Π Π°ΡΡΠ΅Ρ ΡΠ»Π΅ΠΊΡΡΠΎΠΏΡΠΈΠ²ΠΎΠ΄Π° ΠΈ Π°Π²ΡΠΎΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΡ ΡΠΏΡΠ°Π²Π»Π΅Π½ΠΈΡ
ΠΠΏΠΈΡΠ°Π½ΠΈΠ΅ ΡΠ°Π±ΠΎΡΡ ΡΡ Π΅ΠΌΡ ΡΠΏΡΠ°Π²Π»Π΅Π½ΠΈΡ Π‘Ρ Π΅ΠΌΠ° ΡΠΏΡΠ°Π²Π»Π΅Π½ΠΈΡ ΠΏΠΎΠ΄ΠΊΠ»ΡΡΠ°Π΅ΡΡΡ ΠΊ ΡΠ΅ΡΠΈ Π°Π²ΡΠΎΠΌΠ°ΡΠΎΠΌ QF. ΠΠ½ ΡΠ°ΡΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ Π² ΡΠ΅ΠΏΠΈ ΠΏΠΈΡΠ°Π½ΠΈΡ Π΄Π²ΠΈΠ³Π°ΡΠ΅Π»Ρ. Π€ΡΠ½ΠΊΡΠΈΡ ΠΊΠΎΠΌΠΌΡΡΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΠΎΠ±ΠΌΠΎΡΠΎΠΊ ΡΡΠ°ΡΠΎΡΠΎΠ² Π²ΡΠΏΠΎΠ»Π½ΡΡΡ Π»ΠΈΠ½Π΅ΠΉΠ½ΡΠ΅ ΠΊΠΎΠ½ΡΠ°ΠΊΡΠΎΡΡ ΠΠ1 ΠΈ ΠΠ2. Π‘Ρ Π΅ΠΌΠ° ΡΠΏΡΠ°Π²Π»Π΅Π½ΠΈΡ ΠΈ ΡΠ»Π΅ΠΊΡΡΠΎΠΌΠ°Π³Π½ΠΈΡΠ½ΡΠΉ ΡΠΎΡΠΌΠΎΠ· ΠΏΠΈΡΠ°ΡΡΡΡ ΡΠ΅ΡΠ΅Π· Π²ΡΠΏΡΡΠΌΠΈΡΠ΅Π»ΡΠ½ΡΠΉ ΠΌΠΎΡΡ VD1, ΠΏΠΎΠ΄ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½Π½ΠΎΠ³ΠΎ ΠΊ ΡΠ΅ΡΠΈ ΡΠ΅ΡΠ΅Π· ΠΏΠΎΠ½ΠΈΠΆΠ°ΡΡΠΈΠΉ ΡΡΠ°Π½ΡΡΠΎΡΠΌΠ°ΡΠΎΡ Π’Π. ΠΡΠ»ΠΈ Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΠ΅ ΡΠ΅ΡΠΈ Π½Π°Ρ ΠΎΠ΄ΠΈΡΡΡ Π² Π΄ΠΎΠΏΡΡΡΠΈΠΌΡΡ ΠΏΡΠ΅Π΄Π΅Π»Π°Ρ … Π§ΠΈΡΠ°ΡΡ Π΅ΡΡ >
Π Π°ΡΡΠ΅Ρ ΡΠ»Π΅ΠΊΡΡΠΎΠΏΡΠΈΠ²ΠΎΠ΄Π° ΠΈ Π°Π²ΡΠΎΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΡ ΡΠΏΡΠ°Π²Π»Π΅Π½ΠΈΡ (ΡΠ΅ΡΠ΅ΡΠ°Ρ, ΠΊΡΡΡΠΎΠ²Π°Ρ, Π΄ΠΈΠΏΠ»ΠΎΠΌ, ΠΊΠΎΠ½ΡΡΠΎΠ»ΡΠ½Π°Ρ)
Π‘ΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΠ΅ ΠΠ²Π΅Π΄Π΅Π½ΠΈΠ΅
1. Π Π°ΡΡΠ΅Ρ ΠΈ ΠΏΠΎΡΡΡΠΎΠ΅Π½ΠΈΠ΅ Π½Π°Π³ΡΡΠ·ΠΎΡΠ½ΠΎΠΉ Π΄ΠΈΠ°Π³ΡΠ°ΠΌΠΌΡ. ΠΡΠ±ΠΎΡ ΡΠ»Π΅ΠΊΡΡΠΎΠ΄Π²ΠΈΠ³Π°ΡΠ΅Π»Ρ
1.1 ΠΡΠ±ΠΎΡ ΡΠ»Π΅ΠΊΡΡΠΎΠ΄Π²ΠΈΠ³Π°ΡΠ΅Π»Ρ
1.2 Π Π°ΡΡΠ΅Ρ ΠΈ ΠΏΠΎΡΡΡΠΎΠ΅Π½ΠΈΠ΅ Π½Π°Π³ΡΡΠ·ΠΎΡΠ½ΠΎΠΉ Π΄ΠΈΠ°Π³ΡΠ°ΠΌΠΌΡ
1.3 ΠΡΠΎΠ²Π΅ΡΠΊΠ° ΡΠ»Π΅ΠΊΡΡΠΎΠ΄Π²ΠΈΠ³Π°ΡΠ΅Π»Ρ
2. Π Π°ΡΡΠ΅Ρ ΠΈ ΠΏΠΎΡΡΡΠΎΠ΅Π½ΠΈΠ΅ ΠΏΠΎΠ»Π½ΠΎΠΉ Π΄ΠΈΠ°Π³ΡΠ°ΠΌΠΌΡ ΡΠ°Π±ΠΎΡΡ ΡΠ»Π΅ΠΊΡΡΠΎΠΏΡΠΈΠ²ΠΎΠ΄Π°
2.1 ΠΠΎΡΡΡΠΎΠ΅Π½ΠΈΠ΅ Π΅ΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎΠΉ Ρ Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊΠΈ
2.2 ΠΠΎΡΡΡΠΎΠ΅Π½ΠΈΠ΅ ΠΏΡΡΠΊΠΎΠ²ΠΎΠΉ Π΄ΠΈΠ°Π³ΡΠ°ΠΌΠΌΡ
2.3 ΠΡΠ±ΠΎΡ ΠΏΡΠ΅Π΄Π²Π°ΡΠΈΡΠ΅Π»ΡΠ½ΠΎΠΉ ΡΡΡΠΏΠ΅Π½ΠΈ
2.4 ΠΠΎΡΡΡΠΎΠ΅Π½ΠΈΠ΅ ΡΠΎΡΠΌΠΎΠ·Π½ΠΎΠΉ Π΄ΠΈΠ°Π³ΡΠ°ΠΌΠΌΡ
2.5 Π Π°ΡΡΠ΅Ρ Π΄ΠΈΠ½Π°ΠΌΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΡΠΎΡΠΌΠΎΠΆΠ΅Π½ΠΈΡ
2.6 ΠΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠΉ ΡΠ΅ΠΊΡΠΈΠΉ ΡΠ΅ΠΎΡΡΠ°ΡΠ°
2.7 Π Π°ΡΡΠ΅Ρ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΡΠ°Π±ΠΎΡΡ ΡΡΡΠΏΠ΅Π½Π΅ΠΉ ΡΠ΅ΠΎΡΡΠ°ΡΠ°
3. Π Π°Π·ΡΠ°Π±ΠΎΡΠΊΠ° ΠΏΡΠΈΠ½ΡΠΈΠΏΠΈΠ°Π»ΡΠ½ΠΎΠΉ ΡΡ Π΅ΠΌΡ Π°Π²ΡΠΎΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΡΠΏΡΠ°Π²Π»Π΅Π½ΠΈΡ
3.1 ΠΡΠ½ΠΎΠ²Π½ΡΠ΅ ΡΡΠ΅Π±ΠΎΠ²Π°Π½ΠΈΡ ΠΊ ΡΡ Π΅ΠΌΠ΅
3.2 ΠΠΏΠΈΡΠ°Π½ΠΈΠ΅ ΡΠ°Π±ΠΎΡΡ ΡΡ Π΅ΠΌΡ ΡΠΏΡΠ°Π²Π»Π΅Π½ΠΈΡ
3.3 ΠΠΏΠΈΡΠ°Π½ΠΈΠ΅ Π·Π°ΡΠΈΡ ΠΏΡΠΈΠΌΠ΅Π½ΡΠ΅ΠΌΡΡ Π² ΡΡ Π΅ΠΌΠ΅ ΡΠΏΡΠ°Π²Π»Π΅Π½ΠΈΡ
3.4 ΠΠΏΠΈΡΠ°Π½ΠΈΠ΅ ΡΠ°Π±ΠΎΡΡ ΡΠΈΠ³Π½Π°Π»ΠΈΠ·Π°ΡΠΈΠΈ
4. ΠΡΠ±ΠΎΡ Π·Π°ΡΠΈΡΠ½ΠΎ-ΠΊΠΎΠΌΠΌΡΡΠ°ΡΠΈΠΎΠ½Π½ΠΎΠΉ Π°ΠΏΠΏΠ°ΡΠ°ΡΡΡΡ
4.1 ΠΡΠ±ΠΎΡ ΡΠ΅Π»Π΅ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ
4.2 ΠΡΠ±ΠΎΡ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΎΡΠ½ΡΡ ΡΠ΅Π»Π΅
