Получение растворимой формы белков с активностью органофосфатгидролазы
Диссертация
Моделирование структуры ОРН позволило сделать предположение о том, что стабильность фермента при нейтральных значениях рН выше, чем при щелочных значениях, что было подтверждено экспериментально при исследовании условий хранения фермента ЬШб-ОРН и термоинактивации гибридных белков. Кроме того, показано, что специфичность действия фермента увеличивается в пользу субстратов с более объемными… Читать ещё >
Список литературы
- II. Мельников. Пестициды: Химия, технология, применение. 1987. М.: Химия. 712 с.
- Е. Ефременко, В. Сергеева. Органофосфатгидролаза фермент, катализирующий деградацию фосфорсодержащих отравляющих веществ и пестицидов. Изв. Акад. Наук. Сер. хим., 2001, 10, 1743−1749.
- L. Luchini, Т. Peres, M. deAndrea. Monitoring of pesticide residues in a cotton crop soil. J. Environ. Sci. HealB, 2000, 35, 51−59.
- J. Shah, M. Jan, M. Nafees, S. Noureen, N. Bhatti. Monitoring pesticide residues in fresh fruits marketed in Peshawar, Pakistan. Am. Lab., 2005, Mar., 22−24.
- Y.-Z. Zheng, W.-S. Lan, C.-L. Qiao, A. Mulchendani, W. Chen. Decontamination of vegetables sprayed with organophosphate pesticides by organophosphorus hydrolase and carboxylesterase (Bl). Appl. Biochem. Biotech., 2007, 136, 233−242.
- W. Lambert, M. Lasarev, J. Muniz, J. Scherer, J. Rothlein, J. Santana, L. McCauley. Variation in organophosphate pesticide metabolites in urine of children living in agricultural communities. Environ. Health Persp., 2005, 113(4), 504−508.
- О. Максименко. Пестициды: защита для растений или отрава для окружающей среды. Наука и жизнь, 2003, 3, 54−58.
- Б. Филатов, Н. Британов, В. Клаучек. Медико-санитарные проблемы уничтожения химического оружия (российский опыт). Хим. Биол. Безопасн., 2004, 1—2, 13−14.
- Конвенция о запрещении разработки, производства, накопления и применения химического оружия и о его уничтожения (исправленный вариант). 8 августа 1994 г. PTS PC OPCW. 1994. с. 191.
- Федеральный закон «Об уничтожении химического оружия». Принят Государственной Думой 25 апреля 1997 г. Российская газета. 6 мая 1997. с. 4−5.
- Сборник инструктивно-методических документов по проблеме уничтожения химического оружия. Часть II. Фосфорорганические отравляющие вещества. T. I. М.: ФУ «Медбиоэкстрим», 2001, с. 208.
- N. В. Munro, S. S. Talmage, G. D. Griffin, L. C. Waters, A. P. Watson, J. F. King, V. Hauschild. The sources, fate, and toxicity of chemical warfare agent degradation products. Environ. Health Persp, 1999, 107(12), 933−974.
- В. diSioudi, J. Grimsley, К. Lai, J. Wild. Modification of near active site residues in organophosphorus hydrolase reduces metal stoichiometry and alters substrate specificity. Biochemistry, 1999,38(10), 2866−2872.
- T. Reeves, M. Wales, J. Grimsley, P. Li, D. Cerasoli, J. Wild. Balancing the stability and the catalytic specificities of OP hydrolases with enhanced V-agent activities. Protein Eng. Des. Sel., 2008, 21(6), 405−412.
- D. Crabb, J. DeFrank, Ch. Penet, J. Warner. Look at opportunities for enzymes for chemical decontamination. Chem.-lnd. London, 2004, Jul., 14.
- Варфоломеев С.Д., Ефременко E.H., Алиев Т. К., Вотчицева Ю. А. Рекомбинантная плазмидная ДНК pTrcTE-ОРН и продуцент фермента органофосфатгидролазы. Патент РФ на изобретение № 2 232 807, 2004.
- Ю. Вотчицева, Е. Ефременко, Т. Алиев, С. Варфоломеев. Свойства гексагистидинсодержащей органофосфатгидролазы. Биохимия, 2006, 71(2), 216−222.
- Ю. Вотчицева. Органофосфатгидролаза: получение игенетически-модифицированных аналогов и анализ каталитических характеристик. Дисс. на соиск. степени к.х.н., 2006, 165 с.
- Ya. Liu, G. Gotte, M. Libonati, D. Eisenberg. A domain-swapped RNase A dimer with implications for amyloid formation. Nat. Struct. Biol., 2001, 8(3), 211−214.
- F. Rousseau, J. Schymkowitz, H. Wilkinson, L. Itzhaki. Three-dimensional domain swapping in pl3sucl occurs in the unfolded state and is controlled by conserved proline residues. Proc. Natl. Acad. Sci, 2001, 98(10), 5596−5601.
- E. Ефременко, С. Варфоломеев. Ферменты деструкции фосфорорганических нейротоксинов. Успехи биол. Хим., 2004, 44, 307−340.
- D. Dumas, S. Caldwell, J. Wild, F. Raushela. Purification and properties of the phosphotricsterase from Pseudomonas diminuta. J. Biol. Chem., 1989, 264(33), 19 659−19 665.
- W. Donarski, D. Dumas, D. Heitmeyer, V. Lewis, F. Raushel. Structure-activity relationships in the hydrolysis of substrates by the phosphotriesterase from Pseudomonas diminnta. Biochemistry, 1989, 28, 4650−4655.
