1O2 and AI2O3 Layers with Designed Nanoporosity // Mater. Trans. 2001. V. 42, N 8. P. 1641−1646.
- Nakade S., Kambe S., Kitamura T. et al. Effects of Lithium Ion Density on Electron Transport in Nanoporous ТЮ2 Electrodes // J. Phys. Chem. B. 2001. V. 105, N38. P. 9150−9152.
- Kruk M., Jaroniec M. Gas Adsorption Characterization of Ordered Organic-Inorganic Nanocomposite Materials // Chem. Mater. 2001. V. 13, N 10. P. 31 693 183.
- Van de Lagemaat J., Frank A.J. Nonthermalized Electron Transport in Dye-Sensitized Nanocrystalline ТЮ2 Films: Transient Photocurrent and Random-Walk Modeling Studies III. Phys. Chem. B. 2001. V. 105, N 45. P. 11 194−11 205.
- Imai H., Hirashima H. Preparation of Porous Anatase Coating from Sol-Gel-Derived Titanium Dioxide and Titanium Dioxide-Silica by Water-Vapor Exposure //J. Am. Ceram. Soc. 1999. V. 82, N 9. P. 2301−2305.
- Imai H., Matsuda M., Shimizu K. et al. Preparation of Ti02 fibers with well-organized structures // J. Mater. Chem. 2000. V. 10, N 9. P. 2005−2006.
- Yusuf M.M., Imai H., Hirashima H. Preparation of mesoporous ТЮ2 thin films by surfactant templating // J. Non-Cryst. Solids. 2001. V. 285, N 1−3. P. 90−95.
- Hirashima H., Imai H., Balek V. Preparation of meso-porous Ti02 gels and their characterization //J. Non-Cryst. Solids. 2001. V. 285, N 1−3. P. 96−100.
- Ajayan P.M., Stephan O., Redlich P., Colliex C. Carbon nanotubes as removable templates for metal oxide nanocomposites and nanostructures // Nature. 1995. V. 375. P. 564−567.
- Urgate D., Stockli Т., Bonard J.M. et al. Filling carbon nanotubes // Appl. Phys. A. 1998. V. 67, N 1. P. 101−105.
- Krumeich F., Muhr H.-J., Niederberger M. et al. Morphology and Topochemical Reactions of Novel Vanadium Oxide Nanotubes // J. Am. Chem. Soc. 1999. V. 121, N36. P. 8324−8331.
- Krumeich F., Muhr H.-J., Niederberger M. et al. The Cross-Sectional Structure of Vanadium Oxide Nanotubes Studied by Transmission Electron Microscopy and Electron Spectroscopic Imaging // Z. Anorg. Allg. Chem. 2000. V. 626, N P. 22 082 216.
- Muller E., Krumeich F. A simple and fast ТЕМ preparation method utilizing the pre-orientation in plate-like, needle-shaped and tubular materials // Ultramicroscopy. 2000. V. 84. P. 143−147.
- Muhr H.-J., Krumeich F., Schonholzer U.P. et al. Vanadium Oxide Nanotubes -A New Flexible Vanadate Nanophase // Adv. Mater. V.12, N 3. P. 231−234.
- Niederberger M., Muhr H.-J., Krumeich F. et al. Low-Cost Synthesis of Vanadium Oxide Nanotubes via Two Novel Non-Alkoxide Routes // Chem. Mater. 2000. V. 12, N7. P. 1995−2000.
- Pillai K.S., Krumeich F., Muhr H.-J. et al. The first oxide nanotubes with alternating inter-layer distances // Solid State Ion. 2001. V. 141−142. P. 185−190.
- Kasuga Т., Hiramatsu M., Hoson A. et al. Titania Nanotubes Prepared by Chemical Processing//Adv. Mater. 1999. V. 11, N 15. P. 1307−1311.
- Imai H., Takei Y., Shimitsu K. et al. Direct preparation of anatase Ti02 nanotubes in porous alumina membranes // J. Mater. Chem. 1999. V. 9, N 12. P. 2971−2972.
- Сумм Б.Д., Иванова Н. И. Объекты и методы коллоидной химии в нанохимии // Успехи химии. 2000. Т. 69, № 11. С. 995−1009.