4.3 ΠΡΠ±ΠΎΡ ΡΠ΅Π»Π΅ Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΡ
4.4 ΠΡΠ±ΠΎΡ ΡΠ΅Π»Π΅ ΡΠΎΠΊΠ°
4.5 ΠΡΠ±ΠΎΡ ΡΠ»Π΅ΠΊΡΡΠΎΠΌΠ°Π³Π½ΠΈΡΠ½ΠΎΠ³ΠΎ ΡΠΎΡΠΌΠΎΠ·Π°
4.6 ΠΡΠ±ΠΎΡ ΠΌΠ°Π³Π½ΠΈΡΠ½ΡΡ ΠΊΠΎΠ½ΡΠ°ΠΊΡΠΎΡΠΎΠ²
4.7 ΠΡΠ±ΠΎΡ ΡΡΠ°Π½ΡΡΠΎΡΠΌΠ°ΡΠΎΡΠ° ΠΠ°ΠΊΠ»ΡΡΠ΅Π½ΠΈΠ΅ ΠΠΈΠ±Π»ΠΈΠΎΠ³ΡΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΠΉ ΡΠΏΠΈΡΠΎΠΊ ΠΠ²Π΅Π΄Π΅Π½ΠΈΠ΅ ΠΠ»Π΅ΠΊΡΡΠΎΠΏΡΠΈΠ²ΠΎΠ΄ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»ΡΠ΅Ρ ΡΠΎΠ±ΠΎΠΉ ΡΠ»Π΅ΠΊΡΡΠΎΠΌΠ΅Ρ Π°Π½ΠΈΡΠ΅ΡΠΊΡΡ ΡΠΈΡΡΠ΅ΠΌΡ, ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΡΡΡΡΡ ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΡΡ ΡΠ½Π΅ΡΠ³ΠΈΡ Π² ΠΌΠ΅Ρ Π°Π½ΠΈΡΠ΅ΡΠΊΡΡ. ΠΠΎΡΡΠ΅Π΄ΡΡΠ²Π°ΠΌ ΡΡΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΡ ΠΏΡΠΈΠ²ΠΎΠ΄ΡΡΡΡ Π² Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΡΠ°Π±ΠΎΡΠΈΠ΅ ΠΎΡΠ³Π°Π½Ρ ΡΠ΅Ρ Π½ΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΡ ΠΌΠ°ΡΠΈΠ½, ΠΈ ΠΎΡΡΡΠ΅ΡΡΠ²Π»ΡΠ΅ΡΡΡ ΡΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½Π½ΠΎΠΉ ΡΠ½Π΅ΡΠ³ΠΈΠ΅ΠΉ.
ΠΡΠ»ΠΈ ΠΎΡΠ½ΠΎΠ²Π½ΡΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ ΡΠΏΡΠ°Π²Π»Π΅Π½ΠΈΡ Π²ΡΠΏΠΎΠ»Π½ΡΡΡΡΡ Π±Π΅Π· ΡΡΠ°ΡΡΠΈΡ ΠΎΠΏΠ΅ΡΠ°ΡΠΎΡΠ°, ΡΠΎ ΡΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ Π½Π°Π·ΡΠ²Π°ΡΡ Π°Π²ΡΠΎΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΠΌ, Π° ΡΠ»Π΅ΠΊΡΡΠΎΠΏΡΠΈΠ²ΠΎΠ΄ Π°Π²ΡΠΎΠΌΠ°ΡΠΈΠ·ΠΈΡΠΎΠ²Π°Π½Π½ΡΠΌ. Π ΠΎΠ»Ρ ΠΎΠΏΠ΅ΡΠ°ΡΠΎΡΠ° Π² Π΄Π°Π½Π½ΠΎΠΌ ΡΠ»ΡΡΠ°Π΅ ΠΌΠΎΠΆΠ΅Ρ Π±ΡΡΡ ΡΠ²Π΅Π΄Π΅Π½Π° Π»ΠΈΡΡ ΠΊ ΠΏΠΎΠ΄Π°ΡΠ΅ ΠΏΠ΅ΡΠ²ΠΎΠ³ΠΎ ΠΊΠΎΠΌΠ°Π½Π΄Π½ΠΎΠ³ΠΎ ΡΠΈΠ³Π½Π°Π»Π° Π½Π° Π°Π²ΡΠΎΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠ΅ Π²ΡΠΏΠΎΠ»Π½Π΅Π½ΠΈΠ΅ ΡΠΎΠ³ΠΎ ΠΈΠ»ΠΈ ΠΈΠ½ΠΎΠ³ΠΎ ΡΠ΅ΠΆΠΈΠΌΠ°. Π Π΅ΠΆΠΈΠΌΡ ΡΠ°Π±ΠΎΡΡ ΡΠ»Π΅ΠΊΡΡΠΎΠΏΡΠΈΠ²ΠΎΠ΄Π° ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΡΡΡΡ Π²Π΅Π»ΠΈΡΠΈΠ½Π°ΠΌΠΈ, Ρ Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΠ·ΡΡΡΠΈΠΌΠΈ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΡΠ°Π±ΠΎΡΠ΅Π³ΠΎ ΠΎΡΠ³Π°Π½Π° ΠΈΠ»ΠΈ Π²Π°Π»Π° Π΄Π²ΠΈΠ³Π°ΡΠ΅Π»Ρ, Ρ. Π΅. ΡΠΊΠΎΡΠΎΡΡΡΡ, ΡΡΠΊΠΎΡΠ΅Π½ΠΈΠ΅ΠΌ, ΡΠ³Π»ΠΎΠΌ ΠΏΠΎΠ²ΠΎΡΠΎΡΠ°, ΠΌΠΎΠΌΠ΅Π½ΡΠΎΠΌ, ΠΌΠΎΡΠ½ΠΎΡΡΡΡ. Π ΠΏΡΠΎΡΠ΅ΡΡΠ΅ ΡΠΏΡΠ°Π²Π»Π΅Π½ΠΈΡ ΠΎΠ΄Π½Π° ΠΈΠ· ΡΡΠΈΡ Π²Π΅Π»ΠΈΡΠΈΠ½ Π΄ΠΎΠ»ΠΆΠ½Π° ΠΈΠ·ΠΌΠ΅Π½ΡΡΡΡ ΠΏΠΎ ΡΡΠ΅Π±ΡΠ΅ΠΌΠΎΠΌΡ Π·Π°ΠΊΠΎΠ½Ρ Π² ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΠΈΠΈ Ρ ΡΠ΅Ρ Π½ΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΠΌΠΈ ΡΡΠ΅Π±ΠΎΠ²Π°Π½ΠΈΡΠΌΠΈ. Π ΡΠ΅Π°Π»ΡΠ½ΡΡ ΠΠ‘Π£ΠΠ ΡΡΡΠ΅ΡΡΠ²ΡΡΡ Π²ΠΎΠ·ΠΌΡΡΠ°ΡΡΠΈΠ΅ Π²ΠΎΠ·Π΄Π΅ΠΉΡΡΠ²ΠΈΡ, ΠΊΠΎΡΠΎΡΡΠ΅ ΠΎΡΠΊΠ»ΠΎΠ½ΡΡΡ ΡΠ΅Π³ΡΠ»ΠΈΡΡΠ΅ΠΌΡΡ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ ΠΎΡ ΡΡΠ΅Π±ΡΠ΅ΠΌΠΎΠ³ΠΎ Π·Π°ΠΊΠΎΠ½Π°. Π§ΡΠΎΠ±Ρ ΡΡΠ΅ΡΡΡ Π²Π»ΠΈΡΠ½ΠΈΠ΅ ΡΡΠΈΡ Π²ΠΎΠ·Π΄Π΅ΠΉΡΡΠ²ΠΈΠΉ Ρ ΡΠ΅Π»ΡΡ ΡΠΎΡ ΡΠ°Π½Π΅Π½ΠΈΡ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠΎΠ² ΡΠ»Π΅ΠΊΡΡΠΎΠΏΡΠΈΠ²ΠΎΠ΄Π° ΠΏΡΠΈΠΌΠ΅Π½ΡΡΡ ΠΎΠ±ΡΠ°ΡΠ½ΡΠ΅ ΡΠ²ΡΠ·ΠΈ.
