Роль циклических нуклеотидов в реализации эффектов оксида азота (II) на секрецию медиатора и ионные токи двигательного нервного окончания
Диссертация
Научно-практическая ценность. Теоретическое значение исследования заключается в расширении представлений о механизмах регуляции работы нервно-мышечного синапса. Полученные экспериментальные данные могут служить основой для понимания возможных взаимодействий N0 с другими медиаторными и гормональными системами и для изучения патогенеза и механизмов заболеваний, сопровождающихся нарушением… Читать ещё >
Список литературы
- Авдонин П.В., Ткачук В. А. Рецепторы и внутриклеточный кальций. М.: Наука. 1994. — С. 288.
- Ашмарин И.П., Стукалова П. В. Нейрохимия. М.:Изд. Института биомедицинской химии РАМН. 1996. — С. 470.
- Балезина О.П. Роль внутриклеточных кальциевых запасов в нервных терминалях в регуляции секреции медиатора // Успехи физиол. наук. 2002. -Т. 33. № 3. — С. 3−31.
- Башкатова В.Г., Микоян В. Д., Косачев Е. С. Оксид азота и его свойства // Нейрохимия.- 1996.-Т. 13. № 2.-С. 115−120.
- Горен А.К.Ф., Майер Б. Универсальная и комплексная энзимология синтазы оксида азота. // Биохимия. 1998. — Т.63. Вып 7. — С. 870−880.
- Гусев Н.Б. Протеинкиназы: строение, классификация, свойства и биологическая роль // Соросовский образовательный журнал. 2000. — Т.6 № 126.-С.4−12.
- Зефиров А.Л., Ситдикова Г. Ф. Ионные каналы нервного окончания // Успехи физиол. наук. 2002. — Т.ЗЗ. № 4. — С. 3−33.
- Зефиров А.Л., Черанов С. Ю. Молекулярные механизмы квантовой секреции медиатора в синапсе // Успехи физиол. наук. 2000. — Т. 31. № 3. С. 3−22.
- Зефиров АЛ., Халилов И. А. Особенности электрической активности в различных участках нервного окончания лягушки // Бюлл. экспер. биол. и мед. 1985. — Т. 49. № 1. — С. 7−10.
- Зефиров A.JI., Халилов И. А., Хамитов Х. С. Кальциевые и кальций-активируемые калиевые токи двигательного нервного окончания лягушки // Нейрофизиология. 1987. — Т. 19. № 4. — С. 467−472.
- Зефиров А.Л., Халиуллина P.P., Анучин A.A. Эффекты экзогенного оксида азота на секрецию медиатора и ионные токи двигательного нервного окончания // Бюлл. экспер. биол. и мед. 1999. — Т. 128. № 8. — С. 144−147.
- Зефиров А.Л., Уразаев А. Х. Функциональная роль оксида азота // Успехи Физиол. Наук. 1999. — Т. 30. № 1. — С. 547−72.
- Казанский В.В. Методика изготовления «самозаполняющихся» микроэлектродов // Физиол. журнал СССР. 1973. — Т. 59. № 6. — С. 695−696.
- Каламкаров Г. Р., О.Г. Лунгина. Ионные каналы, регулируемые циклическими нуклеотидами // Сенсорные системы. 2001. — Т.15. N 4. — С. 275−287.
- Каменская М.А. Современные представления о механизме квантового освобождения медиатора из моторных нервных окончаний скелетной мышцы // Успехи физиологических наук. 1972. — Т.З. № 3. — С. 22−63.
- Кометианин П.А., Микеладзе Д. Г. О роли циклической аденозинмонофосфатной кислоты в мембранных процессах нервной ткани // Циклические нуклеотиды. М.: Наука. 1976. — С. 80−91.
- Коненко Н.И. Ионные механизмы трансмембранного тока вызванного инъекцией цАМФ в идентифицированные нейроны виноградной улитки // Нейрофизиология. 1980. — Т12. № 5. — С. 526−532.
- Костюк П.Г. Микроэлектродная техника // Киев: Наукова думка. 1960. -С. 175.
- Крутецкая З.И., Лебедев О.Е, Курилова Л. С. Механизмы внутриклеточной сигнализации // Монография. Спб.: Изд-во С.Петер. Унта.-2003.-С. 208.
- Лакин Г. Ф. Биоментрия. М.: Наука. 1984. — С. 351.
- Лебедев O.E., Крутецкая З. И. Механизмы трансмембранной передачи сигналов в клетках // Изд-во С.Петерб. Ун-та. 1994. — С. 75
- Либерман Е.А., Мишина С. В., Шкловский Н. А. Ионные токи через мембрану нейронов при инъекции цАМФ у Aplysia // Биофизика. 1988. — Т. 27. — № 3. — С. 4−15.
- Меньшиков Е.Б., Зенков Н. К. Реутов В.П. Оксид азота и NO-синтазы в организме млекопитающих при различных функциональных состояниях // Биохимия. 2000. — Т.65. вып 4. — С. 485−503.
- Реутов В.П., Сорокина Е. Г., Охотин В. Е., Косицин Н. С. Циклические превращения NO в организме млекопитающих. М.: Наука. 1998. — С.159.
- Сосунов А.А. Оксид азота как межклеточный посредник // Соросовский образовательный журнал. 2000. — Т.6. № 12.
- Теппермен Дж., Теппермен X. Физиология обмена веществ и эндокринной системы. М.: Мир. 1989. — С. 656.
- Туракулов Я.Х., Саатов Т. С., Халиков С. К., Исаев Э. И., Гайнудинов М. Х. Циклические нуклеотиды и регуляция клеточного метаболизма. Изд-во «Фан».- 1983.-С. 240.
- Хухо Ф. Нейрохимия. Основы и принципы. М.: Мир. — 1990. — С. 383.
- Яковлев А.В., Ситдикова Г. Ф., Зефиров AJL Роль циклических нуклеотидов в реализации эффектов оксида азота (II) на секрецию медиатора и электрогенез двигательного нервного окончания // Доклады Академии Наук. 2002. — Т.382. № 2/3. — С. 273−276.
- Abdel-Latif АА. Cross talk between cyclic nucleotides and polyphosphoinositide hydrolysis, protein kinases, and contraction in smooth muscle // Exp Biol Med. 2001. — V. 226. № 3, p. 153−163.
- Adachi S., Nagao Т., Fukuda H. cAMP analog activates Na+ dependent inward current in dissocated frog motoneurons // Brain Res. — 1992. — V. 573. — № 2. — P. 349−352.
