Помощь в написании студенческих работ
Антистрессовый сервис

Оптические биосенсоры для определения фенольных соединений и органических пероксидов

ДиссертацияПомощь в написанииУзнать стоимостьмоей работы

Разработан способ получения прозрачных, механически прочных и каталитически активных пленок состава {пероксидаза-хитозан}, {тирозиназа-хитозан}, {лакказа-хитозан}, сохраняющих свои свойства после выдерживания в водных и водно-органических средах (в присутствии до 40% ДМСО, ацетонитрила, этанола). На основе полученных пленок и предложенной индикаторной системы созданы оптические биосенсоры простой… Читать ещё >

Оптические биосенсоры для определения фенольных соединений и органических пероксидов (реферат, курсовая, диплом, контрольная)

Содержание

  • ОБЗОР ЛИТЕРАТУРЫ
  • ГЛАВА 1. ФЕРМЕНТАТИВНЫЕ БИОСЕНСОРЫ ДЛЯ ОПРЕДЕЛЕНИЯ ФЕНОЛЬНЫХ СОЕДИНЕНИЙ
  • Индикаторные системы, ферменты, методы детектирования
  • Иммобилизация ферментов при создании биосенсоров для определения фенольных соединений
  • Особенности сенсорного определения фенольных соединений в органических и водно-органических средах
  • Аналитические характеристики и практическое применение ферментативных сенсоров для определения фенольных соединений
  • ГЛАВА 2. ФЕРМЕНТАТИВНЫЕ СЕНСОРЫ ДЛЯ ОПРЕДЕЛЕНИЯ ОРГАНИЧЕСКИХ ПЕРОКСИДОВ
  • Биосенсоры на основе безмедиаторных индикаторных систем
  • Биосенсоры на основе индикаторных систем, включающих медиаторы
  • Биосенсоры, основанные на регистрации изменения концентрации кислорода
  • Биосенсор, основанный на образовании окрашенного соединения
  • ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТ
  • ГЛАВА 3. ИСХОДНЫЕ ВЕЩЕСТВА, ПОСУДА, АППАРАТУРА, ОБРАБОТКА РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ, МЕТОДИКА ЭКСПЕРИМЕНТА
  • Исходные вещества
  • Посуда и аппаратура
  • Методики экспериментов
  • Обработка результатов измерений
  • ГЛАВА 4. ДИЗАЙН БИОСЕНСОРА И ИНДИКАТОРНАЯ СИСТЕМА
  • Выбор конструкции биосенсора
  • Выбор индикаторной системы и иммобилизация реагентов в пленках
  • Оптимизация условий получения биочувствительного слоя на основе хитозана и изучение его поведения в присутствии органических растворителей
  • ГЛАВА 5. ОПРЕДЕЛЕНИЕ ВОДОРАСТВОРИМЫХ ФЕНОЛЬНЫХ СОЕДИНЕНИЙ Оптимизация условий определения водорастворимых фенольных соединений
  • Определение водорастворимых фенольных соединений с помощью оптических биосенсоров
  • ГЛАВА 6. ОПРЕДЕЛЕНИЕ ВОДОНЕРАСТОРИМЫХ ФЕНОЛЬНЫХ СОЕДИНЕНИЙ
  • Выбор условий для определения с помощью оптического биосенсора фенольных соединений нерастворимых в воде
  • Определение нерастворимых в воде фенольных соединений с помощью оптического биосенсора
  • ГЛАВА 7. ОПРЕДЕЛЕНИЕ ОРГАНИЧЕСКИХ ПЕРОКСИДОВ С ПОМОЩЬЮ ОПТИЧЕСКОГО БИОСЕНСОРА
  • ГЛАВА 8. АНАЛИЗ РЕАЛЬНЫХ ОБЪЕКТОВ
  • ВЫВОДЫ

выводы.

1. Разработан способ получения прозрачных, механически прочных и каталитически активных пленок состава {пероксидаза-хитозан}, {тирозиназа-хитозан}, {лакказа-хитозан}, сохраняющих свои свойства после выдерживания в водных и водно-органических средах (в присутствии до 40% ДМСО, ацетонитрила, этанола).

2. Предложена новая индикаторная система: взаимодействие продуктов ферментативного окисления фенолов с хитозаном с образованием ковалентно связанного с ним светопоглощающего аддукта, позволяющая регистрировать аналитический сигнал непосредственно в матрице биочувствительного слоя вне анализируемого раствора.

3. На основе полученных пленок и предложенной индикаторной системы созданы оптические биосенсоры простой конструкции для определения фенольных соединений и органических пероксидов в объектах со сложной матрицей без предварительной пробоподготовки.