Π ΠΎΡΠ½ΠΎΠ²Π½ΡΠΌ ΡΡΠ½ΠΊΡΠΈΡΠΌ ΠΠ‘Π£ΠΠ ΠΎΡΠ½ΠΎΡΡΡΡΡ: ΡΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ ΠΏΡΠΎΡΠ΅ΡΡΠ°ΠΌΠΈ ΠΏΡΡΠΊΠ°, ΡΠΎΡΠΌΠΎΠΆΠ΅Π½ΠΈΡ ΠΈ ΡΠ΅Π²Π΅ΡΡΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΡΠ»Π΅ΠΊΡΡΠΎΠΏΡΠΈΠ²ΠΎΠ΄ΠΎΠ², ΠΏΠΎΠ΄Π΄Π΅ΡΠΆΠ°Π½ΠΈΠ΅ ΠΏΠΎΡΡΠΎΡΠ½ΡΡΠ²Π° Π·Π°Π΄Π°Π½Π½ΠΎΠΉ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ, ΡΠ»Π΅ΠΆΠ΅Π½ΠΈΠ΅ Π·Π° Π²Π²ΠΎΠ΄ΠΈΠΌΡΠΌΠΈ Π² ΡΠΈΡΡΠ΅ΠΌΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ»ΡΠ½ΠΎ ΠΈΠ·ΠΌΠ΅Π½ΡΡΡΠΈΠΌΠΈΡΡ Π²Ρ ΠΎΠ΄Π½ΡΠΌΠΈ ΡΠΈΠ³Π½Π°Π»Π°ΠΌΠΈ, Π²ΡΠ±ΠΎΡ ΡΠ΅Π»Π΅ΡΠΎΠΎΠ±ΡΠ°Π·Π½ΡΡ ΡΠ΅ΠΆΠΈΠΌΠΎΠ² ΡΠ°Π±ΠΎΡΡ ΡΠ»Π΅ΠΊΡΡΠΎΠΏΡΠΈΠ²ΠΎΠ΄ΠΎΠ².
ΠΠ²ΡΠΎΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΠΈΡΡΠ΅ΠΌΡ ΡΠΏΡΠ°Π²Π»Π΅Π½ΠΈΡ ΡΠ»Π΅ΠΊΡΡΠΎΠΏΡΠΈΠ²ΠΎΠ΄Π°ΠΌΠΈ Π²ΡΠΏΠΎΠ»Π½ΡΡΡ Π·Π°ΡΠΈΡΡ Π΄Π²ΠΈΠ³Π°ΡΠ΅Π»Π΅ΠΉ ΠΎΡ ΡΠΎΠΊΠΎΠ² ΠΊΠΎΡΠΎΡΠΊΠΎΠ³ΠΎ Π·Π°ΠΌΡΠΊΠ°Π½ΠΈΡ, ΠΎΡ Π½Π΅Π΄ΠΎΠΏΡΡΡΠΈΠΌΡΡ ΠΏΠ΅ΡΠ΅Π³ΡΡΠ·ΠΎΠΊ, ΠΎΡ ΠΏΠ΅ΡΠ΅Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΠΉ ΠΈ Ρ. Π΄., ΡΠΈΠ³Π½Π°Π»ΠΈΠ·Π°ΡΠΈΡ ΠΎ Ρ ΠΎΠ΄Π΅ ΡΠ΅Ρ Π½ΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΏΡΠΎΡΠ΅ΡΡΠ° ΠΎΠ± ΠΈΡΠΏΡΠ°Π²Π½ΠΎΡΡΠΈ ΠΈΠ»ΠΈ Π½Π΅ΠΈΡΠΏΡΠ°Π²Π½ΠΎΡΡΠΈ ΠΌΠ΅Ρ Π°Π½ΠΈΠ·ΠΌΠΎΠ² ΠΈ ΡΠ°ΠΌΠΈΡ ΠΠ‘Π£ΠΠ.
1. Π Π°ΡΡΠ΅Ρ ΠΈ ΠΏΠΎΡΡΡΠΎΠ΅Π½ΠΈΠ΅ Π½Π°Π³ΡΡΠ·ΠΎΡΠ½ΠΎΠΉ Π΄ΠΈΠ°Π³ΡΠ°ΠΌΠΌΡ ΠΡΠ±ΠΎΡ ΡΠ»Π΅ΠΊΡΡΠΎΠ΄Π²ΠΈΠ³Π°ΡΠ΅Π»Ρ
1.1 ΠΡΠ±ΠΎΡ ΡΠ»Π΅ΠΊΡΡΠΎΠ΄Π²ΠΈΠ³Π°ΡΠ΅Π»Ρ Π‘ΠΎΠ³Π»Π°ΡΠ½ΠΎ ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΠΎΠΌΡ Π·Π°Π΄Π°Π½ΠΈΡ ΠΈ ΠΊΠΈΠ½Π΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΡ Π΅ΠΌΠ΅, ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½Π½ΠΎΠΉ Π½Π° ΡΠΈΡΡΠ½ΠΊΠ΅ 1.1, ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΠΌ Π²ΡΠ±ΠΎΡ ΡΠ»Π΅ΠΊΡΡΠΎΠ΄Π²ΠΈΠ³Π°ΡΠ΅Π»Ρ.
Π ΠΈΡΡΠ½ΠΎΠΊ 1.1 — ΠΠΈΠ½Π΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΡ Π΅ΠΌΠ° ΡΠ»Π΅ΠΊΡΡΠΎΠΏΡΠΈΠ²ΠΎΠ΄Π°.
Π£ΡΡΠ°Π½ΠΎΠ²ΠΈΠ²ΡΠ°ΡΡΡ ΡΠ³Π»ΠΎΠ²Π°Ρ ΡΠΊΠΎΡΠΎΡΡΡ Π²ΡΠ°ΡΠ΅Π½ΠΈΡ Π²Π°Π»Π° Π΄Π²ΠΈΠ³Π°ΡΠ΅Π»Ρ:
(1.1.1)
Π³Π΄Π΅
— ΠΏΠ΅ΡΠ΅Π΄Π°ΡΠΎΡΠ½ΠΎΠ΅ ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠ΅ ΠΌΠ΅Ρ Π°Π½ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΏΠ΅ΡΠ΅Π΄Π°ΡΠΈ;
— ΡΡΡΠ°Π½ΠΎΠ²ΠΈΠ²ΡΠ°ΡΡΡ ΡΠΊΠΎΡΠΎΡΡΡ ΠΏΠΎΠ΄ΡΠ΅ΠΌΠ° Π³ΡΡΠ·Π°;
— Π΄ΠΈΠ°ΠΌΠ΅ΡΡ Π±Π°ΡΠ°Π±Π°Π½Π°, ΠΌ.
Π£ΡΡΠ°Π½ΠΎΠ²ΠΈΠ²ΡΠ°ΡΡΡ ΡΠ°ΡΡΠΎΡΠ° Π²ΡΠ°ΡΠ΅Π½ΠΈΡ Π²Π°Π»Π° Π΄Π²ΠΈΠ³Π°ΡΠ΅Π»Ρ:
(1.1.2)
Π£ΡΡΠ°Π½ΠΎΠ²ΠΈΠ²ΡΠ°ΡΡΡ ΡΠ³Π»ΠΎΠ²Π°Ρ ΡΠΊΠΎΡΠΎΡΡΡ Π²ΡΠ°ΡΠ΅Π½ΠΈΡ Π±Π°ΡΠ°Π±Π°Π½Π°:
(1.1.3)
ΠΡΠΈΠ²Π΅Π΄Π΅Π½Π½ΡΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ ΡΡΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΡ:
(1.1.4)
Π³Π΄Π΅:
— ΡΡΠΈΠ»ΠΈΠ΅ ΡΡΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΡ Π² Π½Π°ΡΠ°Π»Π΅ ΡΠΈΠΊΠ»Π°;
— ΡΡΠΈΠ»ΠΈΠ΅ ΡΡΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΡ Π² ΠΊΠΎΠ½ΡΠ΅ ΡΠΈΠΊΠ»Π°;
— ΡΠΈΡΠ»ΠΎ ΠΎΠ΄Π½ΠΎΠ²ΡΠ΅ΠΌΠ΅Π½Π½ΠΎ ΡΠ°Π±ΠΎΡΠ°ΡΡΠΈΡ ΡΠ»Π΅ΠΊΡΡΠΎΠ΄Π²ΠΈΠ³Π°ΡΠ΅Π»Π΅ΠΉ;
— ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ ΠΏΠΎΠ»Π΅Π·Π½ΠΎΠ³ΠΎ Π΄Π΅ΠΉΡΡΠ²ΠΈΡ ΡΠΈΡΡΠ΅ΠΌΡ.