- J. Vanhooke, M. Benning, F. Raushel, H. Holden. Three-dimensional structure of the zinc-containing phosphotriesterase with the bound substrate analog diethyl 4-methylbenzylphosphonate. Biochemistry, 1996, 35(19), 6020−6025.
- M. Benning, J. Kuo, F. Raushel, II. Holden. Three-dimensional structure of phosphotriesterase: an enzyme capable of detoxifying organophosphate nerve agents. Biochemistry, 1994,33(50), 15 001−15 007.
- M. Benning, J. Kuo, F. Raushel, H. Holden. Three-dimensional structure of the binuclear metal center of phosphotriesterase. Biochemistry, 1995, 34(25), 7973−7978.
- M. Benning, H. Shim, Fr. Raushel, H. Holden. High resolution X-ray structures of different metal-substituted forms of phosphotriesterase from Pseudomonas diminuta. Biochemistry, 2001, 40, 2712−2722.
- H. Shim, F. Raushel. Self-assembly of the binuclear metal center of phosphotriesterase. Biochemistry, 2000, 39, 7357−7364.
- S.-B. Hong, J. Kuo, L. Mullins, F. Raushel. CO2 is required for the assembly of the binuclear metal center of phosphotriesterase. J. Am. Chem. Soc., 1995, 117, 7580−7581.
- M. Krauss. Ab initio structure of the active site of phosphotriesterase. J. Chem. Inf. Comput. Sci., 2001, 41, 8−17.
- M. Krauss, L. Olsen, J. Antony, L. Hemmingsen. Coordination Geometries of Zn (II) and Cd (II) in phosphotriesterase: influence of water molecules in the active site. J. Phys. Chem. B, 2002,106, 9446−9453.
- Ch.-G. Zhan, F. Zheng. First computational evidence for a catalytic bridging hydroxide ion in a phosphodiesterase active site. J. Am. Chem. Soc., 2001, 123(12), 2835−2838.
- J. Koca, Ch.-G. Zhan, R. Rittenhouse, R. Ornstein. Mobility of the active site bound paraoxon and sarin in zinc-phosphotriesterase by molecular dynamics simulation and quantum chemical calculation. J. Am. Chem. Soc., 2001, 123, 817−826.
- Sh.-L. Chen, W.-H. Fang, F. Himo. Theoretical study of the phosphotriesterase reaction mechanism. J. Phys. Chem. B, 2007,111(6), 1253−1255.
- J. Коса, Ch.-G. Zhan, R. Rittenhouse, R. Ornstein. Coordination number of zinc ions in the phosphotriesterase active site by molecular dynamics and quantum mechanics. J. Comput. Chem., 2003, 24(3), 368−378.
- C. Samples, T. Howard, F. Raushcl, V. DeRose. Protonation of the binuclear metal centcr within the active site of phosphotriesterase. Biochemistry, 2005, 44(33), 11 005−11 013.
- Г. Казанков. Реакции координированных нуклеофилов. Ж. Орг. Хим., 1993, 29(6), 1239−1267.
- A. Russell, М. Erbeldinger, J. DeFrank, J. Kaar, G. Drevon. Catalitic buffers enable positive-response inhibition-based sensing of nerve agents. Biotechnol. Bioeng., 2002, 77(2), 352−357.
- Большой энциклопедический справочник. Под ред. К. Люцис., М.: Рус. энциклопед. тов., 2003, 576 с.
- F. Raushel. Bacterial detoxification of organophosphate nerve agents. Curr. Opin. Microbiol., 2002, 5, 288−295.
- M. Ortiz-Hernandez, R. Quintero-Ramirez, A. Nava-Ocampo, A. Bello-Ramirez. Study of the mechanism of Flavobacterium sp. for hydrolyzing organophosphate pesticides. Fund. Clin. Pharmacol., 2003, 17, 717−723.
- C. Samples, F. Raushel, V. DeRose. Activation of the binuclear metal center through formation of phosphotriesterase-inhibitor complexes. Biochemistry, 2007, 46, 3435−3442.
- M. Benning, S.-B. Hong, F. Raushel, H. Holden. The Binding of substrate analogs to phosphotriesterase. J. Biol. Chem., 2000, 275(39), 30 556−30 560.
- C. Jackson, J.-W. Liu, M. Coote, D. Ollis. The effects of substrate orientation on the mechanism of a phosphotriesterase. Org. Biomol. Chem., 2005, 3, 4343^1350.
- V. Lewis, W. Donarski, J. Wild, and F. Raushel. Mechanism and stereochemical course at phosphorus of the reaction catalyzed by a bacterial phosphotriesterase. Biochemistry, 1988, 27(5), 1591−1597.
- S. Caldwell, F. Raushel. Transition-state structures for enzymatic and alkaline phosphotricster hydrolysis. Biochemistry, 1991, 30(30), 7444−7450.
- S.-B. Hong, F. Raushel. Stereochemical constraints on the substrate specificity of phosphotriesterase. Biochemistry, 1999,38(4), 1159−1165.
- Органикум. 1992. В 2-х т. T. l: Пер. с нем.-М.: Мир, 587 с.
- S. Caldwell, J. Newcomb, K. Schlecht, F. Raushel. Limits of diffusion in the hydrolysis of substrates by the phosphotriesterase from Pseudomonas diminuta. Biochemistry, 1991,30(30), 7438−7444.
- G. Omburo, J. Kuo, L. Mullins, F. Raushel. Characterization of the zinc binding site of bacterial phosphotriesterase. J. Biol. Chem., 1992, 67(19), 13 278−13 283.