4. В результате изучения влияния на чувствительность и селективность биосенсоров состава их чувствительного слоя, рН, концентрации, природы буферного раствора и фермента, температуры, содержания полярного органического растворителя (ДМСО) разработаны методики определения в водных или водно-органических средах растворимых и нерастворимых в воде фенольных соединений и органических пероксидов в диапазонах концентраций, соответственно: гидрохинона и пирокатехина — 20−200 и 25−250 мкМкверцетина, рутина, эскулетина — 10−200, 10−150, 10−150 мкМ- 2-бутанонпероксида и бензоилпероксида — 0.05−1 и 0.05−25 мМ.

5. Продемонстрирована возможность применения сенсора, созданного на основе пленки {пероксидаза-хитозан}, для анализа реальных объектов (крема, геля, витамина в таблетках и порошка для приготовления инъекций) без отделения матрицы и полной гомогенизации анализируемого раствора, а также в присутствии органического растворителя ДМСО.

1. Nistor С., Emneus J., Gorton L., Ciucu A. Improved stability and altered selectivity of tyrosinase based graphite electrodes for detection of phenolic compounds. //Anal. Chim. Acta. 1999. V. 387. P. 309−326.

2. Canofeni S., DiSario S., Mela J., Pilloton R. Comparison of immobilisation procedures for development of an electrochemical PPO-based biosensor for online monitoring of a depuration process. // Anal. Lett. 1994. V. 27. P. 1659−1669.

3. Olmo M., Diez C., Molina A., Orbe I., Vilchez J.L. Resolution of phenol, o-cresol, /я-cresol and p-cresol mixtures by excitation fluorescence using partial least-squares (PLS) multivariate calibration. // Anal. Chim. Acta. 1996. V. 335. P. 22−23.

4. Robbins R.J. Phenolic acids in foods: an overview of analytical methodology. // J. Agric. Food Chem. 2003. V. 51. P. 2866−2888.

5. Campanella L., Favero G., Sammartino M. P., Tomassetti M. The effect of organic solvent properties on the response of a tyrosinase enzyme sensor. // Talanta. 1994. V. 41. P. 1015−1023.

6. Serra В., Reviejo A.J., Pingarron J. M. Composite multienzyme amperometric biosensors for an improved detection of phenolic compounds. // Electroanalysis. 2003. V. 15. P. 1737−1744.

7. Chang S.C., Rawson K., McNeil С J. Disposable tyrosinase-peroxidase bi-enzyme sensor for amperometric detection of phenols. // Biosens. Bioelectron. 2002. V. 17. P. 1015−1023.

8. Kaoutit M. E., Naranjo-Rodriguez I., Temsamani K., Dominguez de la Vega M., Hidalgo-Hidalgo de Cisneros J.L. Dual laccase-tyrosinase based sonogel-carbon biosensor for monitoring polyphenols in beers. // J. Agric. Food Chem. 2007. V. 55. P. 8011−8018.

9. Solna R., Sklada P. Amperometric flow-injection determination of phenolic compounds using a biosensor with immobilized laccase, peroxidase and tyrosinase. // Electroanalysis. 2005. V. 17. P. 2137−2146.

10. Jarosz-Wilkolazka A., Ruzgas Т., Gorton L. Amperometric detection of mono-and diphenols at Cerrena unicolor laccase-modified graphite electrode: correlation between sensitivity and substrate structure. // Talanta. 2005. V. 66. P. 1219−1224.

11. Lisdat F., Wollenberger U., Makower A., Hortnagl H., Pfeiffer D., Scheller F.W. Catecholamine detection using enzymatic amplification.// Biosens.Bioelectron.l997.V.12. P. 1199−1211.

12. Ghindilis, A. L.- Michael, N.- Makower, A. A new sensitive and simple method for detection of catecholamines from adrenal chromaffin cells. // Pharmazie 1995. V. 50. P. 599−600.

13. Szeponik J., Moller B., Pfeiffer D., Lisdat F., Wollenberger U., Makower A., Scheller F. W. Ultrasensitive bienzyme sensor for adrenaline. // Biosens. Bioelectron. 1997. V. 12. P. 947−952.

14. Bier F.F., Ehrentreich-Foerster E., Scheller F.W., Makower A., Eremenko A., Wollenberger U., Bauer C.G., Pfeiffer D., Michael N. Ultrasensitive biosensors. // Sens. Actuators, B. 1996. V. 33 P. 5−12.

15. Lisdat F., Wollenberger U. Trienzyme amplification system for the detection of catechol and catecholamines using internal co-substrate regeneration. // Anal. Lett. 1998. V. 31. P. 1275−1285.

