Помощь в написании студенческих работ
Антистрессовый сервис

Роль цАМФ-связывающих белков ЕРАС в регуляции сократимости кровеносных сосудов и сердца

ДиссертацияПомощь в написанииУзнать стоимостьмоей работы

Актуальность проблемы. цАМФ был открыт в конце 50-х годов прошлого века как вторичный посредник, передающий сигналы в клетке от множества гормонов, нейротрансмиттеров, простагландинов, ряда других субстанций, которые активируют аденилатциклазу. До недавнего времени считалось, что универсальным механизмом действия цАМФ является активация протеинкиназы А. Помимо протеинкиназы, А в сетчатке… Читать ещё >

Роль цАМФ-связывающих белков ЕРАС в регуляции сократимости кровеносных сосудов и сердца (реферат, курсовая, диплом, контрольная)

Содержание

  • ОБЗОР ЛИТЕРАТУРЫ
    • 1. 1. Внутриклеточный метаболизм цАМФ
      • 1. 1. 1. G-белок сопряженные рецепторы и G-белки
        • 1. 1. 1. 1. Рецепторы серотонина
      • 1. 1. 2. Аденилатциклазы
      • 1. 1. 3. Фосфодиэстеразы
    • 1. 2. Внутриклеточные мишени цАМФ
      • 1. 2. 1. Стуктура цАМФ-связывающих белков
      • 1. 2. 2. цАМФ-зависимая протеинкиназа А
      • 1. 2. 3. Каналы активируемые циклическими нуклеотидами
      • 1. 2. 4. Семейство EPAC/cAMP-GEF
      • 1. 2. 5. Белки CRP/CAP
    • 1. 3. Фармакологические агенты, направленно действующие на компоненты цАМФ сигнального пути
      • 1. 3. 1. Аналоги цАМФ
      • 1. 3. 2. Ингибиторы, направленные на каталитическую субъединицу протеинкиназы А
    • 1. 4. Физиологические функции цАМФ
      • 1. 4. 1. Регуляция протеинкиназой, А функционирования органов и внутриклеточных процессов
        • 1. 4. 1. 2. Регуляция метаболизма в адипоцитах
        • 1. 4. 1. 3. Регуляция иммунного ответа
        • 1. 4. 1. 4. Передача сигнала цАМФ в ядро и регуляция экспресии генов
        • 1. 4. 1. 5. Регуляция сердечной деятельности у млекопитающих
        • 1. 4. 1. 6. Регуляция сердечной деятельности у моллюсков
        • 1. 4. 1. 7. Регуляция сократимости гладких мышц. Пример взаимодействия между цАМФ- и цГМФ- сигнальными путями
      • 1. 4. 2. Роль белков Ерас в проявлении действия цАМФ на клетки
        • 1. 4. 2. 1. Опосредованная белками Ерас цАМФ-зависимая регуляция функционирования ионных каналов.'
        • 1. 4. 2. 2. Роль белков Ерас в регуляции внутриклеточных Са2±сигналов
        • 1. 4. 2. 3. Процессы ионного транспорта регулируемые белками Ерас
        • 1. 4. 2. 4. Ерас связывает выработку цАМФ со стимуляцией экзоцитоза
  • ГЛАВА 2. Материалы и методы исследования
    • 2. 1. Выделение изолированной аорты и измерение силы изометрического сокращения сосудов
    • 2. 2. Измерение амплитуды сокращений изолированного сердца виноградной улитки Н. pomatia
    • 2. 3. Измерение активности аденилатциклазы в препаратах мембраны сердца виноградной улитки
    • 2. 4. Измерение агрегации тромбоцитов по методу Борна
      • 2. 4. 1. Получение плазмы крови, обогащенной тромбоцитами (PRP -platelet rich plasma)
      • 2. 4. 2. Измерение агрегации тромбоцитов
    • 2. 5. Измерение концентрации цитоплазматического кальция с помощью флуоресцентного зонда фура
      • 2. 5. 1. Выделение гладкомышечных клеток из аорты крысы
      • 2. 5. 2. Криоконсервация гладкомышечных клеток, выделенных из аорты крысы
      • 2. 5. 3. Подготовка стекол для экспериментов с гладкомышечными клетками из аорты крысы
      • 2. 5. 4. Измерение концентрации цитоплазматического кальция с помощью флуоресцентного зонда фура
  • ГЛАВА 3. Результаты и обсуждение
    • 3. 1. Исследование механизмов расслабления сосудов под действием цАМФ
      • 3. 1. 1. Влияние на сократимость изолированной аорты вазоактивных агонистов
      • 3. 1. 2. Влияние форсколина и аналогов цАМФ, активирующих белки Ерас и протеинкиназу А, на сократимость изолированной аорты крысы
    • 3. 2. Исследование влияния цАМФ на повышение концентрации кальция в гладкомышечных клетках сосудов под действием серотонина
    • 3. 3. Регуляция сократимости сердца виноградной улитки H.pomatia. Исследование механизмов действия цАМФ
      • 3. 3. 1. цАМФ зависимые механизмы регуляции сердечной сократимости 71 3.3.1.1. Исследование роли протеинкиназы, А и белков Ерас в проявлении активирующего действия цАМФ на сократимость сердца
      • 3. 3. 2. Активация сокращения сердца улитки серотонином через рецепторы, не сопряженные с аденилатциклазой
      • 3. 3. 3. цАМФ независимый механизм регуляции сократимости сердца улитки

Актуальность проблемы. цАМФ был открыт в конце 50-х годов прошлого века как вторичный посредник, передающий сигналы в клетке от множества гормонов, нейротрансмиттеров, простагландинов, ряда других субстанций, которые активируют аденилатциклазу. До недавнего времени считалось, что универсальным механизмом действия цАМФ является активация протеинкиназы А. Помимо протеинкиназы, А в сетчатке, нейронах, некоторых других клетках и тканях функционируют ионные каналы плазматической мембраны, связывающие цАМФ. В 1998 г. были обнаружены новые внутриклеточные мишени цАМФ — белки Epacl и Ерас2 (Exchange Proteins Activated by с AMP). Они широко распространены в организме и, по крайней, мере один из этих белков, Epacl, выявлен во всех исследованных тканях. Связывая цАМФ, белки Ерас взаимодействуют с низкомолекулярными G-белками RaplA/2B и стимулируют замещение ГДФ на ГТФ в их регуляторном центре, поэтому их обозначают также как сАМР-GEF (guanine nucleotide exchange factor). Белки Rap активируют протеинкиназу B-Raf, которая, в свою очередь, активирует протеинкиназный каскад MEK/Erk. Несколько позднее было установлено, что помимо Rap, белки Ерас активируют специфичную к фосфоинозитидам фосфолипазу С-£, Кдтр-каналы, влияют на функционирование хлорных каналов [Holz, 2006]. В кардиомиоцитах мыши выявлен макромолекулярный комплекс Epacl с рианодиновыми рецепторами, каркасным белком тАКАР, протеинкиназой, А и фосфодиэстеразой цАМФ [Pare et al., 2005].

Изучение роли белков Ерас в регуляции цАМФ-зависимых физиологических процессов находится на начальной стадии. Показано, что, наряду с протеинкиназой А, белки Ерас активируют секрецию, влияют на межклеточные взаимодействия, процессы дифференцировки и апоптоза, принимают участие в регуляции ионных каналов и передачи сигнала в синапсе [Holz et al., 2006]. цАМФ играет ключевую роль в регуляции работы сердца и всей сердечно-сосудистой системы, вызывая расслабление кровеносных сосудов [Kotlikoff and Kamm, 1996] и стимуляцию сократимости сердца [Kammerer et al., 2003]. Доказано, что в реализации этих эффектов цАМФ участвует протеинкиназа А, однако роль белков Ерас в проявлении действия цАМФ на сосуды и сердце не исследовалась.

Цель и задачи исследования

Настоящая работа посвящена изучению механизмов цАМФ-зависимой регуляции сократимости сосудов и сердца и выяснению роли белков Ерас в проявлении действия цАМФ на эти органы. В работы были поставлены следующие задачи:

1. Определить, участвуют ли белки Ерас в цАМФ-зависимой регуляции сосудистого тонуса.