Π‘ΡΠ΅Π΄Π½ΠΈΠΉ ΠΏΡΠΈΠ²Π΅Π΄Π΅Π½Π½ΡΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ ΡΡΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΡ:
(1.1.5)
Π’ΡΠ΅Π±ΡΠ΅ΠΌΠ°Ρ ΡΠ°ΡΡΡΡΠ½Π°Ρ ΠΌΠΎΡΠ½ΠΎΡΡΡ ΡΠ»Π΅ΠΊΡΡΠΎΠ΄Π²ΠΈΠ³Π°ΡΠ΅Π»Ρ:
(1.1.6)
Π³Π΄Π΅ — ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ Π·Π°ΠΏΠ°ΡΠ°;
ΠΠΎ ΠΊΠ°ΡΠ°Π»ΠΎΠ³Ρ Π²ΡΠ±ΠΈΡΠ°Π΅ΠΌ ΡΠ»Π΅ΠΊΡΡΠΎΠ΄Π²ΠΈΠ³Π°ΡΠ΅Π»Ρ, Ρ ΠΊΠΎΡΠΎΡΠΎΠ³ΠΎ .
ΠΡΠ±ΠΈΡΠ°Π΅ΠΌ Π΄Π²ΠΈΠ³Π°ΡΠ΅Π»Ρ ΠΠ-13−52−12 ΡΠΎ ΡΠ»Π΅Π΄ΡΡΡΠΈΠΌΠΈ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠ°ΠΌΠΈ:
— Π½ΠΎΠΌΠΈΠ½Π°Π»ΡΠ½Π°Ρ ΠΌΠΎΡΠ½ΠΎΡΡΡ ΡΠ»Π΅ΠΊΡΡΠΎΠ΄Π²ΠΈΠ³Π°ΡΠ΅Π»Ρ;
— Π½ΠΎΠΌΠΈΠ½Π°Π»ΡΠ½Π°Ρ ΡΠ°ΡΡΠΎΡΠ° Π²ΡΠ°ΡΠ΅Π½ΠΈΡ Π²Π°Π»Π° Π΄Π²ΠΈΠ³Π°ΡΠ΅Π»Ρ;
— ΡΠΈΠ½Ρ ΡΠΎΠ½Π½Π°Ρ ΡΠ°ΡΡΠΎΡΠ° Π²ΡΠ°ΡΠ΅Π½ΠΈΡ Π²Π°Π»Π° Π΄Π²ΠΈΠ³Π°ΡΠ΅Π»Ρ;
— Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΠ΅ Π² ΠΎΠ±ΠΌΠΎΡΠΊΠ΅ ΡΡΠ°ΡΠΎΡΠ°;
— ΡΠΎΠΊ Π² ΠΎΠ±ΠΌΠΎΡΠΊΠ΅ ΡΡΠ°ΡΠΎΡΠ°;
— Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΠ΅ Π² ΠΎΠ±ΠΌΠΎΡΠΊΠ΅ ΡΠΎΡΠΎΡΠ°;
— ΡΠΎΠΊ Π² ΠΎΠ±ΠΌΠΎΡΠΊΠ΅ ΡΠΎΡΠΎΡΠ°;
— Π½ΠΎΠΌΠΈΠ½Π°Π»ΡΠ½ΡΠΉ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ ΠΏΠΎΠ»Π΅Π·Π½ΠΎΠ³ΠΎ Π΄Π΅ΠΉΡΡΠ²ΠΈΡ ΡΠ»Π΅ΠΊΡΡΠΎΠ΄Π²ΠΈΠ³Π°ΡΠ΅Π»Ρ;
— ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ ΠΌΠΎΡΠ½ΠΎΡΡΠΈ;
— ΠΏΠ΅ΡΠ΅Π³ΡΡΠ·ΠΎΡΠ½Π°Ρ ΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡΡ;
— ΠΌΠ°Ρ ΠΎΠ²ΡΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ ΡΠ»Π΅ΠΊΡΡΠΎΠ΄Π²ΠΈΠ³Π°ΡΠ΅Π»Ρ;
Π‘ΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠ΅ ΡΠ°Π· — «Π·Π²Π΅Π·Π΄Π°».
ΠΠΎΠΌΠΈΠ½Π°Π»ΡΠ½Π°Ρ ΡΠ°ΡΡΠΎΡΠ° Π²ΡΠ°ΡΠ΅Π½ΠΈΡ Π²Π°Π»Π° Π΄Π²ΠΈΠ³Π°ΡΠ΅Π»Ρ:
(1.1.7)
ΠΠΎΠΌΠΈΠ½Π°Π»ΡΠ½ΡΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ ΡΠ»Π΅ΠΊΡΡΠΎΠ΄Π²ΠΈΠ³Π°ΡΠ΅Π»Ρ:
(1.1.8)
ΠΡΠΈΡΠΈΡΠ΅ΡΠΊΠΈΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ ΡΠ»Π΅ΠΊΡΡΠΎΠ΄Π²ΠΈΠ³Π°ΡΠ΅Π»Ρ:
(1.1.9)
1.2 Π Π°ΡΡΠ΅Ρ ΠΈ ΠΏΠΎΡΡΡΠΎΠ΅Π½ΠΈΠ΅ Π½Π°Π³ΡΡΠ·ΠΎΡΠ½ΠΎΠΉ Π΄ΠΈΠ°Π³ΡΠ°ΠΌΠΌΡ
1.2.1 Π Π°ΡΡΠ΅Ρ Π΄ΠΈΠ°Π³ΡΠ°ΠΌΠΌΡ ΡΠΊΠΎΡΠΎΡΡΠΈ ΠΈ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΡ (ΡΠΈΡΡΠ½ΠΎΠΊ 1.2)
ΠΡΠ΅ΠΌΡ ΡΠ°Π·Π³ΠΎΠ½Π° ΠΈΠ»ΠΈ Π·Π°ΠΌΠ΅Π΄Π»Π΅Π½ΠΈΡ ΠΏΡΠΈ ΠΏΠΎΡΡΠΎΡΠ½Π½ΠΎΠΌ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΠΈ Π½Π° i-ΠΌ ΡΡΠ°ΡΡΠΊΠ΅ Π½Π°Π³ΡΡΠ·ΠΎΡΠ½ΠΎΠΉ Π΄ΠΈΠ°Π³ΡΠ°ΠΌΠΌΡ:
(1.2.1)
Π³Π΄Π΅:
— Π½Π°ΡΠ°Π»ΡΠ½Π°Ρ ΠΈ ΠΊΠΎΠ½Π΅ΡΠ½Π°Ρ ΡΠΊΠΎΡΠΎΡΡΠΈ Π²ΡΠ°ΡΠ΅Π½ΠΈΡ Π²Π°Π»Π° Π΄Π²ΠΈΠ³Π°ΡΠ΅Π»Ρ Π½Π° i-ΠΎΠΌ ΡΡΠ°ΡΡΠΊΠ΅ Π΄ΠΈΠ°Π³ΡΠ°ΠΌΠΌΡ;
— ΡΠ³Π»ΠΎΠ²ΠΎΠ΅ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΠ΅ (Π·Π°ΠΌΠ΅Π΄Π»Π΅Π½ΠΈΠ΅) Π½Π° i-ΠΎΠΌ ΡΡΠ°ΡΡΠΊΠ΅ Π΄ΠΈΠ°Π³ΡΠ°ΠΌΠΌΡ.