- G. Omburo, L. Mullins, F. Raushel. Structural characterization of the divalent cation sites of bacterial phosphotriesterase by 13Cd NMR spectroscopy. Biochemistry, 1993, 32(15), 9148−9155.
- W.-S. Li, K. Lum, M. Chen-Goodspeed, M. Sogorb, F. Raushel. Stereoselective detoxification of chiral sarin and soman analogues by phosphotriesterase. Bioorgan. Med. Chem., 2001, 9, 2083−2091.
- G. Mei, A. Venere, N. Rosato, A. Finazzi-Agro. The importance of being dimeric. FEBSJ., 2005, 272, 16−27.
- A. Veselovsky, Yu. Ivanov, A. Ivanov, A. Archakov, P. Lewi, P. Janssen. Proteinprotein interactions: mechanisms and modification by drugs. J. Mol. Recognit., 2002, 15, 405 422.
- T. Topping, D. Hoch, L. Gloss. Folding mechanism of FIS, the intertwined, dimeric factor for inversion stimulation. J. Mol. Biol., 2004, 335, 1065−1081.
- K. Neet, D. Timm. Conformational stability of dimeric proteins: quantitative studies by equilibrium denaturation. Protein Sci., 1994, 3, 2167−2174.
- S. Hobart, S. Ilin, D. Moriarty, R. Osuna, W. Colyn. Equilibrium denaturation studies of the Escherichia coli factor for inversion stimulation: implications for in vivo function. Protein Sci., 2002,11, 1671−1680.
- J. Grimsley, J. Scholtz, C. Pace, J. Wild. Organophosphorus hydrolase is a remarkably stable enzyme that unfolds through a homodimeric intermediate. Biochemistry, 1997, 36, 14 366−14 374.
- J. Ramstein, N. Hervouet, F. Coste, Ch. Zelwer, J. Oberto, B. Castaing. Evidence of a thermal unfolding dimeric intermediate for the Escherichia coli histone-like HU proteins: thermodynamics and structure. J. Mol. Biol., 2003, 331, 101−121.
- A. Clark, J. Sinclair, T. Baldwin. Folding of bacterial luciferase involves a non-native heterodimeric intermediate in equilibrium with the native enzyme and the unfolded subunits. J. Biol. Chem., 1993,2(15), 10 773−10 779.
- L. Gloss, C. Matthews. Urea and thermal equilibrium denaturation studies on the dimerization domain of Escherichia coli Trp repressor. Biochemistry, 1997, 36(19), 5612−5623.
- B. Gorovits, P. Horowitz. The molecular chaperonin cpn60 displays local flexibility that is redused after binding with unfolded protein. J. Biol. Chem., 1995, 270(22), 13 057−13 062.
- D. Rochu, N. Beaufet, F. Renault, N. Viguie, P. Masson. The wild type bacterial Co2+/Co2^-phosphotriesterase shows a middle-range thermostability. Biochimica et Biophysica Acta, 2002,1594, 207−218.
- E. Efremenko, I. Lyagin, Yu. Votchitseva, M. Sirotkina, S. Varfolomeev. Polyhistidine-containing organophosphorus hydrolase with outstanding properties. Biocatal. Biotransfor., 2007,25(1), 103−108.
- C. Roodveldt, D. Tawfik. Directed evolution of phosphotriesterase from Pseudomonas diminuta for heterologous expression in Escherichia coli results in stabilization of the metal-free state. Protein Eng. Des Sel, 2005, 18(1), 51−58.
- H. Niwa, S. Inouye, T. Hirano, T. Matsuno, S. Kojima, M. Kubota, M. Ohashi, F. Tsuji. Chemical nature of the light emitter of the Aequorea green fluorescent protein. Proc. Natl. Acad. Sci. USA, 1996, 93, 13 617−13 622.
- D. Gudkov, Yu. Votchitseva, E. Efremenko. Paraoxon hydrolysis catalyzed by organophosphate hydrolase containing the polyhistidine tag at the C-terminus of the protein molecule. Rus. Chem. Bull., 2006, 61(1), 1−7.
- R. Kapust, D. Waugh. Escherichia coli maltose-binding protein is uncommonly effective at promoting the solubility of polypeptides to which it is fused. Protein Sci., 1999, 8, 1668−1674.
- J. Fox, K. Routzahn, M. Bucher, D. Waugh. Maltodextrin-binding proteins from diverse bacteria and archaea are potent solubility enhancers. FEBS Lett., 2003, 537, 53−57.
- J. Fox, R. Kapust, D. Waugh. Single amino acid substitutions on the surface of Escherichia coli maltose-binding protein can have a profound impact on the solubility of fusion proteins. Protein Sci., 2001, 10, 622−630.
- K. Routzahn, D. Waugh. Differential effects of supplementary affinity tags on the solubility of MBP fusion proteins. J. Struct. Func. Genomics, 2002, 2, 83−92.
- S. Sati, S. Singh, N. Kumar, A. Sharma. Extra terminal residues have a profound effect on the folding and solubility of a Plasmodium falciparum sexual stage-specific protein over-expressed in Escherichia coli. Eur. J. Biochem., 2002, 269, 5259−5263.
- R. Kern, A. Malki, A. Holmgren, G. Richarme. Chaperone properties of Escherichia coli thioredoxin and thioredoxin reductase. Biochem. J., 2003, 371, 965−972.
- J. Winter, P. Neubauer, R. Glockshuber, R. Rudolph. Increased production of human proinsulin in the periplasmic space of Escherichia coli by fusion to DsbA. J. Biotechnol., 2000, 84, 175−185.