2. Оценить специфичность действия аналогов цАМФ, использованных для активации белков Ерас.

3. Исследовать влияние цАМФ на кальциевый обмен в культивируемых гладкомышечных клетках аорты крысы.

4. Оценить роль белков Ерас и протеинкиназы, А в цАМФ-опосредованной регуляции сократимости сердца, используя в качестве модели изолированное сердце виноградной улитки Helix pomatia.

5. Исследовать на модели изолированного сердца виноградной улитки цАМФ-независимые пути активации сердечной сократимости.

Научная новизна и практическая значимость работы. Установлено, что расслабление аорты крысы, вызванное цАМФ, опосредовано активацией не только протеинкиназы А, но и белков Ерас. Показано, что одним из механизмов цАМФ-индуцированного расслабления кровеносных сосудов является подавление повышения концентрации ионов кальция в цитоплазме гладкомышечных клеток в ответ на вазоконстрикторные стимулы.

Показано, что подавление под влиянием цАМФ агрегации тромбоцитов, индуцированной АДФ, опосредовано протеинкиназой, А без участия белков Ерас.

Обнаружено, что активаторы белков Ерас и протеинкиназы, А увеличивают амплитуду вызванного серотонином сокращения сердца виноградной улитки Helix pomatia. Это свидетельствует об участии данных мишеней цАМФ в регуляции сократимости сердца. Установлено, что активация сократимости сердца виноградной улитки H. pomatia, вызванная серотонином, опосредована двумя видами рецепторов. Рецепторы одного вида сопряжены с аденилатциклазой и повышают уровень цАМФ. Второй вид подобен 5НТз-рецепторам, относящимся к типу ионотропных рецепторов. Через них серотонин активирует сердце виноградной улитки по цАМФ-независимому механизму.

Установлено, что цАМФ-независимый механизм реализуется при активации сокращений сердца виноградной улитки тромбином. Полученные данные свидетельствуют, что тромбин активирует в сердце улитки рецепторы, гомологичные активируемым протеазами рецепторам 1-го и 4-го типов млекопитающих.

Проведенные исследования расширяют представления о биохимических основах работы сердечно-сосудистой системы. Они создают предпосылки для более детального изучения механизмов действия на сосуды и сердце гормонов и нейротрансмиттеров, связывающихся с рецепторами, активирующими аденилатциклазу. Полученные результаты могут иметь значение при разработке научно обоснованных подходов к лечению сердечнососудистых заболеваний, поскольку многие фармакологические препараты, влияющие на сердце и сосуды, оказывают свое действие через систему обмена цАМФ.

Публикация и апробация работы. По теме диссертации опубликованы 2 статьи. Результаты диссертации были представлены на 13-м международном совещании по эволюционной физиологии (СПб, 2006), на Международной конференции по простым нервным системам (Казань, 2006) и на конференциях молодых ученых ИБР РАН (2005, 2006).

ОБЗОР ЛИТЕРАТУРЫ.

выводы.

1.Расслабление аорты, вызванное цАМФ, опосредовано активацией протеинкиназы, А и белков Ерас. Одним из механизмов цАМФ-индуцированного расслабления аорты является подавление рецептор-опосредованного повышения концентрации ионов кальция в цитоплазме.

2.В отличие от сосудов, в тромбоцитах белки Ерас не участвуют в проявлении действия цАМФ — подавлении АДФ-индуцированной агрегации. В данном эффекте цАМФ на АДФ-индуцированную агрегацию тромбоцитов принимает участие только протеинкиназа А.

3.Аналоги цАМФ, избирательно активирующие протеинкиназу, А и белки Ерас, увеличивают амплитуду сокращения сердца виноградной улитки в ответ на серотонин. Это свидетельствует об участии обеих цитоплазматических мишеней цАМФ в регуляции сократимости сердца.

4.Активация сократимости сердца виноградной улитки H. pomatia, вызванная серотонином, опосредована разными видами 5НТ-рецепторов. Одни рецепторы сопряжены с аденилатциклазой и повышаютуровень цАМФ. Второй вид рецепторов подобен 5НТ3-рецепторам млекопитающих и относится к типу ионотропных рецепторов.

5.0писан цАМФ-независимый механизм активации сократимости сердца виноградной улитки тромбином. Полученные данные свидетельствуют, что тромбин активирует в сердце улитки рецепторы, гомологичные активируемым протеазами рецепторам 1-го и 4-го типов млекопитающих.

ЗАКЛЮЧЕНИЕ

.

В настоящей работе показано, что белки Ерас участвуют в цАМФ-зависимом расслаблении сосудов. Их активация приводит к уменьшению силы сокращения изолированной аорты, вызываемого вазоконстрикторным нейротрансмиттером норадреналином или альфа 1-адреномиметиком фенилэфрином. Однако вопрос о том, по какому механизму осуществляется их действие, остается открытым. Возможно, что белки Ерас каким — то образом подавляют сокращение, вызванное вазоконстрикторами, действуя на уровне гладкомышечных клеток (ГМК). В этом случае возможные субстраты для белков Ерас в гладкомышечных клетках сосудов — это фосфолипаза С-е, рецепторы инозитолтрисфосфата, кальциевые насосы (SR и плазматической мембраны), протеинкиназы легких цепей миозина (MLCK), р42/р44 MAP киназы и Rho киназы [Somlyo, 1999]. В случае, если белки Ерас действуют на на фосфолипазу С-е, рецепторы инозитолтрисфосфата, кальциевые насосы (SR и плазматической мембраны), протеинкиназы легких цепей' миозина (MLCK), р42/р44 MAP киназы, и Rho киназы, то по логике вещей они должны каким-то образом напрямую или косвенно вызывать ингибирование активностей вышеперечисленных мишеней. При этом наиболее вероятной на данный момент представляется гипотеза о том, что белки Ерас, действуя на.

Ох одну или несколько этих мишеней, влияют на обмен ионов Са в гладкомышечных клетках. Эксперименты, в которых было показано.

2+ ингибирование форсколином подъёма [Са ]цит в ГМК в ответ на серотонин, позволяют высказывать такое предположение.

Нельзя исключить, что активация белков Ерас запускает происходящие в эндотелиальных клетках процессы, приводящие к релаксации сосудов. В этом случае можно предполагать, что активация белков Ерас каким-то обрзом связана с выбросом эндотелий-зависимого расслабляющего фактора (EDHF). Наблюдаемое при активации Ерас расслабление аорты не связано с выбросом NO и простациклина, так как наши эксперименты показали, что на расслабление вызванное активаторами белков Ерас никак не влияют специфический ингибитор протеинкиназы G и специфический ингибитор протеинкиназы А.

Расслабление сосудов, вызванное активаторами белков Ерас не превышает, как правило, 50%. В отличие от этого, активация протеинкиназы, А приводит к полному расслаблению изолированной аорты, предсокращенной норадреналином. Этот факт свидетельствует в пользу того, что цАМФ-зависимые механизмы расслабления аорты, опосредованные протеинкиназой, А и белками Ерас, принципиально различаются.

Эксперименты, выполненные на тромбоцитах, показали, что подавление в этих клетках Са-зависимого процесса АДФ-индуцированной агрегации под влиянием цАМФ происходит без участия белков Ерас. Очень важным следствием этих опытов стало доказательство специфичности действия аналога цАМФ, активирующего Ерас.

На модели изолированного сердца виноградной улитки мы показали, что обе цитоплазматические мишени цАМФ — и протеинкиназа А, и белки Ерас, регулируют сердечную сократимость. Оказалось, что в сердце виноградной улитки, в отличие от сердца млекопитающих, цАМФ не является основным фактором, вызывающим увеличение амплитуды сокращений сердца, а оказывает скорее модулирующее действие. Однако остается не ясным, почему, в отличие от активатора аденилатциклазыфорсколина, который вызывает увеличение амплитуды сокращения сердца, ни активатор протеинкиназы А, ни активатор белков Ерас сами по себе не вызывали увеличения амплитуды сокращений сердца. Можно предположить, что для проявления активаторного действия цАМФ на сердце виноградной улитки необходимо, чтобы эти два механизма работали согласованно.