1 ΡΡΠ°ΡΡΠΎΠΊ:
2 ΡΡΠ°ΡΡΠΎΠΊ:
3 ΡΡΠ°ΡΡΠΎΠΊ:
4 ΡΡΠ°ΡΡΠΎΠΊ:
5 ΡΡΠ°ΡΡΠΎΠΊ:
6 ΡΡΠ°ΡΡΠΎΠΊ:
7 ΡΡΠ°ΡΡΠΎΠΊ:
ΠΡΠ΅ΠΌΡ ΡΠΈΠΊΠ»Π°:
(1.2.2)
1.2.2 ΠΠΎΠΌΠ΅Π½Ρ ΠΈΠ½Π΅ΡΡΠΈΠΈ ΡΠΈΡΡΠ΅ΠΌΡ ΠΠΎΠΌΠ΅Π½Ρ ΠΈΠ½Π΅ΡΡΠΈΠΈ ΡΠ»Π΅ΠΊΡΡΠΎΠ΄Π²ΠΈΠ³Π°ΡΠ΅Π»Ρ:
(1.2.3)
Π³Π΄Π΅ — ΠΌΠ°Ρ ΠΎΠ²ΡΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ Π΄Π²ΠΈΠ³Π°ΡΠ΅Π»Ρ;
ΠΠΎΠΌΠ΅Π½Ρ ΠΈΠ½Π΅ΡΡΠΈΠΈ Π±Π°ΡΠ°Π±Π°Π½Π°:
Π³Π΄Π΅ — ΠΌΠ°Ρ ΠΎΠ²ΡΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ Π±Π°ΡΠ°Π±Π°Π½Π°;
ΠΠΎΠΌΠ΅Π½Ρ ΠΈΠ½Π΅ΡΡΠΈΠΈ ΡΠ΅ΡΡΠ΅ΡΠ½Π΅ΠΉ № 2, 3:
(1.2.4)
(1.2.5)
ΠΠΎΠΌΠ΅Π½Ρ ΠΈΠ½Π΅ΡΡΠΈΠΈ ΡΠΈΡΡΠ΅ΠΌΡ:
(1.2.6)
Π³Π΄Π΅:
— ΠΌΠ°ΡΡΠ° Π³ΡΡΠ·Π°;
— ΡΠΈΡΠ»ΠΎ Π΄Π²ΠΈΠ³Π°ΡΠ΅Π»Π΅ΠΉ;
1.2.3 Π Π°ΡΡΠ΅Ρ Π½Π°Π³ΡΡΠ·ΠΎΡΠ½ΠΎΠΉ Π΄ΠΈΠ°Π³ΡΠ°ΠΌΠΌΡ (ΡΠΈΡΡΠ½ΠΎΠΊ 1.2)
ΠΠ½Π°ΡΠ΅Π½ΠΈΠ΅ ΠΌΠΎΠΌΠ΅Π½ΡΠ° ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΡ Π½Π° j-ΠΎΠΌ ΡΡΠ°ΡΡΠΊΠ΅ Π΄ΠΈΠ°Π³ΡΠ°ΠΌΠΌΡ:
(1.2.7)
ΠΠΎΠΌΠ΅Π½Ρ Π½Π° Π²Π°Π»Ρ Π΄Π²ΠΈΠ³Π°ΡΠ΅Π»Ρ Π½Π° i-ΠΎΠΌ ΡΡΠ°ΡΡΠΊΠ΅ Π΄ΠΈΠ°Π³ΡΠ°ΠΌΠΌΡ:
(1.2.8)
;
;
;
;
;
;
;
;
;
.
1.2.4 Π Π°ΡΡΠ΅Ρ Π΄ΠΈΠ°Π³ΡΠ°ΠΌΠΌΡ ΡΠΎΠΊΠΎΠ²
(1.2.9)
ΠΠ°Π³ΡΡΠ·ΠΎΡΠ½Π°Ρ Π΄ΠΈΠ°Π³ΡΠ°ΠΌΠΌΠ° ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½Π° Π½Π° ΡΠΈΡΡΠ½ΠΊΠ΅ 1.2.
1.3 ΠΡΠΎΠ²Π΅ΡΠΊΠ° ΡΠ»Π΅ΠΊΡΡΠΎΠ΄Π²ΠΈΠ³Π°ΡΠ΅Π»Ρ ΠΡΠΎΠ΄ΠΎΠ»ΠΆΠΈΡΠ΅Π»ΡΠ½ΠΎΡΡΡ Π²ΠΊΠ»ΡΡΠ΅Π½ΠΈΡ:
(1.3.1)
ΠΠΎΡΠΊΠΎΠ»ΡΠΊΡ ΠΏΡΠΎΠ΄ΠΎΠ»ΠΆΠΈΡΠ΅Π»ΡΠ½ΠΎΡΡΡ Π²ΠΊΠ»ΡΡΠ΅Π½ΠΈΡ ΡΠΎΡΡΠ°Π²ΠΈΠ»Π° Π±ΠΎΠ»Π΅Π΅ 70%, ΡΠΎ ΡΠ»Π΅ΠΊΡΡΠΎΠ΄Π²ΠΈΠ³Π°ΡΠ΅Π»Ρ Π±ΡΠ΄Π΅Ρ ΡΠ°Π±ΠΎΡΠ°ΡΡ Π² ΠΏΡΠΎΠ΄ΠΎΠ»ΠΆΠΈΡΠ΅Π»ΡΠ½ΠΎΠΌ ΡΠ΅ΠΆΠΈΠΌΠ΅.
1.3.1 ΠΡΠΎΠ²Π΅ΡΠΊΠ° Π½Π° Π½Π°Π³ΡΠ΅Π² ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ ΡΠΊΠ²ΠΈΠ²Π°Π»Π΅Π½ΡΠ½ΠΎΠ³ΠΎ ΠΌΠΎΠΌΠ΅Π½ΡΠ°
(1.3.2)
Π³Π΄Π΅:
— ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΡ, ΡΡΠΈΡΡΠ²Π°ΡΡΠΈΠ΅ ΡΡ ΡΠ΄ΡΠ΅Π½ΠΈΠ΅ ΡΡΠ»ΠΎΠ²ΠΈΠΉ ΠΎΡ Π»Π°ΠΆΠ΄Π΅Π½ΠΈΡ ΡΠ»Π΅ΠΊΡΡΠΎΠ΄Π²ΠΈΠ³Π°ΡΠ΅Π»Ρ ΠΏΡΠΈ ΡΠΌΠ΅Π½ΡΡΠ΅Π½ΠΈΠΈ ΡΠΊΠΎΡΠΎΡΡΠΈ ΠΈ ΠΎΡΡΠ°Π½ΠΎΠ²ΠΊΠ΅;
— ΡΡΠΌΠΌΠ°ΡΠ½ΠΎΠ΅ Π²ΡΠ΅ΠΌΡ ΠΏΡΡΠΊΠ° ΠΈ ΡΠΎΡΠΌΠΎΠΆΠ΅Π½ΠΈΡ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²Π΅Π½Π½ΠΎ;
ΠΡΠ±ΡΠ°Π½Π½ΡΠΉ Π΄Π²ΠΈΠ³Π°ΡΠ΅Π»Ρ Π΄ΠΎΠ»ΠΆΠ΅Π½ ΡΠ΄ΠΎΠ²Π»Π΅ΡΠ²ΠΎΡΡΡΡ ΡΡΠ»ΠΎΠ²ΠΈΡ:
(1.3.3)
Π£ΡΠ»ΠΎΠ²ΠΈΠ΅ Π²ΡΠΏΠΎΠ»Π½Π΅Π½ΠΎ.
1.3.2 ΠΡΠΎΠ²Π΅ΡΠΊΠ° Π½Π° Π½Π°Π³ΡΠ΅Π² ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ ΡΠΊΠ²ΠΈΠ²Π°Π»Π΅Π½ΡΠ½ΠΎΠ³ΠΎ ΡΠΎΠΊΠ° ΠΠΊΠ²ΠΈΠ²Π°Π»Π΅Π½ΡΠ½ΡΠΉ ΡΠΎΠΊ:
(1.3.4)
Π³Π΄Π΅ , — ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΡ, ΡΡΠΈΡΡΠ²Π°ΡΡΠΈΠ΅ ΡΡ ΡΠ΄ΡΠ΅Π½ΠΈΠ΅ ΡΡΠ»ΠΎΠ²ΠΈΠΉ ΠΎΡ Π»Π°ΠΆΠ΄Π΅Π½ΠΈΡ ΡΠ»Π΅ΠΊΡΡΠΎΠ΄Π²ΠΈΠ³Π°ΡΠ΅Π»Ρ ΠΏΡΠΈ ΡΠΌΠ΅Π½ΡΡΠ΅Π½ΠΈΠΈ ΡΠΊΠΎΡΠΎΡΡΠΈ ΠΈ ΠΎΡΡΠ°Π½ΠΎΠ²ΠΊΠ΅;
— ΡΡΠΌΠΌΠ°ΡΠ½ΠΎΠ΅ Π²ΡΠ΅ΠΌΡ ΠΏΡΡΠΊΠ° ΠΈ ΡΠΎΡΠΌΠΎΠΆΠ΅Π½ΠΈΡ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²Π΅Π½Π½ΠΎ.