- Волков B. J1., Захарова Г. С., Бондаренко И. М. Ксерогели простых и сложных ванадатов. Изд-во УрО РАН, Екатеринбург, 2001
- Hacohen Y.R., Grunbaum Е., Tenne R. et al. Cage structures and nanotubes of NiCl2 //Nature. 1998. V. 395. P. 336−337.
- Satishkumar B.C., Vogl E.M., Govindaraj A., Rao C.N.R. The decoration of carbon nanotubes by metal nanoparticles // J. Phys. D. 1996. V. 29, N 12. P. 31 733 176.
- Satishkumar B.C., Govindaraj A., Vogl E.M. et al. Oxide nanotubes prepared using carbon nanotubes as templates Oxide nanotubes prepared using carbon nanotubes as templates // J. Mater. Res. 1997. V. 12, N 3. P. 604−606.
- Satishkumar B.C., Govindaraj A., Nath M., Rao C.N.R. Synthesis of metal oxide nanorods using carbon nanotubes as templates // J. Mater. Chem. 2000. V. 10, N 9. P. 2115−2119.
- Li Q.Q., Fan S.H., Han W.Q. et al. Coating of Carbon Nanotube with Nickel by Electroless Plating Method //Jpn. J. Appl. Phys. 2. 1997. V. 36, N 4B. P. L501-L503.
- Chen X.H., Xia J.Т., Peng J.C. et al. Carbon-nanotube metal-matrix composites prepared by electroless plating // Compos. Sci. Technol. 2000. V. 60, N 2. P. 301 306.
- Seeger Т., Redlich P., Grobert N. et al. SiOx-coating of carbon nanotubes at room temperature // Chem. Phys. Lett. 2001. V. 339, N 1−2. P. 41−46.
- Ebbessen T.W. Wetting, filling and decorating carbon nanotubes // J. Phys. Chem. Solids. 1996. V. 57, N 6−8. P. 951−955.
- Nakajiama Т., Kasamatsu S., Matsuo Y. Synthesis and characterization of fluorinated carbon nanotube // Eur. J. Solid Slate Inorg. Chem. 1996. V. 33. P. 831 840.
- Mickelson E.T., Huffman C.B., Rinzler A.G. et al. Fluorination of single-wall carbon nanotubes//Chem. Phys. Lett. 1998. V. 296, N 1−2. P. 188−194.
- Boul P.J., Liu J., Mickelson E.T. el al. Reversible sidewall functionalization of buckytubes // Chem. Phys. Lett. 1999. V. 310, N 3−4. P. 367−372.
- Dloczik L., Engelhardt R., Ernst K. et al. Hexagonal nanotubes of ZnS by chemical conversion of monocrystalline ZnO columns // Appl. Phys. Lett. 2001. V. 78, N 23. P. 3687−3689.
- Peulon S., Lincot D. Mechanistic Study of Cathodic Electrodeposition of Zinc Oxide and Zinc Hydroxychloride Films from Oxygenated Aqueous Zinc Chloride Solutions // J. Electrochem. Soc. 1998. V. 145, N 3. P. 864−874.
- Pauporte Т., Lincot D. Heteroepitaxial electrodeposition of zinc oxide films on gallium nitride //Appl. Phys. Lett. 1999. V. 75, N 24. P. 3817−3819.
- Konenkamp R., Boedecker K., Lux-Steiner M.C. et al. Thin film semiconductor deposition on free-standing ZnO columns // Appl. Phys. Lett. 2000. V. 77, N 16. P. 2575−2577.
- Schmidt O.G., Eberl K. Nanotechnology: Thin solid films roll up into nanotubes //Nature. 2001. V. 410. P. 168.
- Osadchii V.M., Prinz V.Y. Charge-Carrier Separation in Rolled Heterostructures //JETP Lett. 2000. V. 72, N 6. P. 312−315.
- Prinz V.Y., Seleznev V.A., Gutakovsky A.K. et al. Free-standing and overgrown InGaAs/GaAs nanotubes, nanohelices and their arrays // Physica E. 2000. V. 6, N 14. P. 828−831.
- Golod S.P., Prinz V.Y., Mashanov V.I., Gutakovsky A.K. Fabrication of conducting GeSi/Si micro- and nanotubes and helical microcoils // Semicond. Sci. Technol. 2001. V. 16, N3. P. 181−185.