- Ya. Arii, H. Yamaguchi, Sh.-I. Fukuoka. Producing of a soluble recombinant prion protein fused to blue fluorescent protein without refolding or detergents in Escherichia coli cells. Biosci. Biotechnol. Biochem., 2007, 71(10), 2511−2514.
- R. Tsien. The green fluorescent protein. Annn. Rev. Biochem., 1998, 67, 509−544.
- N. Shaner, P. Steinbach, R. Tsien. A guide to choosing fluorescent proteins. Nat. Meth., 2005, 2(12), 905−915.
- M. Ashby, K. Ibaraki, J. Henley. It’s Green Outside: tracking cell surface proteins with pH-sensitive GFP. Trends Neurosci., 2004, 27(5), 257−261.
- V. Verkhusha, K. Lukyanov. The molecular properties and applications of Anthozoa fluorescent proteins and chromoproteins. Nat. Biotechnol., 2004, 22(3), 289−296.
- H. Зубова, А. Булавина, А. Савицкий. Спектральные и физико-химические свойства зеленого (GFP) и красного (drFP583) флюоресцирующих белков. Успехи биолог, хим., 2003, 43, 163−224.
- В. Верхуша, Н. Аковбян, Е. Ефременко, С. Варфоломеев, П. Вржещ. Кинетический анализ созревания и денатурации красного флюоресцентного белка DsRed. Биохимия, 2001, 66(12), 1659−1670.
- М.-А. Elsliger, R. Wachter, G. Hanson, К. Kallio, J. Remington. Structural and spectral response of green fluorescent protein variants to changes in pH. Biochemistry, 1999, 38, 5296−5301.
- M. Chatroraj, B. King, G. Bublitz, S. Boxer. Ultra-fast excited state dynamics in green fluorescent protein: multiple states and proton transfer. Proc. Natl. Acad. Sci. USA, 1996, 93, 8362−8367.
- A. Saxena, J. Udgaonkar, G. Krishnamoorthy. Protein dynamics control proton transfer from bulk solvent to protein interior: a case study with a green fluorescent protein. Protein Sei., 2005, 14, 1787−1799.
- G. Patterson, S. Knobel, W. Sharif, S. Kain, D. Piston. Use of the green fluorescent protein and its mutants in quantitative fluorescence microscopy. Biophys. J., 1997, 73, 27 822 790.
- G. Miesenbok, D. De Angelis, J. Rothman. Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins. Nature, 1998, 394, 192−195.
- P. Paroutis, N. Touret, S. Grinstein. The pH of the secretory pathway: measurement, determinants, and regulation. Physiology, 2004, 19, 207−215.
- M. Ng, R. Roorda, S. Lima, B. Zemelman, P. Morcillo, G. Miesenbock. Transmission of olfactory information between three populations of neurons in the antennal lobe of the fly. Neuron, 2002, 36(3), 463−474.
- S. Sankaranarayanan, D. De Angelis, J. Rothman, T. Ryan. The use of pHluorines for optical measurements of presynaptic activity. Biophys. J., 2000, 79, 2199−2208.
- T. McAnaney, E. Park, G. Hanson, S. Remington, S. Boxer. Green fluorescent protein variants as ratiometric dual emission pH sensors. 2. Excited-state dynamics. Biochemistry, 2002, 41(52), 15 489−15 494.
- H. Зубова, А. Савицкий. Молекулярные клеточные сенсоры, созданные на основе цветных флуоресцирующих белков. I. Сенсоры pH, ионов СГ, Са2+, Zn2+, Cu2+. Yen. Биол. Химии, 2005, 45, 391−454.
- R. Richins, A. Mulchandani, W. Chen. Expression, immobilization, and enzymatic characterization of cellulose-binding domain organophosphorus hydrolase fusion enzymes. Biotechnol. Bioeng., 2000, 69(6), 591−596.
- A. Mansee, W. Chen, A. Mulchandani. Detoxification of the organophosphate nerve agent coumaphos using organophosphorus hydrolase immobilized on cellulose materials. J. Ind. Microbiol. Biot., 2005, 32, 554−560.
- R. Richins, 1. Kaneva, A. Mulshandani, W. Chen. Biodegradation of organophosphate pesticide by surface-expressed organophosphorus hydrolase. Nat. Biotechnol., 1997, 15, 984 987.
- M. Shimazu, A. Nguyen, A. Mulchandani, W. Chen. Cell surface display of organophosphorus hydrolase in Pseudomonas putida using an ice-nucleation protein anchor. Biotechnol. Progr., 2003, 19, 1612−1614.
- M. Shimazu, A. Mulchandani, W. Chen. Cell surface display of organophosphorus hydrolase using ice nucleation protein. Biotechnol. Progr., 2001, 17, 76−80.
- W. Chungjatupornchai, S. Fa-aroonsawat. Biodegradation of organophosphate pesticide using recombinant cyanobacteria with surface- and intracellular-expressed organophosphorus hydrolase. J. Microbiol. Biotechn., 2008, 18(5), 946−951.
- C. Cho, A. Mulchandani, W. Chen. Bacterial cell surface display of organophosphorus hydrolase for selective screening of improved hydrolysis of organophosphate nerve agents. Appl. Environ. Microb., 2002, 68(4), 2026−2030.
- D. Kang, J. Kim, H. Cha. Enhanced detoxification of organophosphates using recombinant Escherichia coli with co-expression of organophosphorus hydrolase and bacterial hemoglobin. Biotechnol. Lett., 2002, 24, 879−883.