ΠΡΠ±ΡΠ°Π½Π½ΡΠΉ Π΄Π²ΠΈΠ³Π°ΡΠ΅Π»Ρ Π΄ΠΎΠ»ΠΆΠ΅Π½ ΡΠ΄ΠΎΠ²Π»Π΅ΡΠ²ΠΎΡΡΡΡ ΡΡΠ»ΠΎΠ²ΠΈΡ:
(1.3.5)
Π£ΡΠ»ΠΎΠ²ΠΈΠ΅ Π²ΡΠΏΠΎΠ»Π½Π΅Π½ΠΎ.
1.3.3 ΠΡΠΎΠ²Π΅ΡΠΊΠ° ΡΠ»Π΅ΠΊΡΡΠΎΠ΄Π²ΠΈΠ³Π°ΡΠ΅Π»Ρ ΠΏΠΎ ΡΡΠ»ΠΎΠ²ΠΈΡ Π΄ΠΎΠΏΡΡΡΠΈΠΌΠΎΠΉ ΠΏΠ΅ΡΠ΅Π³ΡΡΠ·ΠΊΠΈ
(1.3.6)
Π³Π΄Π΅ — ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡΠ½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΠΌΠΎΠΌΠ΅Π½ΡΠ° ΠΈΠ· Π½Π°Π³ΡΡΠ·ΠΎΡΠ½ΠΎΠΉ Π΄ΠΈΠ°Π³ΡΠ°ΠΌΠΌΡ.
.
Π£ΡΠ»ΠΎΠ²ΠΈΠ΅ Π²ΡΠΏΠΎΠ»Π½Π΅Π½ΠΎ.
2. Π Π°ΡΡΠ΅Ρ ΠΈ ΠΏΠΎΡΡΡΠΎΠ΅Π½ΠΈΠ΅ ΠΏΠΎΠ»Π½ΠΎΠΉ Π΄ΠΈΠ°Π³ΡΠ°ΠΌΠΌΡ ΡΠ°Π±ΠΎΡΡ ΡΠ»Π΅ΠΊΡΡΠΎΠΏΡΠΈΠ²ΠΎΠ΄Π°
2.1 ΠΠΎΡΡΡΠΎΠ΅Π½ΠΈΠ΅ Π΅ΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎΠΉ Ρ Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊΠΈ ΠΠΎΠΌΠΈΠ½Π°Π»ΡΠ½ΠΎΠ΅ ΡΠΊΠΎΠ»ΡΠΆΠ΅Π½ΠΈΠ΅:
(2.1.1)
ΠΡΠΈΡΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΡΠΊΠΎΠ»ΡΠΆΠ΅Π½ΠΈΠ΅:
(2.1.2)
Π³Π΄Π΅ — ΠΏΠ΅ΡΠ΅Π³ΡΡΠ·ΠΎΡΠ½Π°Ρ ΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡΡ;
ΠΠΎ ΡΠΎΡΠΌΡΠ»Π΅ ΠΠ»ΠΎΡΠ°:
(2.1.3)
Π·Π°Π΄Π°Π²Π°ΡΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΡΠΌΠΈ ΡΠΊΠΎΠ»ΡΠΆΠ΅Π½ΠΈΡ Π² ΠΏΡΠ΅Π΄Π΅Π»Π°Ρ ΠΎΡ 0 Π΄ΠΎ 1, ΠΏΠΎΠ»ΡΡΠΈΠΌ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΡ, ΡΡΠΈΡΡΠ²Π°Ρ, ΡΡΠΎ
(2.1.4)
Π³Π΄Π΅ — ΡΠΈΠ½Ρ ΡΠΎΠ½Π½Π°Ρ ΡΠ°ΡΡΠΎΡΠ° Π²ΡΠ°ΡΠ΅Π½ΠΈΡ Π²Π°Π»Π° Π΄Π²ΠΈΠ³Π°ΡΠ΅Π»Ρ;
(2.1.5)
ΠΠΎΠ»ΡΡΠ΅Π½Π½ΡΠ΅ Π΄Π°Π½Π½ΡΠ΅ ΡΠ²ΠΎΠ΄ΠΈΠΌ Π² ΡΠ°Π±Π»ΠΈΡΡ 2.1.
Π’Π°Π±Π»ΠΈΡΠ° 2.1
0,01 | 0,0395 | 0,07 | 0,1 | 0,3 | 0,4 | 0,7 | 0,8 | 0,9 | ||||
4823,02 | 10 128,3 | 8666,06 | 6917,14 | 2619,51 | 1979,37 | 1138,46 | 996,89 | 886,58 | 798,21 | |||
52,36 | 51,83 | 50,29 | 48,69 | 47,12 | 36,65 | 31,42 | 15,71 | 10,47 | 5,24 | |||
ΠΠΏΡΠ΅Π΄Π΅Π»ΠΈΠΌ ΡΠΊΠΎΡΠΎΡΡΡ Π²ΡΠ°ΡΠ΅Π½ΠΈΡ Π²Π°Π»Π° Π΄Π²ΠΈΠ³Π°ΡΠ΅Π»Ρ ΠΏΡΠΈ Π·Π°Π΄Π°Π½Π½ΠΎΠΌ ΠΌΠΎΠΌΠ΅Π½ΡΠ΅ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΡ ΠΏΡΠΈ ΡΠ°Π±ΠΎΡΠ΅ Π½Π° Π΅ΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎΠΉ Ρ Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊΠ΅
(2.1.6)
ΠΡΠ»ΠΈΡΠΈΠ΅ ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΠΎΠΉ ΡΠΊΠΎΡΠΎΡΡΠΈ ΠΎΡ Π·Π°Π΄Π°Π½Π½ΠΎΠΉ:
(2.1.7)
Π’Π°ΠΊ ΠΊΠ°ΠΊ ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΡΠΊΠΎΡΠΎΡΡΠΈ Π²ΡΠ°ΡΠ΅Π½ΠΈΡ Π²Π°Π»Π° Π΄Π²ΠΈΠ³Π°ΡΠ΅Π»Ρ ΠΎΡΠ»ΠΈΡΠ°Π΅ΡΡΡ ΠΎΡ Π·Π°Π΄Π°Π½Π½ΠΎΠ³ΠΎ ΠΌΠ΅Π½Π΅Π΅ ΡΠ΅ΠΌ Π½Π° 5%, ΡΠΎ Π²ΡΠ±ΡΠ°Π½Π½ΡΠΉ Π΄Π²ΠΈΠ³Π°ΡΠ΅Π»Ρ Π΄Π»Ρ ΠΎΠ±Π΅ΡΠΏΠ΅ΡΠ΅Π½ΠΈΡ Π½Π΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΡΡ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠΎΠ² ΠΏΡΠΈΠ²ΠΎΠ΄Π°, ΠΌΠΎΠΆΠ΅Ρ ΡΠ°Π±ΠΎΡΠ°ΡΡ Π½Π° Π΅ΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎΠΉ Ρ Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊΠ΅.