16. Streffer K., Vijgenboom E., Tepper A.W.J.W., Makower A., Scheller F.W., Canters G.W., Wollenberger U. Determination of phenolic compounds using recombinant tyrosinase from Streptomyces antibioticus. // Anal. Chim. Acta. 2001. V. 427. P. 201−210.

17. Osina M. A., Bogdanovskaya V. A., Tarasevich M. R. Bioamperometric Assay of Phenol Derivatives Using a Laccase-Nafion Composite. // Russian J. Electrochem. 2003. V. 39. P. 407−412.

18. Wu X. J., Choi M. M. F., Wu X. M. An organic-phase optical phenol biosensor coupling enzymatic oxidation with chemical reduction. // Analyst. 2004. V. 129. P. 11 431 149.

19. Huang J., Fang H., Liu Ch., Gu E., Jiang D. A novel fiber optic biosensor for the determination of adrenaline based on immobilized laccase catalysis. // Anal. Lett. 2008. V. 41. P. 1430−1442.

20. Abdullah J., Ahmad M., Heng L.Y., Karuppiah N., Sidek H. Immobilization of tyrosinase in chitosan film for an optical detection of phenol. // Sens. Actuators, B. 2006. V. 114. P. 604−609.

21. Abdullah J., Ahmad M., Karuppiah N., Heng L.Y., Sidek H. Chitosan-based tyrosinase optical phenol biosensor employing hybrid nafion/sol-gel silicate for MBTH immobilization. // Talanta. 2006. V. 40. P. 527−532.

22. Abdullah J., Ahmad M., Heng L.Y., Karuppiah N., Sidek H. An optical biosensor based on immobilization of laccase and MBTH in stacked films for the detection of catechol. // Sensors. 2007. V. 7. P. 2238−2250.

23. Paranjpe P., Dutta S., Karve M., Padhye S., Narayanaswamy R. A Disposable Optrode Using Immobilized Tyrosinase Films. // Analytical Biochem. 2001. V. 294. P. 102−107.125.

24. Fiorentino D., Gallone A., Fiocco D., Palazzo G., Mallardi A. Mushroom tyrosinase in polyelectrolyte multilayers as an optical biosensor for o-diphenols.// Biosens. Bioelectron. 2010. V. 25. P. 2033;2037.

25. Jang E., Son K.J., Kim B., Koh W.-G. Phenol biosensor based on hydrogel microarrays entrapping tyrosinase and quantum dots. // Analyst. 2010. V. 135. P. 28 712 878.

26. Park S., Jang E., Koh W.-G., Bumsang K. Fabrication and characterization of optical biosensors using polymer hydrogel microparticles and enzyme-quantum dot conjugates. // Sens. Actuators, B. 2010. V. 150. P. 120−125.

27. Stoica L., Lindgren-Sjolander A., Ruzgas T., Gorton L. Biosensor based on cellobiose dehydrogenase for detection of catecholamines. // Anal. Chem. 2004. V. 76. P. 4690−4696.

28. Lisdat F., Wollenberger U., Paeschke M., Scheller F.W. Sensitive catecholamine measurement using a monoenzymatic recycling system. // Anal. Chim. Acta. 1998. V. 368. P. 233−241.

29. Lisdat F., Wollenberger U., Makower A., Hortnagl H., Pfeiffer D., Scheller F.W. Catecholamine detection using enzymatic amplification. // Biosens. Bioelectron. 1997. V. 12. P. 1199−1211.

30. Climent P. V., Serralheiro M. L. M., Rebelo M. J. F. Development of a new amperometric biosensor based on polyphenoloxidase and polyethersulphone membrane. // Pure Appl. Chem. 2001. V. 73. P. 1993;1999.

31. Shan D., Zhang J., Xue H.-G., Zhang Y.-C., Cosnier S., Ding Sh.-N. Polycrystalline bismuth oxide films for development of amperometric biosensor for phenolic compounds. // Biosens. Bioelectron. 2009. V. 24 P. 3671−3676.

32. Abu Hanifah Sh., Yook Heng L., Ahmad M. Biosensors for Phenolic compounds by Immobilization of tyrosinase in photocurable metacylic-acrylic membranes of varying hydrophylicities. //Anal. Sci. 2009. V. 25. P. 779−784.

33. Topfu S., Sezgintiirk M. K., Dinfkaya E. Evaluation of a new biosensor-based mushroom (Agaricus bisporus) tissue homogenate: investigation of certain phenolic compounds and some inhibitor effects. // Biosens. Bioelectron. 2004. V. 20. P. 592−597.126.