Нами обнаружены в сердце улитки серотониновые рецепторы, подобные 5ШУрецепторам млекопитающих. Эти рецепторы не сопряжены с аденилатциклазой и представляют из себя катионные каналы, проницаемые для ионов натрия и кальция. Активация ими сокращений сердца, по-видимому, обусловлена входом ионов кальция или деполяризацией плазматической мембраны за счет входа ионов натрия и активацией потенциалуправляемых кальциевых каналов. Можно предположить, что цАМФ, образующаяся при активации 5НТ-рецепторов серотонина, сопряженных с аденилатциклазой, потенциирует активность этих каналов, действуя через протеинкиназу А, аналогично тому, как активируются потенциалуправляемые кальциевые каналы в сердце млекопитающих. Основываясь на недавно опубликованных данных о взаимодействии белков Ерас с протеинкиназой, А и рианодиновыми рецепторами ретикулума в кардиомиоцитах мыши (Dodge-Kafka et al., 2005), можно предположить, что в сердце белки Ерас каким-то образом активируют кальциевый обмен и таким образом усиливают сократимость. Выяснение этих вопросов требует дальнейших исследований.

В данной работе описан цАМФ-независимый механизм активации сократимости сердца виноградной улитки под действием тромбина. Полученные данные говорят о том, что тромбин действует через активируемые протеазами рецепторы PAR] и PAR4. Это первое свидетельство того, что рецепторы данного типа есть не только у млекопитающих, но и у представителей филогенетически отдаленного типа животных — моллюсков. Однако для полной уверенности в том, что такие рецепторы у улитки существуют, их необходимо клонировать. По-видимому, окончательное решение данного вопроса будет достигнуто после расшифровки генома данного представителя брюхоногих моллюсков.

Гипотетическая модель, описывающая возможные механизмы активации сердца виноградной улитки по цАМФ-зависимому и цАМФ-независимому механизмам, изображена на рисунке 3.20. Мы предполагаем, что наиболее вероятным путем действия тромбина является активация фосфолипазы С через белок Gq, тогда как серотонин запускает два других механизма — синтез цАМФ и открывание катион ных каналов, транспортирующих кальций.

Рис. 3.21. Предполагаемые механизмы регуляция со краш мости сердца улитка.