- Ambiel CR., Alves-Do-Prado W. Neuromuscular facilitation and blockade induced by L-arginine and nitric oxide in the rat isolated diaphragm // Gen Pharmacology. 1997. — V. 28. № 5. p.789−794.
- Andric SA., Kostic TS., Tomi M., et al. Dependence of soluble guanylyl cyclase activity on calcium signaling in pituitary cell // J. Biol. Chem. 2001. — V. 276.-P. 844−849.
- Ansanay H., Dumuis A., Sebben M. et al, cAMP-dependent long-lasting inhibition of a K+ current mammalian neurons // PNAS 1995. — V. 92. — P. 66 356 639.
- Arancio O., Kandel, E.R., and Hawkins, R.D. Activity-dependent long-term enhancement of transmitter release by presynaptic 3,5-cyclic GMP in cultured hippocampus neurons // Nature. 1995. — V. 376. — P. 74−80.
- Armour J.A., Smith F.M., Losier A.M., Ellenberger H.H., Hopking D.A. Modulation of intrinsic cardiac neuronal activity by nitric oxide donors induces cardiodynamic changes // Am. J. Physiol. 1995. — V. 268. — P. 403−413.
- Arnold W.P., Millal C.K., Katsuki S., Murad F. Nitric oxide activates guanylate cyclase and increases guanosine 3', 5'-cyclic monophosphate levels in various tissue preparations // Proc. Natl. Acad. Sci. USA. 1977. — V. 74. — P. 3203−3207.
- Ashman G., Lipton R., Melicow M., Price T. Isolation of adenosine 35'-monophosphate and guanosine S'^-monophosphate from rat urine // Biochem. Biophys. Res. Commun. 1963. — V. 11. — P.330−334.
- Balligang J.-L., Kelly R.A., Marsden P. A. et al. Control of cardiac muscle cell function by an endogenous nitric oxide signalling system // Proc. Natl. Acad. Sci .USA. 1993. — V. 90. — P. 347−351.
- Beard, M.B. et al. The unique N-terminal domain of the cAMP phosphodiesterase PDE4D4 allows for interaction with specific SH3 domains // FEBS Lett. 1999. — V. 460. — P. 173−177.
- Benjamin G. Nitric oxide and thiol groups // Biochimica et Biophysica Acta 1999.-V. 1411. -P.323−333
- Birks R., Huxley H.E., Katz B. The fine structure of neuromuscular junction // J. Physiol.Lond. 1960. — V. 150. — P. 134−144.
- Bloom TJ. Cyclic nucleotide phosphodiesterase isozymes expressed in mouse skeletal muscle // Can. J. Physiol. Pharmacol. 2002. — V. 80. № 12. — P. 1132−35.
- Bloomer S. Blockade by cAMP of native sodium channels of adult rat skeletal muscle fibers //APJ. 1998. — V. 275 № 6. — P. C1465-C1472.
- Bolotina VM., Najibi S., Palacino JJ., Pagano PJ., Cohen RA., Nitric oxide directly activates calcium-dependent potassium channels in vascular smooth muscle // Nature. 1994. — V. 368. — P. 850−853.
- Bouron A. Modulation of spontaneous quantal release of neurotransmitters in the hippocampus // Progress in Neurobiology. 2001. — V. 63. — P. 613−635.
- Braissant O., Gotoh T., Loup M. et al. L-arginine uptake, the citrulline-NO cycle and arginase II in the rat brain: an in situ hybridization study // Mol Brain Res. 1999. — V. 70. № 2. — P. 231−241.
- Braissant O., Henry H., Loup M. et al Endogenous synthesis and transport of creatine in the rat brain: an in situ hybridization study // C. Molecular Brain Research. 2001. V. 86. — P. 193−201.
- Branisteanu DD., Popescu LM., Branisteanu DD., Haulica ID. Cyclic GMP and protein kinase G inhibit the quantal transmitter release induced by protein kinase // C. Molecular Brain Research. 1988. — V. 4. — P. 263−266.
- Braun T., Dods RF. Development of a Mn2±sensetive, soluble adenilate cyclase in rat testis // PNAS. 1975. — V. 72. — P. 1097−1101.
- Bredt DS., Snider SH. Nitric oxide, a novel neuronal messenger // Neuron. -1992. V. 8. № 1. — P. 3−11.
- Brenman JE., Chao DS., Gee SH., et al. Interaction of nitric oxide synthase with the postsynaptic density protein PSD-95 // Cell. 1996. — V. 84. — P. 757−767.
- Briggs CA. Potentiation of nicotinic transmission in the rat superior cervical sympathetic ganglion: effects of cGMP and nitric oxides generation // Brain Res. -1992.-V. 573.-N1.-P. 136−146.
- Brune B., Lapetina EG. Activation cytosolic ADP-ribosyltransferase by nitric oxide generation agent // J. Bio. Chem. 1989. — V. 265. — P. 8455−58.
- Busse R., Fleming I., Schini V.B. The role of nitric oxide in phisiology and pathophysiology // Heidelberg: Springer 1995. — P. 37−50.
- Campbell D., Stampler JS., Strauss H. Redox modulation of L-type calcium channels in ferret ventricular myocytes dual mechanism regulation by nitric oxide and S-nitrosothiols //J. Gen. Physiology. — 1996. — V. 108. — P. 277−293.
- Castellano M.A., D. Rojas-Diaz, F. Martin et al. Opposite effects of low and high doses of arginine on glutamate -induced nitric oxide formation in rat substantia nigra // Neurosci Lett. 2001. — V. 314. — P. 127−130.
- Cetiner M., Bennett MR. Nitric oxide modulation of calcium activated potassium channels in parasympathic neurons of cultured avian ciliary ganglia // Pros. Aust. Physiol. Pharmocol. Soc. 1992. — V. 23. — P. 192−206.
- Chao DS., Silvagno F. Xia H., Cornwell TL., Lincoln TM., Bredt DS. Nitric oxide synthase and cyclic GMP-dependent protein kinase concentrated at the neuromuscular endplate // Neuroscience 1997. — V 76. -№ 3. — P. 665−72.
- Chao AC., Sauvage FJ., Dong, Y.-J., Wagner JA., Goeddel DV., Gardner P. Activation of intestinal CFTR CI 2 channel by heat-stable enterotoxin and guanylin via cAMP-dependent protein kinase // J. EMBO. 1994. — V. 13. — P. 1065−72.