34. Stanca S., Popescu I.C., Oniciu L. Biosensors for phenol derivatives using biochemical signal amplification. // Talanta. 2003. V. 61. 501−507.

35. Fan Q., Shan D., Xuea H., Hea Yu., Cosnier S. Amperometric phenol biosensor based on laponite clay-chitosan nanocomposite matrix. // Biosens. Bioelectronics. 2007. V. 22. P.816−821.

36. Wang G., Xu J.J., Ye L.H., Zhu J.J., Chen H.Y. Highly sensitive sensors based on the immobilization of tyrosinase in chitosan. // Bioelectrochemistry. 2002. V. 57. P. 3338.

37. Zhang T., Tian B., Kong J., Yang P., Liu B. A sensitive mediator-free tyrosinase biosensor based on an inorganic-organic hybrid titania sol-gel matrix. // Anal. Chim. Acta. 2003. V. 489. P. 199−206.

38. Han E., Shan D., Xue H., Cosnier S. Hybrid material based on chitosan and layered double hydroxides: characterization and application to the design of amperometric phenol biosensor. // Biomacromolecules. 2007. V. 8. P. 971−975.

39. Brondani D., Scheeren C.W., Dupont J., Vieira I. C. Biosensor based on platinum nanoparticles dispersed in ionic liquid and laccase for determination of adrenaline. // Sens. Actuators, B. 2009. V. 140. P. 252−259.

40. Li Y.-F., Liu Zh.-M., Liu Y.-L., Yang Y.-H., Shen G.-L., Yu R.-Q. A mediatorfree phenol biosensor based on immobilizing tyrosinase to ZnO nanoparticles. // Anal. Biochem. 2006. V. 349. P. 33−40.

41. Xu X., Guo M., Lu P., Wang R. Development of amperometric laccase biosensor through immobilizing enzyme in copper-containing ordered mesoporous carbon (Cu-OMC)/chitosan matrix. //Mater. Sci. Eng. C. 2010. V.30. P. 722−729.

42. Brondani D., Dupont, J., Spinelli A., Vieira I.C. Development of biosensor based on ionic liquid and corn peroxidase immobilized on chemically crosslinked chitin. // Sens. Actuators, B. 2009. V. 138. P. 236−243.

43. Topcu Sulak M., Erhan E., Keskinler B. Amperometric Phenol Biosensor Based on Horseradish Peroxidase Entrapped PVF and PPy Composite Film Coated GC Electrode. //Appl. Biochem. Biotechnol. 2010. V. 160. P. 856−867.

44. Ameer Q., Adeloju S.B. Development of a potentiometric catechol biosensor by entrapment of tyrosinase within polypyrrole film. // Sens. Actuators, B. 2009. V. 140. P. 5−11.

45. Wang B., Dong Sh. Organic-phase enzyme electrode for phenolic determination based on a functionalized sol-gel composite. // J. Electroanal. Chem. 2000. V. 487. P. 4550.

46. Campanella L., Favero G., Persi L., Sammartino M.P., Tomassetti M., Visco G. Organic phase enzyme electrodes: applications and theoretical studies. // Anal. Chim. Acta. 2001. V. 426. P. 235−247.

47. Yu. J, Ju H. Pure organic phase phenol biosensor based on tyrosinase entrapped in a vapor deposited titania sol-gel membrane. // Electroanalysis. 2004. V. 16. P. 13 051 310.

48. Yu J., Liu S., Ju H. Mediator-free phenol sensor based on titania sol/gel encapsulation matrix for immobilization of tyrosinase by a vapor deposition method. // Anal. Chim. Acta. 2001. V. 441. P. 95−105.

49. Cruz Vieira I., Fatibello-Filho O. Biosensor based on paraffin: graphite modified with sweet potato tissue for the determination of hydroquinone in cosmetic cream in organic phase. // Talanta. 2000. V. 52. P. 681−689.

50. Zhang S., Zhao H., John R. A dual-phase biosensing system for the determination of phenols in both aqueous and organic media. // Anal. Chim. Acta. 2001. V. 441. P. 95 105.

51. Gutes A., Cespedes F., Alegret S., del Valle M. Determination of phenolic compounds by a polyphenol oxidase amperometric biosensor and artificial neural network analysis. // Biosens. Bioelectron. 2005. V. 20. P. 1668−1673.

52. Abdullah J., Ahmad M., Heng L.Y., Karuppiah N., Sidek H. Evaluation of an optical phenolic biosensor signal employing artificial neural networks. // Sens. Actuators, B. 2008. V. 134. P. 959−965.