- Y. Kim, D. Kang, S.-S. Choi, J. Kim, J. Chung, II. Cha. Co-expression of bacterial hemoglobin overrides high glucose-induced repression of foreign protein expression in Escherichia coli W3110. Biotechnol. Lett., 2004, 26, 1173−1178.
- W. Lan, J. Gu, J. Zhang, B. Shen, H. Jiang, A. Mulchandani, W. Chen, C. Qiao. Coexpression of two detoxifying pesticide-degrading enzymes in a genetically engineered bacterium. Int. Biodeter. Biodegr., 2006, 58, 70−76.
- M. Shimazu, A. Mulchandani, W. Chen. Thermally triggered purification and immobilization of elastin-OPH fusions. Biotechnol. Bioeng., 2003, 81(1), 74−79.
- C.-F. Wu, H. Cha, G. Rao, J. Valdes, W. Bentley. A green fluorescent protein fusion strategy for monitoring the expression, cellular location, and separation of biologically active organophosphorus hydrolase. Appl. Microbiol. Biot., 2000, 54, 78−83.
- H. Cha, Ch.-F. Wu, J. Valdes, G. Rao, W. Bentley. Observations of green fluorescent protein as a fusion partner in genetically engineered Escherichia coli: monitoring protein expression and solubility. Biotechnol. Bioeng., 2000, 67(5), 565−574.
- Ch.-F. Wu, J. Valdes, W. Bentley. Effects of in situ cobalt ion addition on the activity of a GFP-OPH fusion protein: the fermentation kinetics. Biotechnol. Progr., 2001, 17, 606−611.
- Ch.-F. WU, J. Valdes, G. Rao, W. Bentley. Enhancement of organophosphorus hydrolase yield in Escherichia coli using multiple gene fusions. Biotechnol. Bioeng., 2001, 75(1), 100−103.
- Ch. Li, Y. Zhu, I. Benz, M. Schmidt, W. Chen, A. Mulchandani, Ch. Qiao. Presentation of functional organophosphorus hydrolase fusions on the surface of Escherichia coli by the A1DA-I autotransporter pathway. Biotechnol. Bioeng., 2008, 99(2), 485−490.
- Ch.-F. Wu, H. Cha, J. Valdes, W. Bentley. GFP-visualized immobilized enzymes: degradation of paraoxon via organophosphorous hydrolase in a packed column. Biotechnol. Bioeng, 2002, 77(2), 212−218.
- К. Маркосян, Б. Курганов. Фолдинг, неправильный фолдинг и агрегация белков. Образование телец включения и агресом. Биохимия, 2004, 69(9), 1196−1212.
- В. van der Berg, R. Ellis, Ch. Dobson. Effects of macromolecular crowding on protein folding and aggregation. EMBOJ., 1999,18(24), 6927−6933.
- M. Silow, Y.-J. Tan, A. Fcrsht, M. Oliveberg. Formation of short-lived protein aggregates directly from the coil in two-state folding. Biochemistry, 1999, 38(40), 13 006−13 012.
- А. Вульфсон, P. Тихонов, С. Печенов. Общий подход к ренатурации рекомбинантных белков, продуцируемых в составе тел включения. Доклады А. Н., 2001, 380(3), 400−403.
- N. Fawzi, V. Chubukov, L. Clark, S. Brown and T. Head-Gordon. Influence of denatured and intermediate states of folding on protein aggregation. Protein Sci., 2005, 14, 9 931 003.
- S. Idicula-Thomas, P. Balaji. Protein aggregation: a perspective from amyloid and inclusion-body formation. Curr. Sci., 2007, 92(6), 758−767.
- V. Uvcrsky, J. Li, P. Souillac, I. Millett, S. Doniach, R. Jakes, M. Goedert, A. Fink. Biophysical properties of the synucleins and their propensities to fibrillate. J. Biol. Chem., 2002, 277(14), 11 970−11 978.
- S. Reuveny, Y. Kim, C. Kemp, J. Shiloach. Effect of temperature and oxygen on cell growth and recombinant protein production in insect cell cultures. Appl. Microbiol. Biot., 1993, 38, 619−623.
- S. Hong, S. Lee. Importance of redox balance on the production of succinic acid by metabolically engineered Escherichia coli. Appl. Microbiol. Biot., 2002, 58, 286−290.
- M. Kosinski, U. Rinas, J. Bailey. Isopropyl-p-D-thiogalactopyranoside influences the metabolism of Escherichia coli. Appl. Microbiol. Biot., 1992, 36, 782−784.
- L.-F. Vallejo, U. Rinas. Strategies for the recovery of active proteins through refolding of bacterial inclusion body proteins. Microb. Cell Fact., 2004, 3, 11−22.
- P. Тихонов, С. Печенов, А. Гуревич, P. Есипов, В. Швец, А. Вульфсон. Методы получения рекомбинантных белков-цитокинов IV. Ренатурация рекомбинантного человеческого интерлейкина-3. Бгюорг. Хгш., 2001, 27(1), 40−44.
- A. Middelberg. Preparative protein refolding. TRENDS Biotechnol., 2002, 20(10), 437−443.
- A. Jungbauer, W. Kaar, R. Schleg. Folding and refolding of proteins in chromatographic beds. Curr. Opin. Biotech., 2004, 15, 48794.
- G. Lemerciera, N. Bakalara, X. Santarelli. On-column refolding of an insoluble histidine tag recombinant exopolyphosphatase from Trypanosoma brucei overexpressed in Escherichia coli. J. Chromatogr. B, 2003, 786, 305−309.