- Chavis P., Mollard P., Bockaert J., Manzoni O. Visualization of cyclic AMP-regulated presynaptic activity at cerebellar granule cells // Neuron. 1998. — V.20. № 4.-P.773−81.
- Chen C., Regehr WG. The mechanism of cAMP-mediated enhancement at a cerebellar synapse // J. Neurosci. 1997. — V. 17. -№ 22. — P. 8687−94.
- Chesnais JM., Fischmeister R., Mry PF. Positive and negative inotropic effects of NO donors in atrial and ventricular fibers of the frog heart // J. Physiology. 1999. — V. 518. -№ 2. — P. 449−461.
- Cheung US., Shayan AJ., Atwood HL. Drosophila larva neuromuscular junction’s responses to reduction of cAMP in the nervous system // J. Neurobiol. -1999.-V. 40. № 1.-P. 1−13.
- Coldberg AL, Singer JJ. Evidence for the role cyclic AMP in neuromuscular transmission // Proc. Natl. Acad. Sci. 1969. — V. 64. — P. 131−141.
- Cooper CE. Nitric oxide and iron proteins // Biochimica et Biophysica Acta. -1999.-V. 1411.-P. 290−309.
- Corbin JD and Francis SH. Cyclic Gmp phosphodiesterase-5: Target of sildenafil // J. Biol Chem. 1999. — V. 274. — P. 13 729−32.
- Cornwell TL., Arnold E., Boerth NJ., Lincoln TM. Inhibition of smooth muscle cell growth by nitric oxide and activation of cAMP-dependent protein kinase by cGMP // Am. J. Physiol. 1994. — V. 267. — P. C1405-C1413.
- Dell’Acqua ML., Scott JD. Protein kinase A anchoring // J. Biol. Chem. -1997.-V. 272.-P. 12 881−84.
- Denninger JW., Marietta MA. Guanylate cyclase and the NO/cGMP signaling pathway // Biochimica et Biophysica Acta. 1999. — V. 1411. — P. 334−350.
- Desaphy J., De Luca A., Conte Camerino D. Blockade by cAMP of native sodium channels of adult rat skeletal muscle fibers // AVP. 1998. — V. 275. Issue 6. — P. C1465-C1472.
- Descarries LM., Cai S., Robitaille R. Localization and characterization of nitric oxide synthase at the frog neuromuscular junction. // J. Neurocytology 1998. V. 27. — P. 829−840.
- Dickinson. NT., Jang, EK., Haslam, RJ. Activation of cGMP-stimulated phosphodiesterase by nitroprusside limits cAMP accumulation in human platelets: effects on platelet aggregation // J. Biochem. 1997. — V. 323. — P. 371−377.
- Dimmeler S., Brune B. Characterization of a nitric oxide-catalyzed ADP-ribosylation of glyceraldehyde-3-phosphate dehydrogenase // Eur.J.Biochem. -1992.-V. 210.-P. 305−310.
- Doerner, D., & Alger, BE. Cyclic GMP depresses hippocampal Ca 21 current through a mechanism independent of cGMP-dependent protein kinase // Neuron. -1988, — V. 1.- P. 693−699.
- Dretchen K.L., Standaert F.G., et al. Evidence for a prejunctional role of cyclic nycleotides in neuromuscular transmission // Nature. 1976. — V. 264.- P. 89−81.
- Dryden WF., Singh YN., Gordon T., Lazarenko G. Pharmagological elevation of cAMP and transmitter release at the mouse neuromuscular junction // Can. J. Physiol. Pharmacol. 1988. — V. 66. № 3. — P. 207−212.
- Eccles J.C. The physiology of synapses // Springer-Verlag, Berlin GottingenHeidelberg. 1963. — P. 369.
- Eitle E., Wang H., Harris JP. Inhibition of proximal tubular fluid absorption by nitric oxide and atrial natriuretic peptide in rat kidney // AJP. 1998. — V. 274. № 4.-P. 1075−1080.
- El-Husseini AE.- Bladen C.- Williams JA.- Reiner PB.- Vincent SR. Nitric oxide regulates cyclic GMP-dependent protein kinase phosphorylation in rat brain // J. Neurochem. 1998. — V. 71. № 2. — P. 676−83.
- Erxleben C., Hermann A. Nitric oxide augments voltage-activated calcium currents of crustacea (Idotea baltica) skeletal muscle // Neurosciensce Letters. -2001.-V. 300.-P. 133−139.
- Essayan D.M. Cyclic nucleotide phosphodiesterase (PDE) inhibitors and immunomodulation // Biochem Pharmacol. 1999. — V. 57. — P. 965−973.
- Eu JP., Stampler JS., Meissner G. Sun J., Xu L., The skeletal calcium release channel: coupled O2 sensor and NO signaling functions // Cell. 2000. — V. 102. -P.499−509
- Ewald D., Eckert R. cAMP enchences Ca dependent potassium current in Aplysia neurons // Cellular and molecular Neurobiol. — 1983. — V. 3. № 4. — P. 1847.
- Fatt P., Katz B. Spontaneous subtheshold activity at motor nerve endings // J.Physiol.Lond. 1952. — V. 117.-P. 109.
- Feron O., Beihassen L., Kobzic L. et al. Endothelial nitric oxide synthase targeting to caveolae. Specific interactions with caveolin isoforms in cardiac myocytes and endothelial cells // J.Biol.Chem. 1996. — V. 271. — P. 22 810−22 814.
- Festoff B.W. Role of cyclic nucleotides in skeletal muscle metabolism // Current Top. Nerve and Muscle Res. Eds.: Aguayo A.J., Karpati G. AmsterdamOxford: Elsevier. 1979. — P. 61−72.
- Francis SH., Corbin JD. Structure of cyclic nucleotide dependent protein kinases // Annu Rev. Physiology. 1994. — V. 56. — P.237−272.
- Furchott RF., Zawadski JV. The obligatory role of endothelial cell in the relaxation of arterial smooth muscle by acetylcholine // Nature. 1980. — V. 288. -P. 373−376.
- Gallo MP., Ghigo D., Bosia A., Alloatti G., Costamagna C., Penna C., Levi RC. Modulation of guinea-pig cardic L-type calcium current by nitric oxide synthase inhibitor//?Physiology. 1998. — V. 508. — P. 639−651.
- Garthawaite J. Neural nitric oxide signaling // Trends Neuroscience. 1995. -V. 43.-P. 51−56.