53. Torrecilla J. S., Mena M. L., Yanez-Sedeno P., Garcia J. Application of artificial neural network to the determination of phenolic compounds in olive oil mill wastewater. //J. Food Eng. 2007. V. 81. P. 544−552.

54. Bioelectrochemistryfundamentals, experimental techniques, and applications. P. N Bartlett, Ed. Wiley: 2008. 478 p.

55. Tsai Y.-Ch., Chiu Ch.-Ch. Amperometric biosensors based on multiwalled carbon nanotube-Nafion-tyrosinase nanobiocomposites for the determination of phenolic compounds. // Sens. Actuators B. 2007. V. 125. P. 10−16.

56. Hervas Perez J.P., Sanchez-Paniagua Lopez M., Lopez-Cabarcos E., Lopez-Ruiz B. Amperometric tyrosinase biosensor based on polyacrylamide microgels. // Biosens. Bioelectron. 2006. V. 22 P. 429−439.

57. Kim M. A., Lee W.-Y. Amperometric phenol biosensor based on sol-gel silicate/Nafion composite film. // Anal. Chim. Acta. 2003. V. 479. P. 143−150.

58. Liu Z., Liu B., Kong J., Deng J. Probing trace phenols based on mediator free alumina sol-gel-derived tyrosinase biosensor. // Anal. Chem. 2000. V. 72. P. 4707−4712.

59. Vedrine C., Fabiano S., Tran-Minh C. Amperometric tyrosinase based biosensor using an electrogenerated polythiophene film as an entrapment support. // Talanta. 2003. V. 59. P. 535−544.

60. Freire R. S., Ferreira M.M.C., Duran N., Kubota L. T. Dual amperometric biosensor device for analysis of binary mixtures of phenols by multivariate calibration using partial least squares. //Anal. Chim. Acta. 2003. V. 485. P. 263−269.

61. Yang Sh., Li Y., Jiang X., Chen Zh., Lin X. Horseradish peroxidase biosensor based on layer-by-layer technique for the determination of phenolic compounds. //Sens. Actuators, B. 2006. V. 114. P. 774−780.

62. Suprun E.V., Budnikov H.C., Evtugyn G.A., Brainina Kh.Z. Bi-enzyme sensor based on thick-film carbon electrode modified with electropolymerized tyramine. // Bioelectrochemistry. 2004. V. 63. P. 281−284.

63. M. Diaconu, S. C. Litescu, G. L. Radu. Laccase-MWCNT-chitosan biosensor-a new tool for total polyphenolic content evaluation from in vitro cultivated plants. // Sens. Actuators, B. 2010. V. 145. P. 800−806.

64. Leite O. D., Fatibello-Filho O., Barbosa A. M. Determination of Catecholamines in Pharmaceutical Formulations Using a Biosensor Modified with a Crude Extract of Fungi Laccase (Pleurotus ostreatus). // J. Braz. Chem. Soc. 2003. V. 14.P. 297−303.

65. Jarosz-Wilkolazkaa A., Ruzgas T., Gorton L. Amperometric detection of mono-and diphenols at Cerrena unicolor laccase-modified graphite electrode correlation between sensitivity and substrate structure. // Talanta. 2005. V. 66. P. 1219−1224.

66. Vianello F., Ragusa S., Cambria M. T., Rigo A. A high sensitivity amperometric biosensor using laccase as biorecognition element. // Biosens. Bioelectron. 2006. V. 21. P. 2155−2160.

67. Rose A., Scheller F. W., Wollenberger U., Pfeiffer D. Quinoprotein glucose dehydrogenase modified thick-film electrodes for the amperometric detection of phenoliccompounds in flow injection analysis. // Fresenius J. Anal. Chem. 2001. V. 369. P. 145 152.

68. Ruzgas T., Csoregi E., Emneus J., Gorton L., Marko-Varga G. Peroxidase-modified electrodes: fundamentals and application. // Anal. Chim. Acta. 1996. V. 330. P. 123−138.

69. Konash A., Magner E. Characterization of an organic phase peroxide biosensor based on horseradish peroxidase immobilized in Eastman AQ. // Biosens. Bioelectron. V. 22. 2006. P. 116−123.

70. Campanella L., Martini U., Sammartino M.P., Tomassetti M. A new catalase enzyme sensor able to determine the hydrogen peroxide directly in chloroform. // Analusis. 1996. V. 24. P. 288−294.

71. Campanella L., Martini U., Sammartino M.P., Tomassetti M. The effect of organic solvent properties on a catalase enzyme sensor for monitoring hydrogen peroxide in non aqueous solutions. //Electroanalysis. 2005. V. 8. P. 1150−1154.