Показать весь текст

Список литературы

  1. Abdel-Latif A. A. Cross talk between cyclic nucleotides and polyphosphoinositide hydrolysis, protein kinases, and contraction in smooth muscle//Exp Biol Med (Maywood).-2001.-V.226.-N.3.-P. 153−163.
  2. Amano M., Ito M., Kimura K., Fukata Y., Chihara K., Nakano Т., Matsuura Y. and Kaibuchi K. Phosphorylation and activation of myosin by Rho-associated kinase (Rho-kinase)//J Biol Chem.-1996.-V.271.-N.34.-P.20 246−20 249.
  3. Anholt R. R. Molecular neurobiology of olfaction//Crit Rev Neurobiol.-1993.-V.7.-N.l.-P.l-22.
  4. Aromataris E. C., Roberts M. L., Barritt G. J. and Rychkov G. Y. Glucagon activates Ca2+ and CI- channels in rat hepatocytes//J Physiol.-2006.-V.
  5. Attwood Т. K. and Findlay J. B. Fingerprinting G-protein-coupled receptors//Protein Eng.-1994.-V.7.-N.2.-P. 195−203.
  6. П.В. Структура и сигнальные свойства G-белок сопряженных рецепторных комплексов //Биологические мембраны.-2005.-T.22.-N. 1 .-С.3−26.
  7. Barg S., Huang P., Eliasson L., Nelson D. J., Obermuller S., Rorsman P., Thevenod F. and Renstrom E. Priming of insulin granules for exocytosis by granular Cl (-) uptake and acidification//J Cell Sci.-2001.-V.l 14.-N.Pt 11.-P.2145−2154.
  8. Bark N., Blomback B. and Fatah K. On the occurrence of thrombin-Iike enzymes in mosquitoes//Thromb Res.-1996.-V.81.-N.6.-P.623−634.
  9. Barr A. J., Brass L. F. and Manning D. R. Reconstitution of Receptors and GTP-binding Regulatory Proteins (G Proteins) in Sf9 Cells. A DIRECT EVALUATION OF SELECTIVITY IN RECEPTORG PROTEIN COUPLING//! Biol. Chem.-1997.-V.272.-N.4.-P.2223−2229.
  10. Barradeau S., Imaizumi-Scherrer Т., Weiss M. C. and Faust D. M. Intracellular targeting of the type-I alpha regulatory subunit of cAMP-dependent protein kinase//Trends Cardiovasc Med.-2002.-V.12.-N.6.-P.235−241.
  11. Baukrowitz Т., Schulte U., Oliver D., Herlitze S., Krauter Т., Tucker S. J., Ruppersberg J. P. and Fakler В. PIP2 and PIP as determinants for ATP inhibition of KATP channels//Science.-1998.-V.282.-N.5391.-P.1141−1144.
  12. Beavo J. A. and Brunton L. L. Cyclic nucleotide research -- still expanding after half a century//Nat Rev Mol Cell Biol.-2002.-V.3.-N.9.-P.710−718.
  13. Bers D. M. Cardiac excitation-contraction coupling//Nature.-2002.-V.415.-N.6868.-P.198−205.
  14. Bjarnadottir Т. K., Fredriksson R., Hoglund P. J., Gloriam D. E., Lagerstrom M. C. and Schioth H. B. The human and mouse repertoire of the adhesion family of G-protein-coupled receptors//Genomics.-2004.-V.84.-N.l.-P.23−33.
  15. Bois P., Renaudon В., Baruscotti M., Lenfant J. and DiFrancesco D. Activation of f-channels by cAMP analogues in macropatches from rabbit sino-atrial node myocytes/Л Physiol.-1997.-V.501 (Pt3).-P.565−571.
  16. Bonigk W., Bradley J., Muller F., Sesti F., Boekhoff I., Ronnett G. V., Kaupp U. B. and Frings S. The native rat olfactory cyclic nucleotide-gated channel is composed of three distinct subunits//J Neurosci.-1999.-V.19.-N.13.-P.5332−5347.
  17. Bornfeldt К. E. and Krebs E. G. Crosstalk between protein kinase A and growth factor receptor signaling pathways in arterial smooth muscle//Cell Signal.-1999.-V.l 1.-N.7.-P.465−477.
  18. Bos J. L. Epac: a new cAMP target and new avenues in cAMP research//Nat Rev Mol Cell Biol.-2003.-V.4.-N.9.-P.733−738.
  19. Bos J. L., de Rooij J. and Reedquist K. A. Rapl signalling: adhering to new models//Nat Rev Mol Cell Biol.-2001.-V.2.-N.5.-P.369−377.
  20. Bourne H. R. How receptors talk to trimeric G proteins//Curr Opin Cell Biol.-1997.-V.9.-N.2.-P.134−142.
  21. Bradley J., Frings S., Yau K. W. and Reed R. Nomenclature for ion channel subunits//Science.-2001.-V.294.-N.5549.-P.2095−2096.
  22. M. Т., Mayorga L. S. and Tomes C. N. Calcium induced acrosomal exocytosis requires cAMP acting through a РКА-independent, EPAC-mediated pathway//J Biol Chem.-2006.-V.
  23. Brodde О. E., Broede A., Daul A., Kunde K. and Michel M. C. Receptor systems in the non-failing human heart//Basic Res Cardiol.-1992.-V.87 Suppl 1.-P. 1−14.
  24. Broillet M. C. and Firestein S. Cyclic nucleotide-gated channels. Molecular mechanisms of activation//Ann N Y Acad Sci.-1999.-V.868.-P.730−740.
  25. Brunet A. and Pouyssegur J. Identification of MAP kinase domains by redirecting stress signals into growth factor responses//Science.-1996.-V.272.-N.5268.-P. 1652−1655.
  26. Buckett K. J., Peters M., Dockray G. J., Van Minnen J. and Benjamin P. R. Regulation of heartbeat in Lymnaea by motoneurons containing FMRFamide-like peptides/Л Neurophysiol.-1990.-V.63.-N.6.-P. 1426−1435.
  27. Busby S., Spassky A. and Chan B. RNA polymerase makes important contacts upstream from base pair -49 at the Escherichia coli galactose operon PI promoter//Gene.-1987.-V.53.-N.2−3.-P. 145−152.
  28. Cabrera-Vera Т. M., Vanhauwe J., Thomas T. 0., Medkova M., Preininger A., Mazzoni M. R. and Hamm H. E. Insights into G protein structure, function, and regulation//Endocr Rev.-2003.-V.24.-N.6.-P.765−781.
  29. Caicedo A., Pereira E., Margolskee R. F. and Roper S. D. Role of the G-protein subunit alpha-gustducin in taste cell responses to bitter stimuli//J Neurosci.-2003.-V.23.-N.30.-P.9947−9952.
  30. Cardot J. The monoamines in molluscs. II. Dopamine and neurotransmission. Cardiac dopaminergic innervation in Helix pomatia (author's transl).//J Physiol (Paris).-1979.-V.75.-N.7.-P.715−728.
  31. Caron E. Cellular functions of the Rapl GTP-binding protein: a pattern emerges//J Cell Sci.-2003.-V.l 16.-N.Pt 3.-P.435−440.
  32. Cary D. A. and Mendelsohn F. A. Effect of forskolin, isoproterenol and IBMX on angiotensin converting enzyme and cyclic AMP production by cultured bovine endothelial cells//Mol Cell Endocrinol.-1987.-V.53.-N.l-2.-P.103−109.
  33. Cassel D., Levkovitz H. and Selinger Z. The regulatory GTPase cycle of turkey erythrocyte adenylate cyclase//J Cyclic Nucleotide Res.-1977.-V.3.-N.6.-P.393−406.
  34. Chang F., Cohen I. S., DiFrancesco D., Rosen M. R. and Tromba C. Effects of protein kinase inhibitors on canine Purkinje fibre pacemaker depolarization and the pacemaker current i (f)//J Physiol.-1991.-V.440.-P.367−384.
  35. Chang G. W., Stacey M., Kwakkenbos M. J., Hamann J., Gordon S. and Lin H. H. Proteolytic cleavage of the EMR2 receptor requires both the extracellular stalk and the GPS motif//FEBS Lett.-2003.-V.547.-N.l-3.-P.145−150.
  36. Cheung U., Atwood H. L. and Zucker R. S. Presynaptic effectors contributing to cAMP-induced synaptic potentiation in Drosophila//J Neurobiol.-2006.-V.66.-N.3.-P.273−280.
  37. Chin E. C. and Abayasekara D. R. Progesterone secretion by luteinizing human granulosa cells: a possible cAMP-dependent but РКА-independent mechanism involved in its regulation/Л Endocrinol.-2004.-V. 183 .-N. 1 .-P.51 -60.
  38. Choi E. J., Xia Z., Villacres E. C. and Storm D. R. The regulatory diversity of the mammalian adenylyl cyclases//Curr Opin Cell Biol.-1993.-V.5.-N.2.-P.269−273.
  39. Colledge M. and Scott J. D. AKAPs: from structure to function//Trends Cell Biol.-1999.-V.9.-N.6.-P.216−221.
  40. Collins S., Bouvier M., Lohse M. J., Benovic J. L., Caron M. G. and Lefkowitz R. J. Mechanisms involved in adrenergic receptor desensitization//Biochem Soc Trans.-1990.-V.18.-N.4.-P.541−544.