2.2 ΠΠΎΡΡΡΠΎΠ΅Π½ΠΈΠ΅ ΠΏΡΡΠΊΠΎΠ²ΠΎΠΉ Π΄ΠΈΠ°Π³ΡΠ°ΠΌΠΌΡ ΠΠΎΠΌΠΈΠ½Π°Π»ΡΠ½ΠΎΠ΅ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅ ΡΠΎΡΠΎΡΠ°:
(2.2.1)
`
Π‘ΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅ ΡΠΎΡΠΎΡΠ°:
(2.2.2)
ΠΠΎΡΡΡΠΎΠ΅Π½ΠΈΠ΅ ΠΏΡΡΠΊΠΎΠ²ΠΎΠΉ Π΄ΠΈΠ°Π³ΡΠ°ΠΌΠΌΡ ΠΎΡΡΡΠ΅ΡΡΠ²Π»ΡΠ΅ΡΡΡ Π°Π½Π°Π»ΠΈΡΠΈΡΠ΅ΡΠΊΠΈΠΌ ΡΠΏΠΎΡΠΎΠ±ΠΎΠΌ, ΡΠΈΡΡΠ½ΠΎΠΊ 2.1. Π‘ΡΡΠΎΠΈΠΌ Π΅ΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΡΡ ΠΌΠ΅Ρ Π°Π½ΠΈΡΠ΅ΡΠΊΡΡ Ρ Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊΡ Π΄Π²ΠΈΠ³Π°ΡΠ΅Π»Ρ ΠΈ Ρ Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊΡ Π‘ΡΡΠΎΠΈΠΌ ΠΏΡΡΠΌΡΡ
ΠΡΠΊΡΡΡΡΠ²Π΅Π½Π½Π°Ρ Ρ Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊΠ° Π΄Π²ΠΈΠ³Π°ΡΠ΅Π»Ρ ΠΏΡΠΈ ΡΠ°Π±ΠΎΡΠ΅ Π½Π° ΡΡΠ°ΡΡΠΊΠ΅ Π΄ΠΈΠ°Π³ΡΠ°ΠΌΠΌΡ (ΡΠΈΡΡΠ½ΠΎΠΊ 1.2), ΡΡΡΠΎΠΈΡΡΡ Π°Π½Π°Π»ΠΎΠ³ΠΈΡΠ½ΠΎ Π΅ΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎΠΉ, Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ ΡΠΎΡΠΌΡΠ»Ρ ΠΠ»ΠΎΡΠ° (2.1.3):
Π³Π΄Π΅ — ΠΊΡΠΈΡΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΡΠΊΠΎΠ»ΡΠΆΠ΅Π½ΠΈΠ΅ Π΄Π»Ρ Π΄Π°Π½Π½ΠΎΠΉ Ρ Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊΠΈ (Π² Π½Π°ΡΠ΅ΠΌ ΡΠ»ΡΡΠ°Π΅ Π΄Π»Ρ 1-ΠΎΠΉ).
Π₯Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊΠ° Π΄ΠΎΠ»ΠΆΠ½Π° ΠΏΡΠΎΠΉΡΠΈ ΡΠ΅ΡΠ΅Π· ΡΠΎΡΠΊΡ. ΠΠΌΠ΅Ρ ΠΌΠΎΠΌΠ΅Π½Ρ ΠΈ ΡΠΊΠΎΠ»ΡΠΆΠ΅Π½ΠΈΠ΅ Π΄Π°Π½Π½ΠΎΠΉ ΡΠΎΡΠΊΠΈ ΠΌΠΎΠΆΠ½ΠΎ Π²ΡΡΠΈΡΠ»ΠΈΡΡ. Π‘ΠΊΠΎΠ»ΡΠΆΠ΅Π½ΠΈΠ΅ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ΅ΠΌ ΠΏΠΎ ΡΠΎΡΠΌΡΠ»Π΅:
(2.2.3)
ΠΡΡΠ°Π·ΠΈΠΌ ΠΊΡΠΈΡΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΡΠΊΠΎΠ»ΡΠΆΠ΅Π½ΠΈΠ΅ ΠΈΠ· ΡΠΎΡΠΌΡΠ»Ρ:
(2.2.4)
(2.2.5)
ΠΡΡΠΈΡΠ»ΠΈΠΌ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΠΊΡΠΈΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΡΠΊΠΎΠ»ΡΠΆΠ΅Π½ΠΈΡ:
ΠΠ°Π΄Π°Π²Π°ΡΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΡΠΌΠΈ Π² ΠΏΡΠ΅Π΄Π΅Π»Π°Ρ (0;1) ΠΏΠΎΠ»ΡΡΠΈΠΌ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΡ ΡΡΠΈΡΡΠ²Π°Ρ, ΡΡΠΎ Π³Π΄Π΅ — ΡΠΈΠ½Ρ ΡΠΎΠ½Π½Π°Ρ ΡΠ°ΡΡΠΎΡΠ° Π²ΡΠ°ΡΠ΅Π½ΠΈΡ Π²Π°Π»Π° Π΄Π²ΠΈΠ³Π°ΡΠ΅Π»Ρ;
ΠΠΎΠ»ΡΡΠ΅Π½Π½ΡΠ΅ Π΄Π°Π½Π½ΡΠ΅ ΡΠ²Π΅Π΄ΡΠΌ Π² ΡΠ°Π±Π»ΠΈΡΡ 2.2.
Π’Π°Π±Π»ΠΈΡΠ° 2.2
0,1 | 0,2 | 0,5 | 0,7 | 0,8 | 0,898 | ||||
52,36 | 47,12 | 41,89 | 26,18 | 15,71 | 10,47 | 5,33 | |||
562,67 | 1122,74 | 2762,17 | 3797,94 | 4292,56 | 4760,71 | 5227,13 | |||
ΠΠΏΡΠ΅Π΄Π΅Π»ΠΈΠΌ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅ Π΄Π»Ρ ΡΡΠΎΠΉ Ρ Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊΠΈ:
(2.2.6)
ΠΠΎ ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΠΎΠΉ Ρ Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊΠ΅ Π±ΡΠ΄Π΅Ρ ΠΏΡΠΎΠΈΡΡ ΠΎΠ΄ΠΈΡΡ ΡΠ°Π·Π³ΠΎΠ½ Π΄ΠΎ ΡΠΊΠΎΡΠΎΡΡΠΈ
ΠΠ° ΡΡΠ°ΡΡΠΊΠ΅ Π΄ΠΈΠ°Π³ΡΠ°ΠΌΠΌΡ Π΄Π²ΠΈΠ³Π°ΡΠ΅Π»Ρ Π±ΡΠ΄Π΅Ρ ΡΠ°Π·Π³ΠΎΠ½ΡΡΡΡ ΡΡΡΠΏΠ΅Π½ΡΠ°ΡΠΎ. ΠΡΠ΄Π΅ΠΌ ΡΡΠΈΡΠ°ΡΡ ΡΡΠΎΡ ΡΠ°Π·Π³ΠΎΠ½ Π°Π½Π°Π»ΠΈΡΠΈΡΠ΅ΡΠΊΠΈ. ΠΠ»Ρ ΡΡΠΎΠ³ΠΎ Π·Π°Π΄Π°Π΄ΠΈΠΌΡΡ ΠΈ (ΡΠΈΡΠ»ΠΎΠΌ ΡΡΡΠΏΠ΅Π½Π΅ΠΉ). ΠΡΠΈΠΌΠ΅ΠΌ,, (ΠΈΠ· ΡΡΠ»ΠΎΠ²ΠΈΡ, ΡΡΠΎ ,) Π°. ΠΠΏΡΠ΅Π΄Π΅Π»ΠΈΠΌ ΡΠΊΠΎΠ»ΡΠΆΠ΅Π½ΠΈΠ΅, ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡΠ΅Π΅ ΡΠΊΠΎΡΠΎΡΡΠΈ ΠΏΡΠΈ ΠΊΠΎΡΠΎΡΠΎΠΉ ΠΏΡΠΎΠΈΡΡ ΠΎΠ΄ΠΈΡ ΠΏΠ΅ΡΠ΅ΠΊΠ»ΡΡΠ΅Π½ΠΈΠ΅ Ρ Π΅ΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎΠΉ Ρ Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊΠΈ Π½Π° ΠΈΡΠΊΡΡΡΡΠ²Π΅Π½Π½ΡΡ:
(2.2.7)
ΠΠ°Π»Π΅Π΅ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ΅ΠΌ — ΡΠΊΠΎΠ»ΡΠΆΠ΅Π½ΠΈΠ΅, ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡΠ΅Π΅ ΠΏΠ΅ΡΠ΅ΡΠ΅ΡΠ΅Π½ΠΈΡ Π²ΡΠΎΡΠΎΠΉ ΡΡΡΠΏΠ΅Π½ΠΈ ΡΠ°Π·Π³ΠΎΠ½Π° Ρ
(2.2.8)
Π³Π΄Π΅ — ΡΠΊΠΎΠ»ΡΠΆΠ΅Π½ΠΈΠ΅ ΠΏΡΠΈ Π½Π°ΡΠ°Π»ΡΠ½ΠΎΠΉ ΡΠΊΠΎΡΠΎΡΡΠΈ ;
ΠΠΏΡΠ΅Π΄Π΅Π»ΡΠ΅ΠΌ ΠΊΡΠΈΡΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΡΠΊΠΎΠ»ΡΠΆΠ΅Π½ΠΈΡ Π΄Π»Ρ ΠΏΠ΅ΡΠ²ΠΎΠΉ ΠΏΡΡΠΊΠΎΠ²ΠΎΠΉ ΡΡΡΠΏΠ΅Π½ΠΈ:
(2.2.9)
Π³Π΄Π΅
ΠΠΏΡΠ΅Π΄Π΅Π»ΡΠ΅ΠΌ ΠΌΠΎΠΌΠ΅Π½Ρ ΠΏΠ΅ΡΠ΅ΠΊΠ»ΡΡΠ΅Π½ΠΈΡ
(2.2.10)
ΠΠΏΡΠ΅Π΄Π΅Π»ΡΠ΅ΠΌ ΠΊΡΠΈΡΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΡΠΊΠΎΠ»ΡΠΆΠ΅Π½ΠΈΠ΅ Π΄Π»Ρ Π²ΡΠΎΡΠΎΠΉ ΠΏΡΡΠΊΠΎΠ²ΠΎΠΉ ΡΡΡΠΏΠ΅Π½ΠΈ:
(2.2.11)
Π³Π΄Π΅
ΠΠΏΡΠ΅Π΄Π΅Π»ΡΠ΅ΠΌ ΡΠΊΠΎΠ»ΡΠΆΠ΅Π½ΠΈΠ΅ ΠΏΠ΅ΡΠ΅ΠΊΠ»ΡΡΠ΅Π½ΠΈΡ Π΄Π»Ρ i-ΠΎΠΉ ΠΏΡΡΠΊΠΎΠ²ΠΎΠΉ ΡΡΡΠΏΠ΅Π½ΠΈ:
(2.2.12)
ΠΠΏΡΠ΅Π΄Π΅Π»ΡΠ΅ΠΌ ΠΊΡΠΈΡΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΡΠΊΠΎΠ»ΡΠΆΠ΅Π½ΠΈΠ΅ Π΄Π»Ρ i-ΠΎΠΉ ΠΏΡΡΠΊΠΎΠ²ΠΎΠΉ ΡΡΡΠΏΠ΅Π½ΠΈ:
(2.2.13)
ΠΠ΅ΡΠ²Π°Ρ ΡΡΡΠΏΠ΅Π½Ρ:
ΠΠ· ΡΠΎΡΠΌΡΠ» 2.2.8 ΠΈ 2.2.9.