- K. Glynou, P. Ioannou, Th. Christopoulos. One-step purification and refolding of recombinant photoprotein aequorin by immobilized metal-ion affinity chromatography. Protein Expres. Pari/., 2003, 27, 384−390.
- V. Lozinsky, I. Galaev, F. Plieva, I. Savina, H. Jungvid, B. Mattiasson. Polymeric cryogels as promising materials of biotechnological interest. Trends Biotechnol., 2003, 21(10), 445−451.
- D. Riesenberg. High-cell-density cultivation of Escherichia coli. Curr. Opin. Biotech, 1991,2(3), 380−384.
- H. Markl, C. Zenneck, A. Dubach, J. Ogbonna. Custivation of Escherichia coli to high cell densities in a dialysis reactor. Appl. Microbiol. Biot., 1993, 39, 48−52.
- S. Lee. High cell-density culture of Escherichia coli. Tibech March, 1996,14, 98−105.
- Б. Глик, Дж. Пастернак. Молекулярная биотехнология. Принципы и применение. 2002, М: Мир, 128 с.
- S. Lee, H. Chang. High cell density cultivation of Escherichia coli W using sucrose as a carbone sourse. Biotechnol. Adv., 1993, 15(9), 971−974.
- J. Lee, S. Lee, S. Park. Fed-batch culture of Escherichia coli W by exponentional feeding of sucrose as a carbon sourse. Biotechnol. Tech., 1997, 11(1), 59−62.
- D. Korz, U. Rinas, K. Hellmuth, E. Sanders, W.-D. Deckwer. Simple fed-batch technique for high cell density cultivation of Escherichia coli. J. Biotechnol., 1995, 39, 59−65.
- S. Lee, K. Yim, H. Chang, Y. Chang. Construction of plasmids, estimation of plasmid stability, and use of stable plasmids for the production of poly (3-hydroxybutyric acid) by recombinant of Escherichia coli. J. Biotechnol., 32, 203−211.
- D. Fan, Y. Luo, Y. Mi, X. Ma, L. Shang. Characteristics of fed-batch cultures of recombinant Escherichia coli containing human-like collagen cDNA at different specific growth rates. Biotechnol. Lett., 2005, 27, 865−870.
- S. Kwon, S. Kim, E. Kim. Effects of glycerol on b-lactamase production during high cell density cultivation of recombinant Escherichia coli. Biotechnol. Progr., 1996, 12(2), 205 208.
- Y.-C. Liu, L.-C. Liao, W.-T. Wu. Cultivation of recombinant Escherichia coli to achieve high cell density with a high level of penicillin G acylase activity. Proc. Natl. Sei. Counc. ROC (B), 2000, 24(4), 156−160.
- J. Shiloacha, R. Fass. Growing E. coli to high cell density A historical perspective on method development. Biotechnol. Adv., 2005, 23, 345−357.
- J. Lee, S. Lee, S. Park, A. Middelberg. Control of fed-batch fermentations. Biotechnol. Adv., 1999, 17, 298.
- T. Suzuki, T. Yamane, S. Shimizu. Phcnomenological background and some preliminary trials of automated substrate supply in pH-stat modal fed-batch culture using a setpoint of high limit. J. Ferm. Bioeng., 1990, 69, 292−297.
- В. Kim, S. Lee, S. Lee, Y. Chang, H. Chang. High cell density fed-batch cultivation of Escherichia coli using exponential feeding combined with pH-stat. Bioprocess. Biosyst. Eng., 2004, 26, 147−150.
- D. Riesenberg, R. Guthke. High-cell-density cultivation of microorganisms. Appl. Microbiol. Biot., 1999, 51, 422−430.
- J. Cutayar, D. Poillon. High cell density culture of E. coli in a fed-batch system with dissolved oxygen as substrate feed indicator. Biotechnol. Lett., 1989, 11, 155−160.
- D. Riesenberg, K. Menzel, V. Schulz, K. Schumann, G. Veith, G. Zuber, W. Knorre. High ccll density fermentation of recombinant Escherichia coli expressing human interferon alpha 1 .Appl. Microbiol. Biot., 1990, 34, 77−82.
- S. Bauer, J. Shiloach. Maximal exponential growth rate and yield of E. coli obtainable in a bench-scale fermentor. Biotechnol. Bioeng., 1974, 16, 933−941.
- M. Бакулин. «Голубая кровь» нужна микробиологам и биотехнологам. Рос. Биомед. Ж, 2004, 5(81), 240−241.
- J. Shiloach, S. Bauer. High-yield growth of E. coli at different temperatures in a bench scale fermentor. Biotechnol. Bioeng., 1975, 17, 227−239.
- S. Bauer, E. Ziv. Dense growth of aerobic bacteria in a bench-scale fermentor. Biotechnol. Bioeng., 1976, 18, 81−94.
- K. Lowe, M. Davey, J. Power. Perfluorochemicals: their applications and benefits to cell culture. Trends biotechnol., 1998, 16, 272−277.
- A. King, B. Mulligan, K. Lowe. Perfluorochemicals and cell culture. Nat. Biotechnol., 1989, 9, 1037−1042.
- T. Wong, T. Ho. Retained perfluorodecalin after retinal detachment surgery. Int. Ophthalmol., 1997,20,293−294.
- A. Chernykh, A. Leont’evstii, L. Golovleva. New approaches to increasing the yield of Laccase from Panus tigrinus. Appl. Biochem. Microbiol., 2005, 41(5), 508−511.