- Garthwaite J. Nitric oxide from L-arginine: A bioregulatory system // Amsterdam: Excerpta medica. 1990. — P. 138−155.
- Garthwaite J., Boulton CL. Nitric oxide signaling in central nervous system // Annu. Rev. Physiology. 1995. — V. 57. — P. 683−706.
- Garthwaite J.E., Southam C.L., Boulton E.B. et al. Potent and selective inhibition of nitric oxide-sensitive guanylyl cyclase by lH-(l, 2,4)-oxidiazolo (4,3-a)-quinoxalin-l-one // Molec.Pharmacol. -19.95. V. 48. — P. 184−188.
- Gaston B. Nitric oxide and thiol groups // Biochimica et Biophysica Acta. -1999.-V. 1411.-P. 323−333.
- Gilad GM, Wollam Y, Iaina A et al Metabolism of agmatine into urea but not into nitric oxide in rat brain // Neuroreport. 1996. — V. 7. — P. 1730−1732.
- Goldberg AL, Singer JJ. Evidece for the role of cyclic AMP in neuromuscular transmission// PNAS USA. 1969. — V. 64. — P. 131−141.
- Gross WL., Bak MI., Ingwall J.S. et al. Nitric oxide inhibits creanine kinase and regulates rat heart contractrile reserve // Proc. Natl. Acad. Sci. USA. 1996. -V. 93. — P. 5604−5609.
- Gustafsson LE., Wiklund CU., Persson MG., Moncada S. Modulation of autonomic neuroeffector transmission by nitric oxide in guienea ilum // Biochem. Biophys. Res. Comm. 1990. -V. 173. — P. 106−110.
- Hallen K., Olgart C., Gustafsson LE., Wiklund NP., Modulation of neuronal nitric oxide release by soluble guanyly cyclase in guinea pig colon // Biochemical and Biophysical Research Communications. 2001. — V.280. — P. 1130−34.
- Han X., kobzik L., Severson D., Shimoni Y. Characteristics of nitric oxide -mediated cholinergic modulation of calcium current in rabbit sino-atrial node // J. Phusiology 1998. — V. 509. № 3. — P. 741−54.
- Hanoune J., Pouille Y., Tzavara E., Shen T., Lipskaya L. Adenylyl cyclase: structure, regulation and function in an enzyme superfamily // Molecular and Cellur Endocrinology. 1997. — V. 128. — P.179−194.
- Hardman J., Sutherland E. Guanylycyclase, an enzyme catalyzing the formation of guanosH^'^-monophosphate from guanosine triphosphate // J. Biol. Chem. 1969. — V! 244. — P.6363−6370.
- Hebeiss K., Kilbinger H., Nitric oxide sensitive guanylyl cyclase inhibits acetylcholine release and excitatory motor transmission in guinea-pig ileum // Neuroscience. — 1998. — V. 82. № 2. — P.623−29.
- Henningsson R, Aim P, Lindstrom E Chronic blockade of NO synthase paradoxically increases islet NO production and modulates islet hormone release // Am J. Physiol Endocrinol Metab. 2000. — V. 279. № 1. — P. 95−107.
- Hermann A., Erxleben C. Nitric oxide activates voltage-dependent potassium currents of crustacea skeletal muscle // Nitric oxide: Biology and Chemistry. -2001.-V. 5. № 4.-P. 361−369,
- Hindley, S., Juurlink, B.H.J., Gysbers, J.W., Middlemiss, P.J., Herman, M.A.R, and Rathbone, M.P. Nitric oxide donors enhance neurotrophin-inducedneurite outgrowth through a cGMP dependent mechanism // J. Neurosci. Res. -1997.-V. 47.-P.427−439.
- Hofmann F., Ammendola A., Schlossmann J. Rising behind NO: cGMP-dependent protein kinases // J. Cell Science. 2000. — V. 113. — P. 1671−1676.
- Hirooka K., Kourennyi DE., Barmes S. Calcium channel activation facilitated by nitric oxide in retinal anglion cell // J. Neurophysiology. 2000. — V. 83. — P. 198−206.
- Izzo AA., Mascolo N., Capasso F. effects of selective phosphodiesterase inhibition on synaptic transmission in the guinea-pig ileum // Naunyn-Schmied. Arch. Pharmacology. 1998. — V. 357. № 5. — P. 677−81.
- Jenkins D.C., Charles I.D., Thomsen L.L. et al. Roles of nitric oxide in tumor growth // Proc. Natl. Acad. Sci. USA. 1995. — V. 92. № 10. — P. 4392−4396.
- Jiang, H., Colbran, J. L., Francis, S. H., & Corbin, J. D. Direct evidence for cross-activation of cGMP-dependent protein kinase by cAMP in pig coronary arteries //J. Biol Chem. 1992. — V. 267. — P. 1015−1019.
- Jindrova, H. Vertebrate phototransduction: activation, recovery, and adaptation // Physiol. Res. 1998. — V. 47. — P. 155−168.
- Kaneko S., Akaike A., Satoh M. Differential regulation of N- and Q-type Ca2+ channel by cyclic nucleotides and G-protein // Life Sci. 1998. — V. 62. № 17. — P. 1543−1547.
- Kashapova L.A., Moshkov D.A., Bezgina E.N. Active zone and plasticity of motor nerve terminals // Restor.Neurology. 1991. — V. 5. — Plasticity of Motoneuron.Connec. — P. 163−173.
- Katz B., Miledi R. Modification of transmitter release by electrical interference with motor nerve ending// Proc.Roy.Soc. 1967. — V. B167. № 1006. -P. 1−7.
- Kawano H., Daikoki S., Shibasaki T. CRF-containing neuron systems in the rat hypothalamus: retrograde tracing and immunohistochemical studies // J.Comp.Neurol. 1988. — V. 272. — P. 260−268.
- Keilbach A., Ruth P., Hofmann F. Detection of cGMP-dependent protein kinases isozyme by specific antibodies // Eur. J. Biochem. 1992. — V. 208. — P. 467−473.
- Keller JN., Hanni KB., Mattson MP., Markesbery WR. Cyclic nucleotides attenuate lipid peroxidation-mediated neuron toxin // Neuroreport. 1998. — V. 9. № 16.-P. 1−4.
- Kelly RA, Balligand JL, Smith TW. Nitric oxide and cardiac function // Circulation Res. 1996. — V. 79. — P. 363−380.