- Schmidt O.G., Jin-Phillipp N.Y. Free-standing SiGe-based nanopipelines on Si (001) substrates //Appl. Phys. Lett. 2001. V. 78, N 21. P. 3310−3312.
- Hoffman W.P., Phan H.T., Wapner P.G. The far-reaching nature of microtube technology // Mater.Res.Innovations. 1998. V. 2. N 2. P. 87−96.
- Hoffman W.P., Wapner P.G. Microscopic tubes and their production. Патент США US 6 113 722 (2000).
- Akiyama M., Hsu C.N., Nonaka К., Watanabe Т. Manufacture of ceramic micro-tubes without heat treating. Патент Японии JP 2 001 219 411 (2001).
- Wan M., Huang J., Shen Yo. Microtubes of conducting polymers // Synth.Met.1999. V. 101. N1−2. P. 708−711.
- Remskar M., Skraba Z., Regula M. et al. New crystal structures of WS2. Microtubes, ribbons, and ropes // Adv.Mater. 1998. V. 10. N 3. P. 246−249.
- Remskar M., Skraba Z., Cleton F., et al. MoS2 microtubes: an electron microscopy study // Surf.Rev.Lett. 1998. V. 5. N 1. P. 423−426.
- Remskar M., Skraba Z., Cleton F., et al. MoS2 microtubes // Kovine, Zlitine, Tehnol. 1997. V. 31. N 3−4. P. 247−249.
- Remskar M. Skraba Z., Ballif C., et al. Stabilization of the rhomohedral polytype in MoS2 and WS2 microtubes: ТЕМ and AFM study // Surf.Sci. 1999. N 433−435. P. 637−641
- Garcia J.M., Asenjo A., Sinnecker J.P., Vazquez M. Correlation between GMI effect and domain structure in electrodeposited Co-P tubes // J.Magn.Magn.Mater.2000. N215−216. P. 352−354.
- Sinnecker J.P., Garcia J.M., Asenjo A., et al. Giant magnetoimpedance in CoP electrodeposited microtubes // J.Mater.Res. 2000. V. 15. N 3. P. 751−755.
- Garcia J.M., Sinnecker J.P., Asenjo A., Vazquez M. Enhanced magnetoimpedance in CoP electrodeposited microtubes // J.Magn.Magn.Mater. 2001. N 226−230. P. 704−706.
- Akiyama M., Shobu K., Xu C.-N. et al. Ceramic microtubes self-formed at room temperature that exhibit a large bending stress // J.Appl.Phys. 2000. V. 88. N 7. P.4434.4436.
- Prinz V.Ya., Golod S.V., Mashanov V.I., Gutakovsky A.K. Free-standing conductive GeSi/Si helical microcoils, micro- and nanotubes // Inst.Phys.Conf.Ser. 2000. N 166. P. 203−206.
- Motojima S., Hwang W.-I., Chen X., Iwanga H. Preparation of TiN microcoils and microtubes by titanizing/nitriding of carbon and TiC microcoils // J.Electrochem.Soc. 2000. V. 147. N 3. P. 1228−1234.
- Huppertz H., Stock N., Schnick W. The first crystalline hexagonal Si3N4 microtubes // Adv.Mater. 1996. V. 8. N. 10. P. 844−847.
- Keller N., Pham-Huu C., Ledoux M.J. et al. Preparation and characterization of SiC microtubes //Appl.Catal. A. 1999. V. 187. N 2. P. 255−268.
- Motojima S., Yang S., Chen X., Iwanaga H. Preparation and properties of TiC micro-coils and micro-tubes by vapor phase titanizing of carbon micro-coils // J.Mater.Sci. 1999. V. 34. N 24. P. 5989−5994.
- Motojima S., In-Hwang W., Iwanaga H. Preparation and properties of TaC/C/TaC~TaC composite microtubes by vapor phase tantalizing of the regular carbon micro-coils/micro-tubes // J.Mater.Sci. 2001. V. 36, N 3. P. 673−677.
- Bica I. Obtaining of Si02 micro-tubes in plasma jet // Mater.Sci.Eng. B. 2001. Vol. 86. N3. P. 265−268.
- Nanai L., George T.F. Laser-assisted formation of metallic oxide microtubes // J.Mater.Res. 1997. V. 12. N 1. P. 283−284.
- Jiang Z., Nielsen K.F., Kragh F. et al. Laser-induced growth of square hollow microtubes on vanadium metal //J.Mater.Sci.Lett. 1998. V. 17. N 15. P. 1301−1303.