- M. Bakulin, V. Zakharov, E. Chebotarev. Intensification of microbial degradation of crude oil and oil products in the presence of perfluorodecalin. Appl. Biochem. Microbiol., 2004, 40(3), 266−271.
- M. Bakulin, A. Grudtsyna, A. Pletneva. Biological fixation of nitrogen and growth of bacteria of the genus Azotobacter in liquid media in the presence of perfluorocarbons. Appl. Biochem. Microbiol., 2007, 43(4), 399−402.
- M. Bakulin, A. Grudtsyna, A. Pletneva, A. Kuchcrenko, A. Lyapustin, I. Malakhov. Effect of perfluorodecalin, carbogal, and perfluoromethyldccalin on growth and ice-forming activity ofbacteria. Microbiology, 2006, 75(3), 312−316.
- D. Damiano, S. Wang. Novel use of perfluorocarbon for supplying oxygen to aerobic submerged cultures. Biotechnol. Lett., 1985, 7(2), 81−86.
- D. Chandler, M. Davey, K. Lowe, B. Mulligan. Effects of emulsified perflourchemicals on growth and ultrastructure of microbial cells in culture. Biotechnol. Lett., 1987, 9(3), 195−200.
- L. Brownlie, J. Stephenson, J. Cole. Effect of growth rate on plasmid maintenance by Escherichia coli HB101 (pATl53). J. Gen. Microbiol., 1990, 136, 2471−2480.
- V. Bugeja, M. Kleinman, P. Stanbury, E. Gingold. The segregation of the 2 mu-based yeast plasmid pJDB248 breaks down under conditions of slow, glucose-limited growth. J. Gen. Microbiol., 1989,135, 2891−2897.
- C. Keevil, B. Spillane, N. Major. Plasmid stability and antibiotic resistance of Neisseria gonorrhoea during glucose-limited continuous culture. J. Med. Microbiol., 1987, 24, 351−357.
- U. Horn, M. Krug, J. Sawistowski. Effect of high cell density cultivation on plasmid copy number in recombinant Escherichia coli cells. Biotechnol. Lett., 1990, 12(3), 191−196.
- В. А. Жданов, В. M. Кошелев, В. К. Новиков, А. А. Шувалов. Методы уничтожения фосфорорганических отравляющих веществ. Рос.хим.журнал, 1993, 37(3), 22−25.
- Дегазирующая рецептура и способ ее получения. Патент РФ на изобретение № 2 288 016, 2005.
- Способ уничтожения боеприпасов, снаряженных фосфорорганическими отравляющими веществами и имеющих в корпусе технологические резьбовые отверстия. Заявка на выдачу патента РФ № 2 006 133 269, 2006.
- К. LeJeune, A. Mesiano, S. Bower, J. Grimsley, J. Wild, A. Russell. Dramatically stabilized phosphotriesterase-polymers for nerve agent degradation. Biotechnol. Bioeng., 1997, 54(2), 105−114.
- J. Kolakowski, J. DcFrank, S. Harvey, L. Szafraniee, W. Beaudry, K. Lai, J. Wild. Enzymatic hydrolysis of the chemical warfare agent VX and its neurotoxic analogues by organophosphorus hydrolase. Biocatal. Biotransfor., 1997,15, 297−302.
- V. Rastogi, J. DeFrank, T.-C. Cheng, J. Wild. Enzymatic hydrolysis of Russian-Vx by organophosphorus hydrolase. Biochem. Bioph. Res. Co., 1997, 241, 294−299.
- Chemical and/or biochemical decontamination system. Patent WO 01/56 380 Al, 2001.
- Hydrolysis of cholinesterase inhibitors using parathion hydrolase. Patent US 5 589 386, 1996.
- Способ ферментативного гидролиза фосфоорганических боевых отравляющих веществ. Патент РФ на изобретение № 2 296 164, 2007.
- V. Sergeeva, E. Efremenko, G. Kazankov, S. Varfolomeev. Double effect of organic amines (activation and inhibition) on the phosphotriesterase. J. Mol. Cat. B-Enzym., 2000, 10, 571−576.
- S. Hong, S. Lee. Metabolic flux analysis for succinic acid production by recombinant Escherichia coli with amplified malic enzyme activity. Biotechnol. Bioeng., 2001, 74(2), 89−95.
- S. Lec, H. Chang. Effect of complex nitrogen source on the synthesis and accumulation of Poly (3-hydroxybutyric acid) by recombinant Escherichia coli in flask and fed-batch cultures. J. Environ. Polim. Degr., 1994, 2(3), 169−175.
- И. Логинов, E. Морозова, А. Брильков. Математическое моделирование автоселекции микробных популяций при субстратном ингибировании их роста в непрерывной культуре. Вестник КрасГУ. Серия физ.-мат. науки, 2005, 1, 44−49.
- А. Шуваев, А. Брильков. Стохастическая модель внутриклеточной динамики многокопийных бактериальных плазмид с учетом контроля репликации. Мат. Биол. Биоинф., 2007, 2(1), 66−72.
- Active topical skin protectants using combinations of reactive nanoparticles and polyoxometalates or metal salts. Patent US 6 410 603, 2002.
- Preparation of enzymatically active sponges or foams for detoxification of hazardous compounds. Patent US№ 6 642 037, 2003.
- К. Е. LeJeune, В. С. Dravis, F. Yang, A. D. Hetro, В. P. Doctor, A. J. Russell. Fighting nerve agent chemical weapons with enzyme technology. Annals. NY Acad. Science, 1998,864,153−170
- К. E. LeJeune, J. R. Wild, A. J. Russel. Nerve agents degraded by enzymatic foams. Nature, 1998,392,27−28
- P. L. Havens, H. F. Rase. Reusable Immobilized Enzyme/Polyurethane Sponge for Removal and Detoxification of Localized Organophosphate Pesticide Spills. Ind. Eng.Chem. Res., 1993,32 (10), 2254−2258.