- Kim SJ., Song SK., Kim J. Inhibitory effects of nitric oxide on voltage-dependent calcium currents in rat dorsal root ganglion cells // Biochem. Biophys. Res. Commun. 2000. — V. 271. -P.509−514.
- Klein M., Camardo J.&Kandel ER. Involvement of cAMP-dependent protein kinase in phosphorylation ionic channel // PNAS. 1982. — V. 79. — P. 5713−17.
- Klink M, Swierzko A, Sulowska Z. Nitric oxide generation from hydroxylamine in the presence of neutrophils and in the cell-free system // APMIS. 2001. — V. 109.-P. 493−9.
- Kobayashi H. Role of cyclic nycleotides in the synaptic transmission in sympathetic ganglia of rabbits // Comp. Biochem. Physiol. -1982. V. 72. № 2. -P. 197−202.
- Kobzik L., Reid M.B., Bredt D.S., Stampler J.S. Nitric oxide in skeletal muscle // Nature. 1994. — V. 372. — P. 545−548.
- Kojda G., Kottenberg K., Noak E. Inhibition of nitric oxide synthase and soluble guanylyl cyclase induced cardiodepressive effects in normal rat hearts // European Journal of Pharmocology. 1997. — V. 334. — P.181−190.
- Komalavilas, P., & Lincoln, T. M. Phosphorylation of the inositol 1,4,5-trisphosphate receptor: cyclic GMP-dependent protein kinase mediates cAMP and cGMP dependent phosphorylation in the intact rat aorta // J. Biol Chem. 1996. -V. 271.-P. 21 933−38.
- Ml.Kosonen O., Kankaanranta H., Lahde M., Vuorinen P., Ylitalo P., MoiLanen E. Nitric oxide releasing oxatriazole derivatives inhibit human lymphocyte proliferation by GMP-independent mechanism // J. Pharm. Exp. Ther. — 1998. V. 286. № 1. — P.215−20.
- Krupinski J., Coussen F., Bakalayr HA. et al. Adenylyl cyclase amino acid sequence: Possible channel- or transporter-like structure // Science. 1989. — V. 244.-P. 1558−1564.
- Kurtz A., Gotz KH., Hamann M., Wagner C. Stimulation of rennin secretion by nitric oxide is mediated by phosphodiesterase 3 // PNAS USA 1998. — V. 95. № 8. — P. 4743−47.
- Latorre R., Oberhauser A., Labarca P., Alvarez O. Varieties of calcium-activated potassium channels // Annu.Rev.Physiol. 1989. — V. 51. — P. 385−399.
- Lei S.Z., Pan Z.-H., Aggarwal S.K. et al. Effect of nitric oxide production on the redox modulatory site of the NMDA receptor-channel complex // Neuron. -1992.-V. 8.-P. 1087−1099.
- Lei, S., Jackson, M.F., Jia, Z., Roder, J., Bai, D., Orser, B.A., and MacDonald, J.F. Cyclic GMP-dependent feedback inhibition of AMPA receptors is independent of PKG // Nat. Neurosci. 2000. — V. 3. — P. 559−565.
- Lincoln TM, Komalavilas P, Boerth NJ, MacMillan-Crow LA and Cornwell TL. cGMP signaling through cAMP- and cGMP-dependent protein kinases // Adv Pharmacol. 1995. — V. 34. — P. 305−322.
- Lindgren S.A., Laird M.W. Nitroprusside inhibits neurotransmitter release at the frog neuromuscular junction // NeuroReport. 1994. — V. 5. № 16. — P. 22 052 208.
- Liu X., Miller MS., Joshi MS., Thomas DD., Lancaster JR. Accelerated reaction of nitric oxide with O2 within the hydrophobic interior of biological membranes // PNAS USA. 1998. — V. 95. № 5. — P. 2175−79.
- Lonart G., Wang J., Johnson K.M. Nitric oxide induces neurotransmitter release from hippocampal slices // Eur.J.Pharmacol. 1992. — V. 220. — P. 271−272.
- Lotshaw DP, Levitan ES, Levitan IB. Fine tuning of neuronal electrical activity: modulation of several ion channels by intracellular messengers in a single identified nerve cell // J. Exp Biol. 1986. — V. 124. — P. 307−322.
- Lucas KA., Pitary GM., Park J. et al. Guanylyl cyclase and signaling by cyclic GMP // Pharmocol. Rev. 2000. — V. 52. — P. 375−413.
- MacFarland, RT., Zelus, BD., & Beavo, JA. High concentrations of a cGMP-stimulated phosphodiesterase mediate ANP-induced decreases in cAMP and steroidogenesis in adrenal glomerulosa cells // J. Biol Chem. 1991. — V. 266. — P. 136−142.
- Machado JD., Segura F., Brioso MA., Borges R. Nitric Oxide Modulates a Late Step of Exocytosis // J. Biol Chem. 2000. — V. 275. № 75. — P. 20 274−86.
- Mallart A. Electric currents flow inside perineurial sheaths of mouse motor nerves //J. Physiology. 1985. — V. 368. — P. 565−575.
- Mallart A. Studies on the ionic properties of presynaptic membranes // Neuromuscular Junction. Amst.etc., — 1989. — P. 161−170.
- Manganiello, V.C. and Degerman, E. Cyclic nucleotide phosphodiesterases (PDEs): diverse regulators of cyclic nucleotide signals and inviting molecular targets for novel therapeutic agents // Thromb. Haemost. 1999. — V. 82. — P. 407 411.
- McAllister-Lucas LM, Sonnenburg WK, Kadlecek A. et al. The structure of a bovine lung cGMP-binding, cGMP-specific phosphodiesterase deduced from a cDNA clone // J. Biol Chem. 1993. — V. 268. — P. 22 863−22 873.
- McLean DL, Sillar KT. The distribution of NADPH-diaphorase-labelled interferon’s and the role of nitric oxide in the swimming system of Xenopus laevis larvae //J. Exp Biol. 2000. — V. 203. — P. 705−713.
- McVey M., Hill J., Howlett A., Klein C. Adenylyl cyclase, a coincidence detector for nitric oxide // J. Biol. Chem. 1999. — V. 274. № 27. — P. 1 888 718 892.
- Meffert MK, Premack BA, Schulman H. Nitric oxide stimulates Ca2±independent synaptic vesicle release // Neuron. 1994. — V. 12. № 6. — P. 12 351 244.