  41. Conti M. Phosphodiesterases and cyclic nucleotide signaling in endocrine cells//Mol Endocrinol.-2000.-V.14.-N.9.-P.1317−1327.
  42. Cooper D. M. Regulation and organization of adenylyl cyclases and cAMP//Biochem J.-2003.-V.375.-N.Pt 3.-P.517−529.
  43. Cunnick J. M., Hurt D., Oppert В., Sakamoto K. and Takemoto D. J. Binding of the gamma-subunit of retinal rod-outer-segment phosphodiesterase with both transducin and the catalytic subunits of phosphodiesterase//Biochem J.-1990.-V.271.-N.3.-P.721−727.
  44. Daaka Y., Luttrell L. M. and Lefkowitz R. J. Switching of the coupling of the beta2-adrenergic receptor to different G proteins by protein kinase A//Nature.-1997.-V.390.-N.6655.-P.88−91.
  45. Defer N., Best-Belpomme M. and Hanoune J. Tissue specificity and physiological relevance of various isoforms of adenylyl cyclase//Am J Physiol Renal Physiol.-2000.-V.279.-N.3.-P.F400−416.
  46. Dhallan R. S" Yau K. W., Schrader K. A. and Reed R. R. Primary structure and functional expression of a cyclic nucleotide-activated channel from olfactory neurons//Nature.-1990.-V.347.-N.6289.-P. 184−187.
  47. DiPilato L. M., Cheng X. and Zhang J. Fluorescent indicators of cAMP and Epac activation reveal differential dynamics of cAMP signaling within discrete subcellular compartments//Proc Natl Acad Sci U S A.-2004.-V.101.-N.47.-P.16 513−16 518.
  48. Dodge-Kafka K. L., Soughayer J., Pare G. C., Carlisle Michel J. J., Langeberg L. K" Kapiloff M. S. and Scott J. D. The protein kinase A anchoring protein mAKAP coordinates two integrated cAMP effector pathways//Nature.-2005.-V.437.-N.7058.-P.574−578.
  49. S., Kopperud R., Doskeland S. 0., Dumont J. E. and Maenhaut C. Search for new cyclic AMP-binding proteins//FEBS Lett.-2003.-V.546.-N.l.-P.103−107.
  50. Ebina Т., Kawabe J., Katada Т., Ohno S., Homey C. J. and Ishikawa Y. Conformation-dependent activation of type II adenylyl cyclase by protein kinase C//J Cell Biochem.-1997.-V.64.-N.3 .-P.492−498.
  51. Eckly-Michel A., Martin V. and Lugnier C. Involvement of cyclic nucleotide-dependent protein kinases in cyclic AMP-mediated vasorelaxation//Br J Pharmacol.-1997.-V.122.-N.1.-P.158−164.
  52. Edvardsen 0., Reiersen A. L., Beukers M. W. and Kristiansen K. tGRAP, the G-protein coupled receptors mutant database//Nucleic Acids Res.-2002.-V.30.-N.l.-P.361−363.
  53. Emmer M., deCrombrugghe В., Pastan I. and Perlman R. Cyclic AMP receptor protein of E. coli: its role in the synthesis of inducible enzymes//Proc Natl Acad Sci U S A.-1970.-V.66.-N.2.-P.480−487.
  54. Essayan D. M. Cyclic nucleotide phosphodiesterases//.! Allergy Clin Immunol.-2001.-V.108.-N.5.-P.671−680.
  55. Fesenko E. E., Kolesnikov S. S. and Lyubarsky A. L. Induction by cyclic GMP of cationic conductance in plasma membrane of retinal rod outer segment//Nature.-1985.-V.313.-N.6000.-P.310−313.
  56. Frank K. and Kranias E. G. Phospholamban and cardiac contractility//Ann Med.-2000.-V.32.-N.8.-P.572−578.
  57. Fujimoto K., Shibasaki Т., Yokoi N., Kashima Y., Matsumoto M., Sasaki Т., Tajima N., Iwanaga T. and Seino S. Piccolo, a Ca2+ sensor in pancreatic beta-cells. Involvement of cAMP
  58. GEFII.Rim2.Piccolo complex in cAMP-dependent exocytosis//J Biol Chem.-2002.-V.277.-N.52.-P.50 497−50 502.
  59. Gallagher P. J. and Stull J. T. Localization of an actin binding domain in smooth muscle myosin light chain kinase//Mol Cell Biochem.-1997.-V.173.-N.l-2.-P.51−57.
  60. Gao Q. and Chess A. Identification of candidate Drosophila olfactory receptors from genomic DNA sequence//Genomics.-1999.-V.60.-N.l.-P.31−39.
  61. Gauss R., Seifert R. and Kaupp U. B. Molecular identification of a hyperpolarization-activated channel in sea urchin sperm//Nature.-1998.-V.393.-N.6685.-P.583−587.
  62. Gether U. Uncovering molecular mechanisms involved in activation of G protein-coupled receptors/ZEndocr Rev.-2000.-V.21.-N.l.-P.90-l 13.
  63. Goulding E. H., Tibbs G. R. and Siegelbaum S. A. Molecular mechanism of cyclic-nucleotide-gated channel activation//Nature.-1994.-V.372.-N.6504.-P.369−374.
  64. Greenberg D. L., Mize G. J. and Takayama Т. K. Protease-activated receptor mediated RhoA signaling and cytoskeletal reorganization in LNCaP cells//Biochemistry.-2003.-V.42.-N.3.-P.702−709.
  65. Hardie G. Pseudosubstrates turn off protein kinases//Nature.-1988.-V.335.-N.6191.-P.592−593.
  66. Harmar A. J. Family-B G-protein-coupled receptors//Genome Biol.-2001.-V.2.-N.12.-P.REVIEWS3013.
  67. Hauet Т., Liu J., Li H., Gazouli M., Culty M. and Papadopoulos V. PBR, StAR, and PKA: partners in cholesterol transport in steroidogenic cells//Endocr Res.-2002.-V.28.-N.4.-P.395−401.
  68. Helms M. N., Chen X. J., Ramosevac S., Eaton D. C. and Jain L. Dopamine regulation of amiloride-sensitive sodium channels in lung cells//Am J Physiol Lung Cell Mol Physiol.-2006.-V.290.-N.4.-P.L710-L722.
  69. Hollinger S. and Hepler J. R. Cellular regulation of RGS proteins: modulators and integrators of G protein signaling//Pharmacol Rev.-2002.-V.54.-N.3.-P.527−559.
  70. Holz G. G., Kang G., Harbeck M., Roe M. W. and Chepurny O. G. Cell physiology of cAMP sensor Epac//J Physiol.-2006.-V.577.-N.Pt 1.-P.5−15.
  71. Hoon M. A., Adler E., Lindemeier J., Battey J. F., Ryba N. J. and Zuker C. S. Putative mammalian taste receptors: a class of taste-specific GPCRs with distinct topographic selectivity//Cell.-1999.-V.96.-N.4.-P.541−551.
  72. A., Menice С. В., Laporte R. and Morgan K. G. Mechanisms of smooth muscle contraction//Physiol Rev.-1996.-V.76.-N.4.-P.967−1003.
  73. Houslay M. D. and Adams D. R. PDE4 cAMP phosphodiesterases: modular enzymes that orchestrate signalling cross-talk, desensitization and compartmentalization//Biochem J.-2003.-V.370.-N.Pt 1.-P.1−18.
  74. Iwami G., Kawabe J., Ebina Т., Cannon P. J., Homey C. J. and Ishikawa Y. Regulation of adenylyl cyclase by protein kinase A//J Biol Chem.-1995.-V.270.-N.21.-P.12 481−12 484.
  75. Jacobowitz 0., Chen J., Premont R. T. and Iyengar R. Stimulation of specific types of Gs-stimulated adenylyl cyclases by phorbol ester treatment//J Biol Chem.-1993.-V.268.-N.6.-P.3829−3832.
  76. Johnson D. A., Akamine P., Radzio-Andzelm E., Madhusudan M. and Taylor S. S. Dynamics of cAMP-dependent protein kinase//Chem Rev.-2001.-V.101.-N.8.-P.2243−2270.
  77. Kammerer R. A., Frank S., Schulthess Т., Landwehr R., Lustig A. and Engel J. Heterodimerization of a functional GABAB receptor is mediated by parallel coiled-coil alpha-helices//Biochemistry.-1999.-V.38.-N.40.-P. 13 263−13 269.
  78. Kang G. and Holz G. G. Amplification of exocytosis by Ca2±induced Ca2+ release in INS-1 pancreatic beta cells//J Physiol.-2003.-V.546.-N.Pt 1.-P.175−189.
  79. Kang G., Chepurny O. G. and Holz G. G. cAMP-regulated guanine nucleotide exchange factor II (Epac2) mediates Ca2±induced Ca2+ release in INS-1 pancreatic beta-cells//J Physiol.-2001.-V.536.-N.Pt 2.-P.375−385.
  80. Kashima Y., Miki Т., Shibasaki Т., Ozaki N., Miyazaki M., Yano H. and Seino S. Critical role of cAMP-GEFII—Rim2 complex in incretin-potentiated insulin secretion//J Biol Chem.-2001 .-V.276.-N.49.-P.46 046−46 053.
  81. Katoch S. S., Su X. and Moreland R. S. Ca (2+) — and protein kinase C-dependent stimulation of mitogen-activated protein kinase in detergent-skinned vascular smooth muscle//J Cell Physiol. T-1999.-V. 179.-N.2.-P.208−217.