- Vayssieres L., Keis K., Hagfeldt A., Lindquist S.-E. Three-dimensional array of highly oriented crystalline ZnO microtubes // Chem.Mater. 2001. V. 13. N 12. P. 4395−4398.
- Li L., Strachan D.M., Li H. et al. Crystallization of gadolinium- and lanthanium-containing phases from sodium alumino-borosilicate glasses // J. Non-Cryst.Sol. 2000. V. 272. P. 46.
- С.С.Бердоносов, И. А. Кабанов, И. В. Мелихов и др. Нитевидные частицы железа при восстановлении гидроксохлоридных форм железа (III) // Вестн. Моск. ун-та, сер. 2. Химия. 2000. Т. 41. № 3. С. 202−204.
- Vallet-Regi М., Nicolopoulos S., Roman J. et al. Structural characterization of Zr02 nanoparticles obtained by spray pyrolysis // J. Mater. Chem. 1997. V. 7. N 6. P. 1017.
- Кутепов A.M., Полянин А. Д., Запрянов З. Д. и др. Химическая гидродинамика. М.: Бюро Квантум. 1996. 336 с.
- Sano Y., Keey R.B. The drying of a spherical particle containing colloidal material into a hollow sphere // Chem. Eng. Sci. 1982 V. 37. N 6. P. 881.
- Ивановский, А Л. Неуглеродные нанотрубки: синтез и моделирование // Успехи химии. 2002. Т. 71. № 3. С. 203−224.
- Zhang М., Bando Y., Wada К. Synthesis of coaxial nanotubes: titanium oxide sheated with silicon oxide//J.Mater.Res. 2001. V. 16. N5. P. 1408−1412.
- Lakshmi B.B., Dorhout P.K., Martin C.R. Sol-gel template synthesis of semiconductor nanostructures // Chem.Mater. 1997. V. 9. N 3. P. 857−862.
- Hoyer P. Semiconductor nanotube formation by a two-step template process // Adv.Mater. 1996. V. 8. N 10. P. 857−859.
- Schneider J.J., Czap N., Hagen J., et al. Metallorganic routes to nanoscale iron and titanium oxide particles encapsulated in mesoporous alumina: formation, physical properties, and chemical reactivity // Chem. A Eur.J. 2000. V. 6. N 23. P. 4305−4321.
- Li X.-H., Zhang X.-G., Li, H.-L. Template synthesis and characterization of ТЮ2 nanotubes // Gaodeng Xuexiao Huaxue Xuebao. 2001. V. 22. N 1. P. 130−132.
- Zhang M., Bando Y., Wada K. Sol-gel template preparation of ТЮ2 nanotubes and nanorods // J.Mater.Sci.Lett. 2001. V. 20. N 2. P. 167−170.
- Imai H., Takei Y., Shimizu K., et al. Direct preparation of anatase Ti02 nanotubes in porous alumina membranes // J.Mater.Sci. 1999. V. 9. N 12. P. 29 712 972.
- Schlottig F., Textor M., Georgi U., Roewer G. Template synthesis of Si02 nanostructures //J.Mater.Sci.Lett. 1999. V. 18. N 8. P. 599−601.
- Zhang M., Bando Y., Wada K., Kurashima K. Synthesis of nanotubes and nanowires of silicon oxide //J.Mater.Sci.Lett. 1999. V. 18. N23.P. 1911−1923.
- Zhang M., Bando Y., Wada K. Silicon dioxide nanotubes prepared by anodic alumina as templates // J.Mater.Res. 2000. V. 15. N 2. P. 387−392.
- Den Т., Iwasaki T. Structures having nanopores in anodized alumina layer, its manufacture, and electron-emitting device, magnetic device, and light-emitting device using it. Патент Японии JP 2 001 162 600 (2001).
- Kyotani Т., Tsai L.-F., Tomita A. Preparation of ultrafine carbon tubes in nanochannels of an anodic aluminum oxide film // Chem.Mater. 1996. V. 8. N 8. P. 2109−2113.
- Parthasarathy R.V., Phani K.L.N., Martin C.R. Template synthesis of graphitic nanotubules // Adv.Mater. 1995. V. 7. N 11. P. 896−897.