- Meir A., Ginsburg S., Butkevich A., et al. Ion channels in presynaptic nerve terminals and control of transmitter release // Physiological Review. 1999. V. 79. № 3. — P.1019−1088.
- Mehats C., Andersen CB., Filopanti M., Jin S-LJ. and Conti M. Cyclic nucleotide phosphodiesterases and their role in endocrine cell signaling // TRENDS in Endocrinology & Metabolism. 2002. — V. 13. № 1. — P. 29−35.
- Menshikova EV., Cheong E., Salama G. Low N-ethylmaleimide concentration activate ryanodine receptors by a reversible interaction? Not an alkylation of critical thiols // J. Biologycal Chemistry. 2000. — V. 275. № 47. — P. 3 677 536 780.
- Meszaros L.G., Minarovic I., Zahradnikova A. Inhibition of the skeletal muscle ryanodine receptor calcium release channel by nitric oxide // FEBS Lett. -1996.-V. 380.-P. 49−52.
- Michel T., Feron O., Nitric oxide synthases: Which, Where, How and Why? // J.Clin. Invest. 1997. — V. 100. № 9. — P. 2146−2152.
- Miller JP. The chemical modification of cyclic nucleotides // Annu. Rep. Med Chem. 1977. — V. 11. — P. 291−300.
- Miller R.J. Voltage-sensitive Ca channels // J.Biol.Chem. 1990. — V. 267. -P. 1403−1406.
- Mittal CK., Braughler JM., Ichhihara K., Mirad F. Synthesis of cAMP by guanylate cyclase: a new pathway for its formation // Biochim. Biophys Acta. -1979.-V. 585.-P. 333−342.
- Mohan P., Sys S.U., Brutsaert D.L. Positive inotropic effect of nitric oxide in myocardium // Int.J.Cardiol. 1995. — V. 50. № 3. — P. 233−237.
- Mori M, Gotoh T Regulation of nitric oxide production by arginine metabolic enzymes // Biochem Biophys Res Commun. 2000. — V. 275. — P. 715−719.
- Mothet JP., Fossier P., Tauc L., Baux G. Opposite action of nitric oxide on cholinergic synapses: Which pathways? // PNAS USA. 1996. — V. 93. — P. 87 218 726.
- Mukhtarov M.R., Vyskocel F., Urazaev A.Kh., E.E.Nikolsky. Non-Quantal Acetylcholine Release in Increased After Nitric Oxide Synthase Inhibition // Physiol.Res. 1999 — № 48 — P. 315−317.
- Nakamura H, Yada T, Saheki T et al. L-argininosuccinate modulates L-glutamate response in acutely isolated cerebellar neurons of immature rat // Brain Res. 1991.-V. 25.-P. 312−315.
- Nara M, Dhulipala PD, Ji GJ, Kamasani UR, Wang YX, Matalon S, Kotlikoff MI. Guanylyl cyclase stimulatory coupling to K (Ca) channels // Am J. Physiol Cell Physiol. 2000. V. 279. № 6. — P. 1938−1945.
- Nathanson J. A Cyclic nucleotides and nervous system function // Physoil. Review. 1977. — V. 57. — P. 157−206.
- Olgart C, Gustafsson LE, Wiklund NP. Evidence for nonvesicular nitric oxide release evoked by nerve activation // Eur J. Neurosci. 2000. — V. 12. -№ 4. — P. 1303−1309.
- Pan ZH., Segal MM. And Lipton S. Nitric oxide-related species inhibit evoked neurotransmission but enhance spontaneous miniature synaptic currents in central neuronal cultures // PNAS. 1996. — V. 93. — P. 15 423−15 428.
- Parkinson SJ, Jovanovic A, Jovanovic S, Wagner F, Terzic A and Waldman SA. Regulation of nitric oxide-responsive recombinant soluble guanylyl cyclase by calcium // Biochemistry. 1999. — V. 38. — P. 6441−6448.
- Pinilla L., Tena-Sempere M., Aguilar E. Nitric oxide stimulates growth hormone secretion in vitro through a calcium- and cyclic guanisine monophosphate mechanism // Horm. Research. 1999. — V. 51. № 5. — P. 242−247.
- Porter VA., Bonev AD., Knot HJ et al. Frequency modulation of Ca2+ sparks is involved in regulation of arterial diameter by cyclic nucleotides // Am. J. Physiology. 1998. — V. 274. № 5. — P. C1346-C1355.
- Prast H., Phillipu A. Nitric oxide releases acetylcholine in the basal forebrain // Eur.J.Pharmacol. 1992. — V. 216. — P. 139−140.
- Rashatwar S.S., Cornwell T.L., Lincoln T.M. Effects of 8-bromo-cGMP on Ca2+ levels in vascular smooth muscle cells: possible regulation of Ca2±ATPase by cGMP-dependent protein kinase // Proc. Natl. Acad. Sci. USA. 1989. — V. 84. — P. 5685−5689.
- Reddy R., Smith S., Wayman G., Wu Z., Storm DR., Voltage-sensitive adenylyl cyclase in cultured neurons // J. Biol. Chem. 1995. — V. 270. — P. 1 434 014 346.
- Redman RS., Silinsky EM., On the simultaneous electrophysiological measurement of neurotransmitter release and perineural calcium currents from frogmotor nerve ending // Journal of Neurosciense methods. 1995. — V. 57. — P. 151 159.
- Reid M.B. Reactive oxygen and nitric oxide in skeletal muscle // News in Physiol.Sci. 1996. — V. 11. — P. 114−119.
- Renganathan M., Cummnis TR., Waxman SG. Nitric oxide blocks fast, slow and persistent Na+channels in C-type DRG neurons by S-nitrosylation // J. Neurophysiology. -2002. V. 87. № 2. — P.761−775.
- Repaske D. R., Corbin J. G., Conti M. and Goy M. F. A cyclic GMP stimulated cyclic nucleotide phosphodiesterase gene is highly expressed in the limbic system of rat brain // Neuroscience. 1993. — V. 56. — P. 673−686.
- Rettori V., Gimeno M., Lyson K., McCann SM., Nitric oxide mediates norepinephrine-induced prostaglandin E2 release from the hypothalamus // PNAS. 1992. — V. 89.-P. 11 543−11 546.
- Rivet-Bastide M., Vandecasteele G., Benardeau A., et al. cGMP-stimulated cyclic nucleotide phosphodiesterase regulates the basal calcium current in human atrial myocytes. // Clin. Invest. 1997. — V. 99. № 11. — P. 2710−2718.