72. Joo H., Yoo Y., Ryu D. A biosensor stabilized by polyethylene glycol for the monitoring of hydrogen peroxide in organic solvent media. // Enzyme Microb. Technol. 1996. V. 19. P. 50−56.

73. Iwuoha E.I., Smyth M.R. Organic-phase amperometric biosensors. // Anal, commun. 1996. V. 33. P. 23−26.

74. Baldini E., Dali Orto V. C., Danilowicz C., Rezzano I., Calvo E. J. Amperometric detection of peroxides using peroxidase and porphyrin biomimetic modified electrodes. // Electroanalysis. 2002. V. 14. P. 1157−1164.

75. Wollenberger U., Wang J., Ozsoz M., Gonzalez-Romero E. Bulk modified enzyme electrodes for reagentless detection of peroxides. // Bioelectrochem. Bioenerg. 1991. V. 26. P. 287−296.

76. Moore A.N.J., Katz E., Willner I. Electrocatalytic reduction of organic peroxides in organic solvents by microperoxidase-11 immobilized as a monolayer on a gold electrode. // J. Electroanal. Chem. 1996. V. 417. P. 189−192.

77. Guo Y., Dong S. Organic phase enzyme electrodes based on organohydrogel. // Anal. Chem. 1997. V. 69. P. 1904;1908.

78. Dimcheva N., Horozova E. Horseradish peroxidase-based organic-phase enzyme electrode. // Anal. Bioanal. Chem. 2005. V. 382. P. 1374−1379.

79. Tsai W.-Ch., Cass A. E.G. Ferrocene-modified horseradish peroxidase enzyme electrodes. A kinetic study on reactions with hydrogen peroxide and linoleic hydroperoxide. //Analyst. 1995. V. 120. P. 2249−2254.

80. Garcia-Moreno E., Ruiz M.A., Barbas C., Pingarron J.M. Determination of organic peroxides in reversed micelles with a poly-N-methylpyrrole horseradish peroxidase amperometric biosensor. // Anal. Chim. Acta. 2001. V. 448. P. 9−17.

81. Mulchandani A., Wang C. L., Weetall H. H. Amperometric detection of peroxides with poly (anilinomethylferrocene)-modified enzyme electrodes. // Anal. Chem. 1995. V. 67. P. 94−100.

82. Gundogan-Paul M., Celebi S. S., Ozyoruk H., Yildiz A. Amperometric enzyme electrode for organic peroxides determination prepared from horseradish peroxidase immobilized in poly (vinylferrocenium) film. // Biosens. Bioelectron. 2002. V. 17. P. 875 881.

83. Vidal I. G., Tescarollo Diasa I. L., de Oliveira Neto G., de Vasconcellos Lanza M. R., Taboada Sotomayor M.D.P. Carbamide Peroxide Determination in Tooth Whitening Using a Reagentless HRP-Biosensor. // Anal. Lett. 2009. V. 42. P. 352−365.

84. Haiying L., Shaohua Y., Yiqin Q., Zhaojin W. Amperometric Biosensors Sensitive to Organic Peroxides Based on Immobilization of Redox Organic Dyes and Horseradish Peroxidase in Polyester Ionomer Film. // J. Shanghai Univ. 1998. V. 2. P. 320−325.

85. Campanella L., Giancola D., Gregori E. Determination of hydroperoxides in nonaqueous solvents or mixed solvents, using a biosensor with two antagonist enzymes operating in parallel. // Sens. Actuators., B. 2003. V. 95. P. 321−327.

86. Wang J., Rivas G., Liu J. A catalase electrode for organic phase enzymatic Analysis. //Anal. Lett. 1995. V. 28. P. 2287−2295.

87. Campanella L., Sammartino M. P, Tomassetti M Zanella S. Hydroperoxide detmeination by a catalyse OPEE: application to the study of extra virgin olive oil rancidification process. // Sens. Actuators, B. 2001. V. 76. P. 158−165.

88. Horozova E., Dimcheva N., Jordanova Z. Study of catalase electrode for organic peroxides assays. //Bioelectrochemistry. 2002. V. 58. P. 181−187.

89. Hanko M., Bruns N., Rentmeister S., Tiller J.C., Heinze J. Nanophase-separated amphiphilic conetworks as versatile matrixes for optical chemical and biochemical sensors. // Anal. Chem. 2006. V. 78. P. 6376−6383.

90. Кольтгоф И. М., Сендел Е. Б. Количественный анализ. М.: Госхимиздат, 1948. С. 822.

91. Лурье Ю. Ю. Справочник по аналитической химии. М.: Химия. 1989. 480 с.

92. Дерффель К. Статистика в аналитической химии. М.: Мир. 1994. 267 с.