- Zhao J., Gao Q.-Y., Yang Y., Lin Z.-G. Template synthesis of nano-structured electrode materials and its electrochemical performance // Dianhuaxue. 2000. V. 6. N 4. P. 393−398.
- Zhao J., Gao Q.-Y., Wu G.T. et al. Template synthesis of nano-structured materials for Li-ion batteries. Solid State Ionics: Materials and Devices, Proceedings of the Asian conference., 7th, Fuzhou, China, Oct. 29-Nov. 4, 2000. P. 295−299.
- Li M.-K. Synthesis of aligned carbon nanotubes in the pores of А120з templates // Xibei Shifan Daxue Xuebao, Ziran Kexueban. 2000. V. 36. N 1. P. 27−30.
- Chiang F.K., Tsai S.H., Shieu F.S., Shih H.C. In situ Cu20 formation on amorphous carbon nanotubes induced by electron beam // J.Mater.Sci.Lett. 2000. V. 19. N8. P. 671−673.
- Wang C., Li M., Pan S., Li H. Well-aligned carbon nanotube array membrane synthesized in porous alumina template by chemical vapor deposition // Chin.Sci.Bull. 2000. V. 45. N 15. P. 1373−1376.
- Li J., Papadopoulos C., Xu J. Method of growth of branched carbon nanotubes and devices produced from the branched nanotubes. Патент США US 6 325 909 (2001).
- Yan Z.-H., Huang H., Liu L., Fan S.-S. Controlled growth of carbon nanotubes in diameter and shape using template-synthesis method // Chem.Phys.Lett. 2001. V. 345. N1−2. P. 39−43.
- Lee J.S., Gu G.H., Kim H. et al. Growth of carbon nanotubes on anodic aluminum oxide templates: Fabrication of a tube-in-tube and linearly joined tube // Chem.Mater. 2001. V. 13. N 7. P. 2387−2391.
- Zelenski C.M., Dorhout P.K. Template synthesis of near-monodisperse microscale nanofibres and nanotubules of M0S2 // J.Am.Chem.Soc. 1998. V. 120. N 4. P. 734−742.
- Shelimov K.B., Moskovits M. Composite nanostructures based on template-grown boron nitride nanotubes // Chem.Mater. 2000. V. 12. N 1. P. 250−254.2981.Boustani. Inter. J. Quant. Chem., 52,1081 (1994)
- Boustani I. New quasi-planar surfaces of bare boron // Surf. Sci. 1997. V. 370, N 2−3. P. 355−363.
- Boustani I. Systematic ab initio investigation of bare boron clusters: Determination of the geometryand electronic structures of Bn (n=2−14) // Phys. Rev. B. 1997. V. 55. P. 16 426−16 438.
- Boustani I., Quandt A. Nanotubules of bare boron clusters: Ab initio and density functional study // Europhys. Lett. 1997. V. 39, N 5. P. 527−532.
- Boustani I. New Convex and Spherical Structures of Bare Boron Clusters // J. Solid State Chem. 1997. V. 133, N 1. P. 182−189.
- Boustani I., Quandt A. Boron in ab initio calculations // Comput. Mater. Sci. 1998. V. 11, N2. P. 132−137.
- Sabra M.K., Boustani I. New chains of boron and boron hydrogen // Europhys. Lett. 1998. V. 42, N 6. P. 611−617.
- Boustani I., Quandt A., Rubio A. Boron Quasicrystals and Boron Nanotubes: Ab Initio Study of Various B96 Isomers // J. Solid State Chem. 2000. V. 154, N 1. P. 269 274.
- Boustani I., Rubio A., Alonso J.A. Ab initio study of B32 clusters: competition between spherical, quasiplanar and tubular isomers // Chem. Phys. Lett. 1999. V. 311, N 1−2. P. 21−28.
- Gindulyte A., Lipscomb W.N., Massa L. Proposed Boron Nanotubes // Inorg. Chem. 1998. V. 37, N 25. P. 6544−6545.
- Егоров Ю.В. Статика сорбции микрокомпонентов оксигидратами. М.: «Атомиздат», 1975.
- Белоусова М.Я. Автореферат канд.дис. М., 1970.
- Krause A. Uber Hydroxid- und Oxyhydratgele // Z.Anorgan.Allgem.Chem. 1960. V. 306. N3−4. P. 223.