- Robitaille R., Adler EM., Charlton MP. Strategic location of calium channels at transmitter release sites of frog neuromuscular synapses // Neuron. 1990. — V. 5.-P. 773−779.
- Robitaille R., Charton MP. Presynaptic calcium signals and transmitter release are modulated by calcium-activated potassium channels // J. Neurosci. 1992. — V. 12.-P. 297−305.
- Russwurm M., Behernds S., Hertneck C., Koesling D. Functional properties of a naturally occurring isoform of guanylyl cyclase // Biochem. 1998. — V. 335. -P.124−130.
- Ruth P. Cyclic GMP-dependent protein kinases: understanding in vivo functions by gene targeting // Pharmacol. Ther. 1999. — V. 82. № 2−3. — P. 355 372.
- Sadhu K., Hensley K., Florio V. A. and Wolda S. Differential expression of the cyclic GMP- stimulated phosphodiesterase PDE 2A in human venous and capillary endothelial cells // J. Histochem. Cytochem. 1999. — V. 47. — P.895−905.
- Schenk PW., Snaar-Jagalska BE., Signal perception and transduction: the role of protein kinases // Biochimica et Biophysica Acta. 1999. — V. 1449. — P. l-24.
- Schmidt HH., Lohmann SM., Walter N. The nitric oxide and cGMP signal transduction system: regulation and mechanism of action // Biochem. Biophys Acta- 1993 -V. 1178. -P.153−175.
- Schuman E.M., Madison P.V. Nitric oxide: Physiology, pathophsiology and pharmacology // Pharmacol.Rev. -1991. V. 43. — P. 1709−1715.
- Schuman EM., Madison DV. Nitric oxide and synaptic function // Annu. Rev Neurosci- 1994.-V. 17. P.153−183
- Schwarz R., Diem R., Dun NJ., Forstermann U. Endogenous and exogenous nitric oxide inhibits norepinephrine release from rat heart sympathetic nerves // Circulation Research. 1997. — V. 81. — P.60−68.
- Schwede F., Maronde E., Genieser HG., Jastorff B. Cyclic nucleotide analogs as biochemical tools and prospective drugs // Pharmocology and Therapeutics. -2000.-V. 87.-P. 199−226.
- Schweighofer N. and Ferriol G. Diffusion of nitric oxide can facilitate cerebellar learning: A simulation study // Proc. Natl. Acad. Sci. USA 2000. — V. 97. № 19. .p. 10 661−10 665.
- Schwingshackl A., Moqbel R., Duszyk M. Nitric oxide activates ATP-dependent K+ channels in human eosinophils // J. Leukoc. Biology 2002. — V. 71. № 5.-P.807−12.
- Scott TRD., Bennett MR. The effect of nitric oxide on the efficacy of synaptic transmission through the chick ciliary’s ganglion // Br. J. Pharmacology. 1993. -V. 23. — P.123−129.
- Shugar D. Cyclic nucleotide analogs as biochemical tools and prospective drugs // Pharmocology and Thearapeutics. 2000. — V. 87. — P. 199−226.
- Snider BJ., Choi J., Turetsky DM., Canzoniero LM., Sensi SL. et al. Nitric oxide reduces Ca2+ and Zn2+ influx through voltage-gate Ca2+ channels and reduces Zn2+ neurotoxicity // Neuroscience 2000. — V. 100. № 3. — P.651−661.
- Snyder S.H. Nitric oxide, a novel neuronal messenger // Neuron. 1992. — V. 8i.-p. 3-H.
- Sonnenburg W. K., Mullaney P. J. and Beavo J. A. Molecular cloning of a cyclic GMP-stimulated cyclic nucleotide phosphodiesterase cDNA. Identication and distribution of isozyme variants // J. Biol. Chem. 1991 — V. 266. — P. 1 765 517 661.
- Sonnenburg, WK., Beavo, JA. Cyclic GMP and regulation of cyclic nucleotide hydrolysis // Adv Pharmacol 1994. — V. 26. — P. 87−114.
- Stampler JS., Meissner G. Physiology of nitric oxide in skeletal muscle // Physiology Rev. 2001 — V. 81. № 1 — P.209−237.
- Standaert FG, Dretchen KL. Cyclic nucleotides and neuromuscular transmission // Fed Proc. 1979 — V.38. № 8. — P.2183−2192.
- Stanfield P.R. Tetraethylammonium ions and the potassium permeability of excitable cells // Rew.Physiol.Biochem.Pharm. 1983. — V. 97. — P. 1−67.
- Sutherland E.W., Rail I.W. Fractionation and characterization of a cyclic adenine ribonucleotide formed by tissue particles // Biol. Chem. 1958. — V. 232. -P. 1077−1059.
- Taira J, Misik V, Riesz P. Nitric oxide formation from hydroxylamine by myoglobin and hydrogen peroxide // Biochim Biophys Acta. 1997. — V. 1336. -№ 3. — P.502−508.
- Tao YP., Najafi L., Shipley S., Howlett A., Klein C. Effects of nitric oxide on adenylyl cyclase stimulation in N18TG2 neuroblastoma cells // J. Pharmacology and Experimntal Therapeutics. 1998. — V. 286. — № 1. — P.298−304.
- Tertyshnikova S., Yan X., Fein A. cGMP inhibits IP3-induced Ca2+ release in intact rat megakaryocytes via cGMP- and cAMP-dependent protein kinases // J. Physiology. 1998. — V. 512. № 1. — P.89−96.
- Tewari K., Simard JM. Sodium nitroprusside and cGMP decrease Ca channel availability in basilar artery smooth muscule cells // Pflugers Arch. 1997. -V. 433. № 3. .p. 304−311.
- Tomas S, Robitaille R. Differetial frequency-dependent regulation of transmitter release by endogenous nitric oxide at the amphibian neuromuscular synapse //J. Neurosciensce 2001 — V. 21. № 4. — P. 1087−1095.
- Trujillo M., Alvrez G., Peluffo B., Freeman G., Rad R., Xanthine oxidase-mediated decomposition of S-nitrosothiols // J. Biol. Chem. 1998. — V. 273. — P. 7828−7834.
- Ujiie K., Hogarth L., Danziger R. et al. Homologous and heterologus desensitization of a gyanylyl cyclase-linked nitric oxide receptor in cultured rat medulla interstitial cells // J. Pharmacol. Exp. Ther. 1994 — V. 270. — P.761−767.