93. Payne, G. F., M. V. Chaubal, T. A. Barbari. Enzyme-catalyzed polymer modification: reaction of phenolic compounds with chitosan films. // Polymer. 1996. V. 37. P.4643−4648.

94. Kumar G., Bristow J.F., Smith P.J., Payne G.F. Enzymatic gelation of the natural polymer chitosan. // Polymer. 2000. V. 41. P. 2157−2168.

95. Kumar M. N. V., Muzzarelli, R. A. A., Muzzarelli C., Sashiwa H., Domb. A. J. Chitosan chemistry and pharmaceutical perspectives // Chem. Rev. 2004. V. 104. P. 6017−6084.

96. Shao L., Kumar G., Lenhart J.L., Smith P.J., Payne G.F. Enzymatic modification of the synthetic polymer polyhydroxystyrene. // Enzyme Microb. Technol. 1999. V. 25. P. 660−668.

97. Коновалова О. Ю., Логинова Л. П. Особенности протекания индикаторной реакции на первичные ароматические амины в желатиновой пленке. // Методы и объекты химического анализа. 2008. Т. 3. № 2. С. 147−156.

98. Ettinger M., Ruchhoft С., Lishka R. Sensitive 4-aminoantipyrine method for phenolic compounds. // Anal. Chem. 1951. V. 23. P. 1783−1788.

99. Yamaguchi Y., Hayashl Ch. Determination of urinary total phenolic compounds with use of 4-aminoantipyrine: suggested screening test for hyperthyroidism and for catecholamine-producing tumor. // Clin. Chem. 1977. V. 23. P. 2151−2154.

100. Cun-guang Y. Progress of optical determination for phenolic compounds in sewage. //J. Environ. Sci. 1998. V. 10. P. 76−86.

101. Gasparic J., Svobodova D., Pospisilova M. Investigation of the colour reaction of phenols with the MBTH reagent. // Mikrochim. Acta. 1977. V. 1. P. 241−250.

102. Svobodova D., Gasparic J. Investigation of the colour reaction of phenols with 4-aminoantipyrine. //Mikrochim. Acta. 1971. V. 2. P. 384−390.

103. Friestad H., Ott D.E., Gunther F.A. Automated Colorimetric Microdetermination of Phenols by Oxidative Coupling with 3-Methyl-2-Benzothiazolinone Hydrazone. // Anal. Chem. 1969. V. 41. P. 1750−1754.

104. Trotta F., Ferrari R.P., Laurenti E., Moraglio G., Trossi A. Removal of phenols from aqueous solutions in the presence of horseradish peroxidase and cyclodextrin derivatives. //J. Inclusion. Phenom. Mol. Recogn. 1996. V. 1−3. P. 225−228.

105. Lucas-Abellan C., Fortea I., Gabaldon J.A., Nunez-Delicado E. Encapsulation of quercetin and myricetin in cyclodextrins at acidic pH. // J. Agric. Food Chem. 2008. V. 56. P. 255−259.

106. Chen J.B., Xia C.G., Li S.B. Kinetic study on horseradish peroxidase interacting with cyclodextrin. // Chinese Chem. Lett. 2000. V. 11. P. 721−724.

107. Reihmann M.H., Ritter H. Oxidative oligomerization of cyclodextrin-complexed bifunctional phenols catalyzed by horseradish peroxidase in water. // Macromol. Chem. Phys. 2000. V. 201. P. 798−804.

108. Chen J.B., Xu Y., Xia C.G., Li S. B. Effect of cyclodextrin on the activity and secondary structure of horseradish peroxidase. // Protein Pept Lett. 2004 V. 11. P. 509 513.

109. Setti L., Scali S., Angeli I.D., Pifferi P.G. Horseradish peroxidase-catalysed oxidative coupling of 3-methil-2-benzotiazolinone hydrazone and methoxyphenols. // Enzyme Microb. Tech. 1998. V. 22. P. 656−661.

110. Кирейко A.B. Пероксидаза в полиэлектролитном комплексе и мицеллах поверхностно-активных веществ для определения ее субтартов и эффекторов в водно-органических средах. Дис. канд. хим. наук. М.: МГУ, 2009. 213 с.

111. Singh М., Thomas М. Biocatalytic oxidation of hydroquinone to p-benzoquinone in a water-organic solvent two-phase system. // Biotechnol. Lett. 1985. V. 7. P. 663−664.

112. Vau Maanen J.M.S., Verkerk U.H., Broersen J., Lafleur M.V.M., De Vries J., Retel J., Pinedo H.M. Semi-quinone formation from the catechol and ortho-quinone metabolites of the antitimor agent VP-16−213. // Free Rad. Res. Comms. 1988. V. 4. P. 371−384.