  82. Kaupp U. B. and Seifert R. Molecular diversity of pacemaker ion channels//Annu Rev Physiol.-2001.-V.63.-P.235−257.
  83. Kaupp U. B. and Seifert R. Cyclic nucleotide-gated ion channels//Physiol Rev.-2002.-V.82.-N.3.-P.769−824.
  84. Kawabe J., Ebina Т., Toya Y., Oka N. Schwencke C., Duzic E. and Ishikawa Y. Regulation of type V adenylyl cyclase by PMA-sensitive and -insensitive protein kinase С isoenzymes in intact cells//FEBS Lett.-1996.-V.384.-N.3.-P.273−276.
  85. Kawasaki H., Springett G. M., Mochizuki N., Toki S., Nakaya M., Matsuda M., Housman D. E. and Graybiel A. M. A family of cAMP-binding proteins that directly activate Rapl//Science.-1998.-V.282.-N.5397.-P.2275−2279.
  86. Knall C. and Johnson G. L. G-protein regulatory pathways: rocketing into the twenty-first century//J Cell Biochem Suppl.-1998.-V.30−31.-P.137−146.
  87. Kolakowski L. F., Jr. GCRDb: a G-protein-coupled receptor database//Receptors Channels.-1994.-V.2.-N.l.-P.l-7.
  88. Kooistra M. R., Corada M., Dejana E. and Bos J. L. Epacl. regulates-integrity of endothelial cell junctions through VE-cadherin//FEBS Lett.-2005.-V.579.-N.22.-P.4966−4972.
  89. Kopperud R., Christensen A. E., Kjarland E., Viste K., Kleivdal H. and Doskeland S. 0. Formation of inactive cAMP-saturated holoenzyme of cAMP-dependent protein kinase under physiological conditions//J Biol Chem.-2002.-V.277.-N.16.-P.13 443−13 448.
  90. Kotlikoff M. I. and Kamm К. E. Molecular mechanisms of beta-adrenergic relaxation of airway smooth muscle//Annu Rev Physiol.-1996.-V.58.-P.l 15−141.
  91. Krupinski J. The adenylyl cyclase family//Mol Cell Biochem.-1991.-V.104.-N.l-2.-P.73−79.
  92. M. J., Кор E. N., Stacey M., Matmati M., Gordon S., Lin H. H. and Hamann J. The EGF-TM7 family: a postgenomic view//Immunogenetics.-2004.-V.55.-N.10.-P.655−666.
  93. Laroche-Joubert N., Marsy S., Michelet S., Imbert-Teboul M. and Doucet A. Protein kinase A-independent activation of ERK and H, K-ATPase by cAMP in native kidney cells: role of Epac I//J Biol Chem.-2002.-V.277.-N.21.-P. 18 598−18 604.
  94. Lee С. M., Lin J. T. and Tsai T. S. Effects of neuroactive agents on the isolated heart activities of marine bivalve Meretrix lusoria//Chin J Physiol.-1993.-V.36.-N.3.-P.165−170.
  95. Lee S. B. and Rhee S. G. Significance of PIP2 hydrolysis and regulation of phospholipase С isozymes//Curr Opin Cell Biol.-1995f-V.7.-N.2.-P.183−189.
  96. Levin L. R. and Reed R. R. Identification of functional domains of adenylyl cyclase using In vivo chimeras//J Biol Chem.-1995.-V.270.-N.13.-P.7573−7579.
  97. Lin H. H., Stacey M., Hamann J., Gordon S. and McKnight A. J. Human EMR2, a novel EGF-TM7 molecule on chromosome. 19pl3.1, is closely related to CD97//Genomics.-2000.-V.67.-N.2.-P. 188−200.
  98. Lin H. H., Chang G. W., Davies J. Q., Stacey M., Harris J. and Gordon S. Autocatalytic cleavage of the EMR2 receptor occurs at a conserved G protein-coupled receptor proteolytic site motif//J Biol Chem.-2004.-V.279.-N.30.-P.31 823−31 832.
  99. Lincoln Т. M. and Fisher-Simpson V. A comparison of the effects of forskolin and nitroprusside on cyclic nucleotides and relaxation in the rat aorta//Eur J Pharmacol.-1984.-V.101.-N.1−2.-P. 17−27.
  100. Liu M. and Simon M. I. Regulation by cAMP-dependent protein kinease of a G-protein-mediated phospholipase C//Nature.-1996.-V.382.-N.6586.-P.83−87.
  101. Liu X., Malbon С. C. and Wang H. Y. Identification of amino acid residues of Gsalpha critical to repression of adipogenesis//J Biol Chem.-1998.-V.273.-N.19.-P. 11 685−11 694.
  102. Lloyd P. E. Cardioactive neuropeptides in gastropods//Fed Proc.-1982.-V.41.-N.13.-P.2948−2952.
  103. Ludwig A., Zong X., Jeglitsch M., Hofmann F. and Biel M. A family of hyperpolarization-activated mammalian cation channels//Nature.-1998.-V.393.-N.6685.-P.587−591.
  104. Luo S. F., Chiu С. Т., Tsao H. L" Fan L. W., Tsai С. Т., Pan S. L. and Yang С. M. Effect of forskolin on bradykinin-induced calcium mobilization in cultured canine tracheal smooth muscle cells//Cell Signal.-1997.-V.9.-N.2.-P.159−167.
  105. Lustig K. D., Conklin B. R., Herzmark P., Taussig R. and Bourne H. R. Type II adenylylcyclase integrates coincident signals from Gs, Gi, and Gq//J Biol Chem.-1993.-V.268.-N.19.-P.13 900−13 905.
  106. S. R., Seatter M. J., Капке Т., Hunter G. D. and Plevin R. Proteinase-activated receptors//Pharmacol Rev.-2001.-V.53.-N.2.-P.245−282.
  107. Malbon С. C. Frizzleds: new members of the superfamily of G-protein-coupled receptors/ZFront Biosci.-2004.-V.9.-P.1048−1058.
  108. Mayr B. and Montminy M. Transcriptional regulation by the phosphorylation-dependent factor CREB//Nat Rev Mol Cell Biol.-2001.-V.2.-N.8.-P.599−609.
  109. McCullough A. R. An update on the PDE-5 inhibitors (PDE-5i)//J Androl.-2003.-V.24.-N.6 Suppl.-P.S52−58.
  110. Means A. R. Regulatory cascades involving calmodulin-dependent protein kinases//Mol Endocrinol.-2000.-V.14.-N.l.-P.4−13.
  111. Montminy M. Transcriptional regulation by cyclic AMP//Annu Rev Biochem.-1997.-V.66.-P.807−822.
  112. Morel E., Marcantoni A., Gastineau M., Birkedal R., Rochais F., Gamier A., Lompre A. M., Vandecasteele G. and Lezoualc’h F. cAMP-Binding Protein Epac Induces Cardiomyocyte Hypertrophy//Circ Res.-2005.-V.
  113. Moulis A. RFamide neuropeptide actions on the molluscan heart//Acta Biol Hung.-2004.-V.55.-N.1−4.-P.335−341.
  114. Moulis A., Huddart H. and Hill R. B. Comparative potency of some extended peptide chain members of the RFamide neuropeptide family, assessed on the hearts of Busycon canaliculatum and Buccinum undatum//J Comp Physiol B.-2003.-V.173.-N.8.-P.637−642.
  115. Movsesian M. A. cAMP-mediated signal transduction and sarcoplasmic reticulum function in heart failure//Ann N Y Acad Sci.-1998.-V.853.-P.231−239.
  116. Nakamura Т., Hayashi K. and Seki J. Eight-channel ultrasonic displacement meter for implantable miniature sensors//Med Biol Eng Comput.-1987.-V.25.-N.3.-P.355−358.
  117. M., Crane A., Ни M., Seghers V., Ullrich S., Aguilar-Bryan L. and Bryan J. cAMP-activated protein kinase-independent potentiation of insulin secretion by cAMP is impaired in SUR1 null islets//Diabetes.-2002.-V.51.-N.12.-P.3440−3449.
  118. Neary J. T. Trophic actions of extracellular ATP on astrocytes, synergistic interactions with fibroblast growth factors and underlying signal transduction mechanisms//Ciba Found Symp.-1996.-V. 198.-P. 130−139- discussion 139−141.
  119. Nguyen Q. D., Faivre S., Bruyneel E., Rivat C., Seto M., Endo Т., Mareel M., Emami S. and Gespach C. RhoA- and RhoD-dependent regulatory switch of Galpha subunit signaling by PAR-1 receptors in cellular invasion//Faseb J.-2002.-V.16.-N.6.-P.565−576.
  120. Nikolaev V. O., Bunemann M., Hein L., Hannawacker A. and Lohse M. J. Novel Single Chain cAMP Sensors for Receptor-induced Signal Propagation/Л Biol Chem.-2004.-V.279.-N.36.-P.37 215−37 218.
  121. Ozaki N., Shibasaki Т., Kashima Y., Miki Т., Takahashi K., Ueno H., Sunaga Y., Yano H., Matsuura Y., Iwanaga Т., Takai Y. and Seino S. cAMP-GEFII is a direct target of cAMP in regulated exocytosis//Nat Cell Biol.-2000.-V.2.-N.ll.-P.805−811.