- К. E. LeJeune, A. J. Russell. Biocatalytic nerve agent detoxification in fire fighting foams. Biotechnol.Bioeng., 1999, 62 (6), 659−665.
- Protective and/or camouflage material. Patent US№ 4 781 959, 1988.
- I. B. Wilson, J. Dayan. The free energy of hydrolysis of phosphoryl-phosphatasa. iochemistry, 1965, 4 (4), 645−649
- Y. C. Yang, J. A. Baker, J. R. Ward. Decontamination of chemical warfare agents. Chem. Rev., 1992, 92, 1729−1743.
- R. Ramaseshan, S. Sundarrajan, Y. Liu, R. S. Barhate, N. L. Lala, S. Ramakrishna. Functionalized polymer nanofibre membranes for protection from chemical warfare stimulants. Nanotechnology, 2006, 17, 2947−2953.
- Клонирование ДНК. Методы. Ред. Д. Гловер. 1988. М.: Мир. 162 с.
- Маниатис Т., Фрич Э., Сэмбрук Дж. Молекулярное клонирование 1984, М.: Мир. 239 с.
- М. М. Bradford. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 1976, 72, 248−254.
- С. Д. Варфоломеев, С. В. Калюжный. Биотехнология: Кинетические основы микробиологических процессов. Учеб. пособие для биол. и хим. спец. вузов. М.: Высш. шк&bdquo- 1990, 296 с.
- Ch. Lei, М. Valenta, К. Saripalli, Е. Ackerman. Biosensing paraoxon in simulated environmental samples by immobilized organophosphorus hydrolase in functionalized mesoporous silica. J. Environ. Qual., 2007, 36, 233−238.
- D. Curiel, J. Engler. Ligands added to adenovirus fiber. US Patent № 668 3170B2, 2004.
- D. Borhani, D. Rogers, J. Engler, C. Brouillette. Crystal structure of truncated human apolipoprotein A-I suggests a lipid-bound conformation. Proc. Natl. Acad. Sci. USA, 1997, 94, 12 291−12 296.
- L. Roberts, M. Ray, T.-W. Shih, E. Hayden, M. Reader, C. Brouillette. Structural analysis of apolipoprotein A-I: limited proteolysis of methionine-reduced and -oxidized lipid-frec and lipid-bound human apo A-I. Biochemistry, 1997, 36(24), 7615−7624.
- Основы общей биологии. Ред. Э. Либберт. М.: Мир. 1982. 422 с.
- E. Efremenko, Yu. Votchitseva, T. Aliev, S. Varfolomeyev. Expression of recombinant organophosphorus hydrolase in active form. 2004. In: Biocatalytic Technology and Nanotoxicology (Ed. Zaikov G.E.), Nova Science Publishers, Inc., 65−71.
- Y. Zhang, R. Autcnrieth, J. Bonner, S. Harvey, J. Wild. Biodegradation of neutralized sarin. Biotechnol. Bioeng., 1999, 64(2), 221−231.
- S. Gaberlein, F. Spencr, C. Zaborosch. Microbial and cytoplasmic membrane-based potentiometric biosensors for direct determination of orgdnophosphorus instcticides. Appl. Microbiol. Biot., 2001, 54, 652−658.
- D. Spoel, E. Lindahl, B. Hess, G. Groenhof, A. Mark, H. Berendsen. GROMACS: fast, flexible, and free. J. Comput. Chem., 2005, 26(16), 1701−1718.
- A. E. Любарев, Б. И. Курганов. Изучение необратимой тепловой денатурации белков методом дифференциальной сканирующей калориметрии. Успехи биол. Хим., 2000, 40, 43−84.
- W. D. Kumler, J. J. Eiler. The ultraviolet absorption spectra and resonance in benzene derivatives-sulfanilamide, metanilamide, p-aminobenzoic acid, benzenesulfonamide, benzoic acid and aniline. J. Am. Chem. Soc. 1943, 65(12), 2355−2361.
- В. В. Шелковников. Расчеты ионных равновесий в химии: Учеб.-мет. пособие. Томск: Изд-во Том. ун-та, 2006, 70 с.
- J. Pandey, P. Gorla, В. Manavathi, D. Siddavattam. mRNA secondary structure modulates the translation of organophosphate hydrolase (OPH) in E. coli. Mol. Biol. Rep., 2007, DOI 10.1007/sl 1033−007−9200−5.
- M. Li, Z.-G. Su, J.-С. Janson. In vitro protein refolding by chromatographic procedures. Protein Expres. Purif., 2004, 33, 1−10.
- H. Wong, Y. Kim, S. Lee, H. Chang. Effect of post-induction nutrient feeding strategies on the production of bioadhesive protein in Escherichia coli. Biotechnol. Bioeng., 1998, 60(3), 271−276.
- В. К. Гореленков, В. Я. Онойко, Ю. П. Соболев, С. JI. Шашков. Пути создания материалов для перспективной боевой экипировки мирного и военного времени военнослужащих общевойсковых подразделений Российской Армии. М.: ВУ РХБЗ, 2001, 166 с.
- Г. Я. Легин, Н. М. Шехтман, В. М. Андреев. Консервация косметических изделий и эффективные современные консерванты. 1983, Вып. 3, с. 1−36.