- Feiknecht W. Ziir Frage der Silberferritmethode // Z.Anorgan.Allgem.Chem. 1960. V. 306. N3−4. P. 220.
- Glemser O. Binding of water in some hydroxides and hydrous oxides // Nature. 1959. V. 183. N4666. P. 943.
- Hsu P.O., Bates T.F. Formation of X-ray amorphous and crystalline aluminium hydroxides // Mineral Mag. 1964. V. 33. P. 264.
- Cismaru D., Iordachescu J., Georgescu G. et al. On the formation of aluminium hydroxide // Rev. Roumaine Chim. 1965. V. 10. N 9. P. 803.
- Кандыкин Ю.М. О механизме образования и кристаллизации гидроокиси алюминия // Коллоидн. Журн. 1964. Т. 26. № 3. С. 318.
- Petz J.I. Structure of aluminum hydroxide gel // J.Chem.Phys. 1968. V. 48. N 2. P. 909.
- Pohl K., Meissner D., Steinert W. Uber die Bildung definierter Aluminiumhydroxid Gemische und deren rontgenographische Mengenanalyse // Z.Anorgan.Allgem.Chem. 1966. V. 343. N 1−2. P. 39.
- Симидзу И., Функаи К. Свойства тригидратов, полученных при старении алюмогеля в водных растворах // J.Chem.Soc. Japan, Industr.Chem.Sec. 1964. V. 67. N 5. P. 798. Цит. По «Реф. Журн. химии», 1965, 9Б491.
- Yanagida Н., Yamaguchi G., Kubota J. Two types of water contained in transient aluminas //Bull.Chem.Soc.Japan 1965. V. 38. N 12. P. 2194.
- Spannheimer H., Knozinger H. Uber das Adsorptionsferhalten von Aluminiumoxid // Ber.Bunsenges.Phys.Chem. 1966. V. 70. N 5. P. 570.
- Spiro T.G., Allerton S.E., Renner J. et al. The hydrolytic polymerization of iron (III)// J.Amer.Chem.Soc. 1966. V. 88. N 12. P. 2721.
- Миронов Н.Н. Об образовании основных солей и гидроокиси лантана // Журн.неорган.химии. 1966. Т. 11. № 3. С. 458.
- Busser W., Graf P. Radiochemische Untersuchungen an Festkorpern. III. Ionen-und Isotopenaustauschreaktionen an Mangandioxiden und Manganiten // Helv.Chim.Acta. 1955. V. 38. N 3. P. 810.
- Ghosh B.N., Chakaravarty S.N., Kundu M.L. Adsorption of ions by hydrated manganese dioxide in relation to its electrical charge and the concentration of hydrogen ions liberated// J. Indian Chem.Soc. 1951. V. 28. N 6. P. 319.
- Роде Е.Я. Кислородные соединения марганца. М.: «Изд-во АН СССР». 1952.
- Glemser О., Meisiek Н. Reine synthetische Braunsteine. 4. Mitt, liber Manganoxide //Naturwissenschaften. 1957. V. 44. N 23. P. 614.
- Кухлинг X. Справочник по физике. Изд. 2-е. М.: Мир, 1985, стр. 468.
- Фурман А.А. Неорганические хлориды. М.: Химия, 1980. С. 143−147.
- База данных ренгенофазового анализа «PCPDFWIN». PDF-2, 1998. Спектр № 431 484.
- Hummel D.O., Schol F. Atlas of Polymer and Plastics Analysis. Vienna-Munich: Karl Henzer Verlag. 1982. V.2, Part A, II. P. 891. Spektrum N 4444.
- Суворов A.B. Термодинамическая химия газообразного состояния. JI.: Химия. 1970.
- Исмагилов З.Р., Шкрабина Р. А., Корябкина Н. А. Алюмооксидные носители: производство, свойства и применение в каталитических процессах защиты окружающей среды. Аналитический обзор. / СО РАН. Ин-т катализа- ГПНТБ-Новосибирск. 1998. 82 с.
- Описание ЯМР-спектрометра АС-200. «Вгикег». 2000. С. 77.
- Привалов В.И., Орловский В. П., Сливка О. И., Разгоняева Г. А. Молекулярная динамика коллагеновых волокон, глицина, гидроксиаппатита и их соединений in vitro по данным ЯМР .Н, 31Р // Доклады РАН. Сер. Хим. 1998. Т. 361. С. 503.