  122. Patel S., Joseph S. K. and Thomas A. P. Molecular properties of inositol 1,4,5-trisphosphate receptors//Cell Calcium.-1999.-V.25.-N.3.-P.247−264.
  123. Paterson J. M., Smith S. M., Harmar A. J. and Antoni F. A. Control of a novel adenylyl cyclase by calcineurin//Biochem Biophys Res Commun.-1995.-V.214.-N.3.-P.1000−1008.
  124. Petrashevskaya N. N., Koch S. E., Bodi I. and Schwartz A. Calcium cycling, historic overview and perspectives. Role for autonomic nervous system regulation//J Mol Cell Cardiol.-2002.-V.34.-N.8.-P.885−896.
  125. Picco C., Gavazzo P. and Menini A. Co-expression of wild-type and mutant olfactory cyclic nucleotide-gated channels: restoration of the native sensitivity to Ca (2+) and Mg (2+) blockage//Neuroreport.-2001.-V.12.-N.ll.-P.2363−2367.
  126. Pohl S. L., Birnbaumer L. and Rodbell M. Glucagon-sensitive adenyl cylase in plasma membrane of hepatic parenchymal cells//Science.-1969.-V.164.-N.879.-P.566−567.
  127. Pohl S. L., Birnbaumer L. and Rodbell M. The glucagon-sensitive adenyl cyclase system in plasma membranes of rat liver. I. Properties/Я Biol Chem.-1971.-V.246.-N.6.-P.1849−1856.
  128. Qiao J., Mei F. C., Popov V. L., Vergara L. A. and Cheng X. Cell cycle-dependent subcellular localization of exchange factor directly activated by cAMP//J Biol Chem.-2002.-V.277.-N.29.-P.26 581−26 586.
  129. Rehmann H., Rueppel A., Bos J. L. and Wittinghofer A. Communication between the regulatory and the catalytic region of the cAMP-responsive guanine nucleotide exchange factor Epac//J Biol Chem.-2003.-V.278.-N.26.-P.23 508−23 514.
  130. Rehmann H., Schwede F., Doskeland S. O., Wittinghofer A. and Bos J. L. Ligand-mediated activation of the cAMP-responsive guanine nucleotide exchange factor Epac//J Biol Chem.-2003.-V.278.-N.40.-P.38 548−38 556.
  131. Rehmann H., Prakash В., Wolf E., Rueppel A., De Rooij J" Bos J. L. and Wittinghofer A. Structure and regulation of the cAMP-binding domains of Epac2//Nat Struct Biol.-2003.-V.10.-N.1.-P.26−32.
  132. Reich G., Doble К. E., Price D. A. and Greenberg M. J. Effects of cardioactive peptides on myocardial cAMP levels in the snail Helix aspersa//Peptides.-1997.-V.18.-N.3.-P.355−360.
  133. Reznikoff W. S. The lactose operon-controlling elements: a complex paradigm//Mol Microbiol.-1992.-V.6.-N. 17.-P.2419−2422.
  134. Ringheim G. E. and Taylor S. S. Effects of cAMP-binding site mutations on intradomain cross-communication in the regulatory subunit of cAMP-dependent protein kinase Ш Biol Chem.-1990.-V.265.-N.32.-P.19 472−19 478.
  135. Rodbell M., Birnbaumer L. and Pohl S. L. Adenyl cyclase in fat cells. 3. Stimulation by secretin and the effects of trypsin on the receptors for lipolytic hormones//J Biol Chem.-1970.-V.245.-N.4.-P.718−722.
  136. Rodbell M., Birnbaumer L., Pohl S. L. and Krans H. M. The glucagon-sensitive adenyl cyclase system in plasma membranes of rat liver. V. An obligatory role of guanylnucleotides in glucagon action//J Biol Chem.-1971.-V.246.-N.6.-P.1877−1882.
  137. Rybalkin S. D., Yan C., Bornfeldt К. E. and Beavo J. A. Cyclic GMP phosphodiesterases and regulation of smooth muscle function//Circ Res.-2003.-V.93.-N.4.-P.280−291.
  138. Sakaba T. and Neher E. Quantitative relationship between transmitter release and calcium current at the calyx of held synapse//J Neurosci.-2001.-V.21.-N.2.-P.462−476.
  139. Sakaba T. and Neher E. Involvement of actin polymerization in vesicle recruitment at the calyx of Held synapse//J Neurosci.-2003.-V.23.-N.3.-P.837−846.
  140. Santoro В., Liu D. Т., Yao H., Bartsch D., Kandel E. R., Siegelbaum S. A. and Tibbs G. R. Identification of a gene encoding a hyperpolarization-activated pacemaker channel of brain//Cell.-1998.-V.93.-N.5.-P.717−729.
  141. Sawada H. Ascidian sperm lysin system//Zoolog Sci.-2002.-V.19.-N.2.-P.139−151.
  142. Schmidt M., Evellin S., Weernink P. A., von Dorp F., Rehmann H., Lomasney J. W. and Jakobs К. H. A new phospholipase-C-calcium signalling pathway mediated by cyclic AMP and a Rap GTPase//Nat Cell Biol.-2001.-V.3.-N.ll.-P.1020−1024.
  143. Schwede F., Maronde E., Genieser H. and Jastorff B. Cyclic nucleotide analogs as biochemical tools and prospective drugs//Pharmacol Ther.-2000.-V.87.-N.2−3.-P. 199−226.
  144. Schwinger R. H. and Frank K. F. Calcium and the failing heart: phospholamban, good guy or bad guy?//Sci STKE.-2003.-V.2003.-N.180.-P.pel5.
  145. Seino S. and Shibasaki T. РКА-dependent and РКА-independent pathways for cAMP-regulated exocytosis//Physiol Rev.-2005.-V.85.-N.4.-P. 1303−1342.
  146. Shapiro M. S. and Zagotta W. N. Structural basis for ligand selectivity of heteromeric olfactory cyclic nucleotide-gated channels//Biophys J.-2000.-V.78.-N.5.-P.2307−2320.
  147. Shibasaki Т., Sunaga Y., Fujimoto K., Kashima Y. and Seino S. Interaction of ATP sensor, cAMP sensor, Ca2+ sensor, and voltage-dependent Ca2+ channel in insulin granule exocytosis//J Biol Chem.-2004.-V.279.-N.9.-P.7956−7961.
  148. Shimomura H., Imai A. and Nashida T. Evidence for the involvement of cAMP-GEF (Epac) pathway in amylase release from the rat parotid gland//Arch Biochem Biophys.-2004.-V.431 .-N. 1 .-P. 124−128.
  149. Shyng S. L. and Nichols C. G. Membrane phospholipid control of nucleotide sensitivity of KATP channels//Science.-1998.-V.282.-N.5391.-P.l 138−1141.
  150. Skalhegg B. S., Tasken K., Hansson V., Huitfeldt H. S., Jahnsen T. and Lea T. Location of cAMP-dependent protein kinase type I with the TCR-CD3 complex//Science.-1994.-V.263.-N.5143.-P.84−87.
  151. Smith С. M., Radzio-Andzelm E., Madhusudan, Akamine P. and Taylor S. S. The catalytic subunit of cAMP-dependent protein kinase: prototype for an extended network of communication//Prog Biophys Mol Biol.-1999.-V.71.-N.3−4.-P.313−341.
  152. Somlyo A. P. Kinases, myosin phosphatase and Rho proteins: curiouser and curiouser//J Physiol.-1999.-V.516 (Pt 3).-P.630.
  153. Stacey M., Lin H. H., Gordon S. and McKnight A. J. LNB-TM7, a group of seven-transmembrane proteins related to family-B G-protein-coupled receptors//Trends Biochem Sci.-2000.-V.25.-N.6.-P.284−289.
  154. Stern A. S" Magram J. and Presky D. H. Interleukin-12 an integral cytokine in the immune response//Life Sci.-1996.-V.58.-N.8.-P.639−654.
  155. Stork P. J. Does Rapl deserve a bad Rap?//Trends Biochem Sci.-2003.-V.28.-N.5.-P.267−275.
  156. Su T. Z., Qi S., Yun W. H. and Xiu L. Regulation in the expression of alpha-galactosidase gene in raf operon in Escherichia coli.//Wei Sheng Wu Xue Bao.-1989.-V.29.-N.3.-P. 180−186.
  157. Takahashi N. Kadowaki Т., Yazaki Y., Ellis-Davies G. C., Miyashita Y. and Kasai H. Post-priming actions of ATP on Ca2±dependent exocytosis in pancreatic beta cells//Proc Natl Acad Sci U S A.-1999.-V.96.-N.2.-P.760−765.
  158. Takai Y., Sasaki T. and Matozaki T. Small GTP-binding proteins//Physiol Rev.-2001.-V.81 .-N. 1 .-P. 153−208.
  159. Tang W. J., Yan S. and Drum C. L. Class III adenylyl cyclases: regulation and underlying mechanisms//Adv Second Messenger Phosphoprotein Res.-1998.-V.32.-P.137−151.
  160. Taussig R. and Zimmermann G. Type-specific regulation of mammalian adenylyl cyclases by G protein pathways//Adv Second Messenger Phosphoprotein Res.-1998.-V.32.-P.81−98.