113. Erdem A., Pabuccuoglu A., Meric В., Kerman K., Osnoz M. Electrochemical biosensor based on horseradish peroxidase for the determination of oxidizible drugs. // Turk. J. Med. Sei. 2000. V. 30. P. 349−354.

114. Morozova O.V., Shumakovich G.P., Shleev S.V., Yaropolov Y.A. Laccase-mediator systems and their applications: a review. // Appl. Biochem. Microbiol. 2007. V. 43. P.523−535.

115. Gregg D.C., Nelson J.M. The action of tyrosinase on hydroquinone. // J. Am. Chem. Soc. 1940. V. 62. P. 2510−2512.

116. Mayberry J.M., Malette M.F. Inhibition of the tyrosinase oxidation of one substrate by another. // J. Gen. Physiol. 1962. V. 45. P. 1239−1245.

117. Divi R.L., Doerge D.R. Mechanism-based inactivation of lactoperoxidase and theroid peroxidase by resorcinol derivatives. // Biochemistry. 1994. V. 33. P. 9668−9674.

118. Battino R., Rettich T., Tominaga T. The solubility of oxygene and ozone in liquids. // J. Phys. Chem. Data. 1983. V. 12. P. 163−178.

119. Leung K.-N., Leung P.Y., Kong L.P., Leung P. K. Immunomodulatory Effects of Esculetin (6,7-Dihydroxycoumarin) on Murine Lymphocytes and Peritoneal Macrophages. // Cell. Mol. Immunol. 2005. V. 2. P. 181−188.

120. Ogbu Ambrose E., Egbuonu Anthony C.C., Lawrence E. Time and dose dependent effects of esculetin on some routine parameters of biochemical function in male wistar rats. //U.S. Int. Res. J. Biochem. Bioinform. 2012. V. 2. P. 105−108.

121. Awad H.M., Boersma M.G., Vervoort J., Rietjens I.M. Peroxidase-catalyzed formation of quercetin quinone methide-glutathione adducts. // Arch. Biochem. Biophys. 2000. V. 378. P. 224−233.

122. Boots A. W, Kubben N., Haenen G., Bast A. Oxidized quercetin reacts with thiols rather than with ascorbate: implication for quercetin supplementation. // Biochem. Biophys. Res. Commun. 2003. V. 308. P. 560−565.

123. Takahama U. Spectrophotometric study on the oxidation of rutin by horseradish peroxidase and characteristics of the oxidized products. // Biochim. Biophys. Acta. 1986. V. 882. P. 445−451.

124. Munoz-Munoz J.L., Garcia-Molina F., Varon R, Rodriguez-Lopez J.N., Garcia-Canovas F., Tudela J. Kinetic characterization of the oxidation of esculetin by polyphenol oxidase and peroxidase. // J. Biosci. Biotechnol. Biochem. 2007 V. 71. P. 390−396.

125. Koontz J.L., Marcy J.E., O’Keefe S.F., Duncan S.E. Cyclodextrin inclusion complex formation and solid-state characterization of the natural antioxidants a-tocopherol and quercetin. // J. Agrie. Food Chem. 2009. V. 57. P. 1162−1171.

126. Garcia-Moreno M., Moreno-Conesa M., Rodriges-Lopez J.N., Garcia-Canovas F., Varon, R. Oxidation of 4-tert-butylcatechol and dopamine by hydrogen peroxide catalyzed by horseradish peroxidase. // Biol. Chem. 1999. V. 380. P. 689−694.

127. Copeland R.A. Enzymes: a practical introduction to structure, mechanism, and data analysis. Wiley, 2000. 390 p.

128. Villalonga R., Cao R., Fragoso A. Supramolecular chemistry of cyclodextrins in enzyme technology. // Chem. Rev. 2007. V. 107. P. 3088−3116.

129. Desiderio C., Ossicini L., Fanali S. Analysis of hydroquinone and some of its ethers by using capillary electrochromatography. //J. Chromatogr., A. 2000. V. 887. P. 489−496.

130. Siddique S., Parveen Z., Ali Z., Zaheer M. Qualitative and Quantitative Estimation of Hydroquinone in Skin Whitening Cosmetics. // J. Cosmet., Dermatol. Sci. Appl.2012. V.2.P. 224−228.

131. Wang L.-H. Simultaneous determination of hydroquinone ethers in cosmetics after preconcentration at a carbon paste electrode. Analyst. 1995. V. 120. P. 2241−2244.

Показать весь текст
Заполнить форму текущей работой