- Urushitani M, Inoue R, Nakamizo T, Sawada H, Shibasaki H, Shimohama S. Neuroprotective effect of cyclic GMP against radical-induced toxicity in cultured spinal motor neurons // J. Neurosci. Res. 2000. — V. 61. № 4. — P. 443−448.
- Valirie A. P., Adrian D.B., Harm J.K., et al, Frequency modulation of Ca2+ sparks is involved in regulation of arterial diameter by cyclic nucleotides // AJP. -1998. V. 274. № 5. — P. 1346−1355.
- Van der Kloot W., Molgo J. Quantal acetylcholine release at the vertebrate neuromuscular junction // Physiol. Rev. 1994. — V. 74. № 4. — P. 899−991.
- Vandecasteele G., Verde I., Rucker-Martin C. et al. Cyclic GMP regulation of the L-type Ca channel current in human atrial myocytes // J. Physiology 2001. -V. 533.-P. 329−340.
- Wang T., Xie Z., Lu B. Nitric oxide mediates activity-dependent synaptic supression at developing activity-dependent synaptic supression at developing neuromuscular synapses //Nature. 1995. — V. 374. — P. 262−266.
- Wei JY, Jin X, Cohen ED, Daw NW, Barnstable CJ. cGMP-induced presynaptic depression and postsynaptic facilitation at glutamatergic synapses in visual cortex // Brain Res. 2002. — V. 927. № 1 — P. 42−54.
- Weiner C.P., Lizasoain I., Baylis S.A. et al. Induction of calcium-dependent nitric oxide synthase by sex hormones // Proc. Natl. Acad. Sci. USA. 1994. — V. 91.-P. 5212−5216.
- Wexler ME., Stanton PK., and Nawy S. Nitric oxide depresses GABAa receptor function via coactivation of cGMP-Dependent kinase and phosphodiesterase //Neuroscience 1998. — V. 18. № 7. — P.2342−2349
- White RE, Lee AB, Shcherbatko AD, Lincoln TM, Schonbrunn A, Armstrong DL. Potassium channel stimulation by natriuretic peptides through cGMP-dependent dephosphorylation // Nature 1993. — V. 361. №. 6409. — P.263−66.
- Wildemann B., Bicker G. Development expression of nitric oxide/cGMP synthesizing in the nervous system of Drosophila melanogaste // J. Neurobiol. -1999a.-V. 38. № 1.-P. 1−15.
- Wildemann B., Bicker G. Nitric oxide and cGMP induced vesicle release at Drosophila neuromuscular junction // J. Neurobiol. 1999b. — V. 39. № 3. — P. 337 346.
- Wolin M.S., Wood K.S., Ignarro L.J. Guanylate cyclase from bovine lung. A kinetic analysis of the regulation of unpurified soluble enzyme by protoporphyrin IX, heme and nitrosyl-heme // J.Biol.Chem. 1982. — V. 257. — P. 11 312−11 320.
- Woody CD. If cyclic GMP is a neuronal second messenger what is the message? // J. Neurophys. 1974. — V. 36. — P. l 104−1116.
- Woody CD., Bartfai T., Gruen E&Nairn AC. Intracellular injection of cGMP-dependent protein kinases result in increased input resistance in neurons of the mammalian motor cortex // Braim Research. 1986. — V. 386. — P.379−385.
- Wu SY., Dun SL., Forsterman U., Dun NJ. Nitric oxide and excitatory postsynaptic currents in immature rat sympathetic preganglionic neurons in vivo H Neuroscience. 1997. — V. 79. № 1. — P. 237−245.
- Wyatt TA, Lincoln TM. and Pryzwansky KB. Vimentin is transiently colocolized with and phosphorylated by cyclic G-dependent protein kinase in formyl-peptide-stimulated neutrophils // J. Biol. Chem. 1991. — V. 266. -P.21 274−21 280.
- Yawo H. Involvement of cGMP-dependent protein kinase in adrenergic potentiation of transmitter release from the calyx-type presynaptic terminal // J. Neuroscience. 1999. — V. 19. № 13. — P. 5293−5300.
- Yermolaieva O., Brot N., Weissbach H., Heinemann SH., Hoshi T. Reactive oxygen species and nitric oxide mediate plasticity of neuronal calcium signaling // PNAS USA. 2000. — V. 97. № 1. — P.448−453.
- Yewei L.I., Martin F Regulation Ca2+ handling by phosphorylation status in mouse fast- and slow-twitch skeletal muscle fibers // AJP. 1997. — V. 227. — P. 840−880.
- Yoshihara M., Suzuki K., Kidokoro Y. Two independent pathways mediated by cAMP and protein kinase a enhance spontaneous transmitter release at Drosophila neuromuscular junctions // The Journal of Neuroscience. 2000. — V. 20. № 22.-P.8315−8322.
- Yu H, Olshevskaya E, Duda T, Seno K, Hayashi F, Sharma RK, Dizhoor AM and Yamazaki A. Activation of retinal guanylyl cyclase-1 by Ca21-binding proteins involves its dimerization // J. Biol Chem. 1999. — V. 274. — P. 1 554 715 555.
- Yuan S.Y., Bornstein J.C., Furness J.B. Pharmacological evidence that nitric oxide may be a retrograde messenger the enteric nervous system // Br. J.Pharmacol. 1995. — V. 114. № 2. — P. 428−432.
- Zani B.M., Grassi F., Molinaro M., Monaco L., Eusebi F. cAMP regulates the life time of acetylcholine-activated channels in cultured myotubes // Biocem. Biophys. Res. Commun. 1986. — V. 140. № 1. — P. 243−249.
- Zhao Y., Brandish P.E., Ballou D.P., Marietta M.A., A molecular basis for nitric oxide sensing by soluble guanylate cyclase // Biochemistry 1999. — V. 96. № 26.-P. 14 753−58.
- Zhu X.Z., Luo L.G. Effect of nitroprusside (nitric oxide) on endogenous dopamine release from rat striatal slices // J.Neurochem. 1992. — V. 4. — P. 932 935.
- Zorumsky C.F., Izumi Y. Nitric oxide and hippocampal synaptic plasticity // Biochem. Pharmacol. 1993. — V. 46. — P. 777−785.
- Zsombok A., Schrofner S., Hermann A., Kerschbaum H.H. Nitric oxide increases excitability by depressing a calcium activated potassium current in snail neurons // Neurosci. Lett. 2000. — V. 295. № 3. — P.85−88.