  161. Torgersen К. M., Vang Т., Abrahamsen H., Yaqub S. and Tasken K. Molecular mechanisms for protein kinase A-mediated modulation of immune function//Cell Signal.-2002.-V.14.-N.1.-P.1−9.
  162. Uckert S., Kuthe A., Jonas U. and Stief C. G. Characterization and functional relevance of cyclic nucleotide phosphodiesterase isoenzymes of the human prostate//J Urol.-2001.-V.166.--N.6.-P.2484−2490.
  163. Varnum M. D. and Zagotta W. N. Subunit interactions in the activation of cyclic liucleotide-gated ion channels//Biophys J.-1996.-V.70.-N.6.-P.2667−2679.
  164. Veillette A., Latour S. and Davidson D. Negative regulation of immunoreceptor signaling//Annu Rev Immunol.-2002.-V.20.-P.669−707.
  165. Vogt S., Grosse R., Schultz G. and Offermanns S. Receptor-dependent RhoA activation in G12/G13-deficient cells: genetic evidence for an involvement of Gq/Gll/Я Biol Chem.-2003.-V.278.-N.31 .-P.28 743−28 749.
  166. Vorherr Т., Knopfel L., Hofmann F., Mollner S., Pfeuffer T. and Carafoli E. The calmodulin binding domain of nitric oxide synthase and adenylyl cyclase//Biochemistry.-1993.-V.32.-N.23.-P.6081−6088.
  167. Vossler M. R., Yao H., York R. D., Pan M. G., Rim C. S. and Stork P. J. cAMP activates MAP kinase and Elk-1 through a B-Raf- and Rap 1-dependent pathway//Cell.-1997.-V.89.-N.l.-P.73−82.
  168. Wang H. and Storm D. R. Calmodulin-regulated adenylyl cyclases: cross-talk and plasticity in the central nervous system//Mol Pharmacol.-2003.-V.63.-N.3.-P.463−468.
  169. Wang H. Y. and Malbon С. C. Wnt-frizzled signaling to G-protein-coupled effectors//Cell Mol Life Sci.-2004.-V.61 .-N. 1 .-P.69−75.
  170. Wayman G. A., Wei J., Wong S. and Storm D. R. Regulation of type I adenylyl cyclase by calmodulin kinase IV in vivo//Mol Cell Biol.-1996.-V.16.-N.ll.-P.6075−6082.
  171. Weber I. T. and Steitz T. A. Structure of a complex of catabolite gene activator protein and cyclic AMP refined at 2.5 A resolution//J Mol Biol.-1987.-V.198.-N.2.-P.311−326.
  172. I. Т., Takio K., Titani K. and Steitz T. A. The cAMP-binding domains of the regulatory subunit of cAMP-dependent protein kinase and the catabolite gene activator protein are homologous//Proc Natl Acad Sci U S A.-1982.-V.79.-N.24.-P.7679−7683.
  173. I. Т., Steitz T. A., Bubis J. and Taylor S. S. Predicted structures of cAMP binding domains of type I and II regulatory subunits of cAMP-dependent protein kinase//Biochemistry.-1987.-V.26.-N.2.-P.343−351.
  174. Wei J., Wayman G. and Storm D. R. Phosphorylation and inhibition of type III adenylyl cyclase by calmodulin-dependent protein kinase II in vivo//J Biol Chem.-1996.-V.271.-N.39.-P.24 231−24 235.
  175. Wei J. Y., Roy D. S., Leconte L. and Barnstable C. J. Molecular and pharmacological analysis of cyclic nucleotide-gated channel function in the central nervous system//Prog Neurobiol.-1998.-V.56.-N.l.-P.37−64.
  176. Wen W., Taylor S. S. and Meinkoth J. L. The expression and intracellular distribution of the heat-stable protein kinase inhibitor is cell cycle regulated//J Biol Chem.-1995.-V.270.-N.5.-P.2041−2046.
  177. Wen W., Harootunian A. Т., Adams S. R., Feramisco J., Tsien R. Y., Meinkoth J. L. and Taylor S. S. Heat-stable inhibitors of cAMP-dependent protein kinase carry a nuclear export signal//J Biol Chem.-1994.-V.269.-N.51.-P.32 214−32 220.
  178. Wess J. G-protein-coupled receptors: molecular mechanisms involved in receptor activation and selectivity of G-protein recognition//FASEB J.-1997.-V.11.-N.5.-P.346−354.
  179. White A. A. Separation and purification of cyclic nucleotides by alumina column chromatography//Methods Enzymol.-1974.-V.38.-P.41−46.
  180. Willoughby D., Yeoman M. S. and Benjamin P. R. Cyclic AMP is involved in cardioregulation by multiple neuropeptides encoded on the FMRFamide gene//J Exp Biol.-1999.-V.202.-N.Pt 19.-P.2595−2607.
  181. Wollemann M. and Rozsa K. S. Effects of serotonin and catecholamines on the adenylate cyclase of molluscan heart//Comp Biochem Physiol C.-1975.-V.51.-N.1.-P.63−66.
  182. Wu Z. L., Thomas S. A., Villacres E. C., Xia Z., Simmons M. L., Chavkin C., Palmiter R. D. and Storm D. R. Altered behavior and long-term potentiation in type I adenylyl cyclase mutant mice//Proc Natl Acad Sci U S A.-1995.-V.92.-N.1.-P.220−224.
  183. Wuttke M. S., Buck J. and Levin L. R. Bicarbonate-regulated soluble adenylyl cyclase//Jop.-2001 .-V.2.-N.4 Suppl.-P. 154−158.
  184. Xavier R., Brennan Т., Li Q., McCormack C. and Seed B. Membrane compartmentation is required for efficient T cell activation//Immunity.-1998.-V.8.-N.6.-P.723−732.
  185. Xia Z. and Storm D. R. Calmodulin-regulated adenylyl cyclases and neuromodulation//Curr Opin Neurobiol.-1997.-V.7.-N.3.-P.391−396.
  186. Yang X., Taylor L. and Polgar P. Mechanisms in the transcriptional regulation of bradykinin B1 receptor gene expression. Identification of a minimum cell-type specific enhancer//J Biol Chem.-1998.-V.273.-N.17.-P.10 763−10 770.
  187. Yang X., Taylor L. and Polgar P. Effect of the G-protein, G alpha (i2), and G alpha (i3) subunit knockdown on bradykinin-induced signal transduction in rat-1 cells//Mol Cell Biol Res Commun.- 1999.-V. 1 .-N.3.-P.227−236.
  188. Yau K. W. Cyclic nucleotide-gated channels: an expanding new family of ion channels//Proc Natl Acad Sci U S A.-1994.-V.91.-N.9.-P.3481−3483.
  189. Yip К. P. Epac mediated Ca2+ mobilization and exocytosis in inner medullary collecting duct//Am J Physiol Renal Physiol.-2006.-V.
  190. York R. D., Yao H., Dillon Т., Ellig C. L., Eckert S. P., McCleskey E. W. and Stork P. J. Rapl mediates sustained MAP kinase activation induced by nerve growth factor//Nature.-1998.-V.392.-N.6676.-P.622−626.
  191. Yoshimura M. and Cooper D. M. Cloning and expression of a Ca (2+)-inhibitable adenylyl cyclase from NCB-20 cells//Proc Natl Acad Sci U S A.-1992.-V.89.-N.15.-P.6716−6720.
  192. Yoshimura M., Ikeda H. and Tabakoff B. mu-Opioid receptors inhibit dopamine-stimulated activity of type V adenylyl cyclase but enhance dopamine-stimulated activity of type VII adenylyl cyclase//Mol Pharmacol.-1996.-V.50.-N.1.-P.43−51.
  193. Yue C., Dodge K. L., Weber G. and Sanborn В. M. Phosphorylation of serine 1105 by protein kinase A inhibits phospholipase Cbeta3 stimulation by Galphaq//J Biol Chem.-1998.-V.273.-N.29.-P. 18 023−18 027.
  194. Zhao J., Li L., Wu C. and He R. Q. Hydrolysis of fibrinogen and plasminogen by immobilized earthworm fibrinolytic enzyme II from Eisenia fetida//Int J Biol Macromol.-2003.-V.32.-N.3−5.-P. 165−171.
  195. Zhong N. and Zucker R. S. cAMP acts on exchange protein activated by cAMP/cAMP-regulated guanine nucleotide exchange protein to regulate transmitter release at the crayfish neuromuscular junction//J Neurosci.-2005.-V.25.-N.l.-P.208−214.
  196. С. В., Коробов Н. В., Диегии В. И., Помогайбо С. В. и Виноградов В. А. Изучение механизма гипертензивного эффекта FMRF-подобных пептидов//Бюлл Всесоюзного Кардиол Научн Центра АМН СССР.-1989.-Т.12.-Н.1.-С.45−47.
  197. Zimmermann G., Zhou D. and Taussig R. Activating mutation of adenylyl cyclase reverses its inhibition by G proteins//Mol Pharmacol.-1999.-V.56.-N.5.-P.895−901.
  198. Zubay G., Schwartz D. and Beckwith J. Mechanism of activation of catabolite-sensitive genes: a positive control system//Proc Natl Acad Sci U S A.-1970.-V.66.-N.1.-P.104−110.
Заполнить форму текущей работой