ΠΡΠΎΡΠ°Ρ ΡΡΡΠΏΠ΅Π½Ρ:
Π’ΡΠ΅ΡΡΡ ΡΡΡΠΏΠ΅Π½Ρ:
Π§Π΅ΡΠ²ΡΡΡΠ°Ρ ΡΡΡΠΏΠ΅Π½Ρ:
ΠΡΡΠ΅ΡΡΠ²Π΅Π½Π½Π°Ρ Ρ Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊΠ°:
ΠΠ»Ρ ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ ΡΠΊΠΎΠ»ΡΠΆΠ΅Π½ΠΈΠΉ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ΅ΠΌ:
Π°) ΡΠΊΠΎΡΠΎΡΡΡ (ΠΏΠΎ ΡΠΎΡΠΌΡΠ»Π΅ 2.1.4):
Π±) ΠΏΠ΅ΡΠ²ΡΡ ΠΏΡΡΠΊΠΎΠ²ΡΡ Ρ Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊΡ:
Π’Π°Π±Π»ΠΈΡΠ° 2.3
S | 0,1 | 0,33 | 0,5 | 0,7 | 0,8 | 0,9 | |||
52,36 | 47,12 | 34,98 | 26,18 | 15,71 | 10,47 | 5,24 | |||
1540,68 | 4832,22 | 6759,44 | 8430,22 | 9019,21 | 9461,74 | 9775,59 | |||
Π²) ΠΡΠΎΡΡΡ ΠΏΡΡΠΊΠΎΠ²ΡΡ Ρ Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊΡ:
Π’Π°Π±Π»ΠΈΡΠ° 2.4
S | 0,04 | 0,08 | 0,138 | 0,2 | 0,35 | 0,54 | 0,7 | ||
52,36 | 50,26 | 48,17 | 45,11 | 41,89 | 34,03 | 23,83 | 15,71 | ||
1479,09 | 2911,37 | 4832,22 | 6552,51 | 9211,19 | 10 128,34 | 9818,61 | |||
Π³) Π’ΡΠ΅ΡΡΡ ΠΏΡΡΠΊΠΎΠ²ΡΡ Ρ Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊΡ:
ΡΠ»Π΅ΠΊΡΡΠΎΠ΄Π²ΠΈΠ³Π°ΡΠ΅Π»Ρ ΡΠ΅ΠΎΡΡΠ°Ρ ΡΠΎΡΠΌΠΎΠΆΠ΅Π½ΠΈΠ΅ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅
Π’Π°Π±Π»ΠΈΡΠ° 2.5
S | 0,01 | 0,03 | 0,058 | 0,09 | 0,15 | 0,227 | 0,3 | ||
52,36 | 51,83 | 50,79 | 49,34 | 47,65 | 44,50 | 40,47 | 36,65 | ||
890,13 | 2629,69 | 4832,22 | 6937,43 | 9315,07 | 10 128,34 | 9748,49 | |||
Π΄) Π§Π΅ΡΠ²ΡΡΡΡΡ ΠΏΡΡΠΊΠΎΠ²ΡΡ Ρ Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊΡ:
Π’Π°Π±Π»ΠΈΡΠ° 2.6
S | 0,005 | 0,01 | 0,024 | 0,04 | 0,07 | 0,095 | 0,12 | ||
52,36 | 52,10 | 51,83 | 51,10 | 50,26 | 48,69 | 47,40 | 46,08 | ||
1066,79 | 2115,93 | 4832,22 | 7261,93 | 9683,43 | 10 128,34 | 9850,38 | |||
ΠΠΎ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠ°ΠΌ ΠΈΠ· ΡΠ°Π±Π»ΠΈΡ 2.3−2.6 ΡΡΡΠΎΠΈΠΌ ΠΏΡΡΠΊΠΎΠ²ΡΡ Π΄ΠΈΠ°Π³ΡΠ°ΠΌΠΌΡ (ΡΠΈΡΡΠ½ΠΎΠΊ 2.1).
ΠΠΎ ΡΠΎΡΠΌΡΠ»Π΅ 2.1.4 Π½Π°Ρ ΠΎΠ΄ΠΈΠΌ ΡΠΊΠΎΡΠΎΡΡΠΈ ΠΏΠ΅ΡΠ΅ΠΊΠ»ΡΡΠ΅Π½ΠΈΡ:
ΠΠΎ ΡΠΎΡΠΌΡΠ»Π΅ 2.2.6 Π½Π°Ρ ΠΎΠ΄ΠΈΠΌ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΡ ΡΡΡΠΏΠ΅Π½Π΅ΠΉ ΠΏΡΡΠΊΠΎΠ²ΠΎΠ³ΠΎ ΡΠ΅ΠΎΡΡΠ°ΡΠ°:
2.3 ΠΡΠ±ΠΎΡ ΠΏΡΠ΅Π΄Π²Π°ΡΠΈΡΠ΅Π»ΡΠ½ΠΎΠΉ ΡΡΡΠΏΠ΅Π½ΠΈ
ΠΠ»Ρ ΠΎΠ±Π΅ΡΠΏΠ΅ΡΠ΅Π½ΠΈΡ ΠΏΡΡΠΊΠ° Π΄Π²ΠΈΠ³Π°ΡΠ΅Π»Ρ Π±Π΅Π· ΡΠ΄Π°ΡΠ°, ΠΏΡΠ΅Π΄Π²Π°ΡΠΈΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ Π½Π°ΡΡΠΆΠ΅Π½ΠΈΡ ΡΠΈΡΡΠ΅ΠΌΡ ΠΏΡΠΈΠ²ΠΎΠ΄Π° ΠΈ Π²ΡΠ±ΠΎΡΠ° Π·Π°Π·ΠΎΡΠΎΠ² ΡΠ΅Π΄ΡΠΊΡΠΎΡΠ° ΠΏΡΠΈΠ½ΠΈΠΌΠ°ΡΡ ΠΏΡΠ΅Π΄Π²Π°ΡΠΈΡΠ΅Π»ΡΠ½ΡΡ ΡΡΡΠΏΠ΅Π½Ρ ΡΠ΅ΠΎΡΡΠ°ΡΠ°. ΠΠ΅Ρ Π°Π½ΠΈΡΠ΅ΡΠΊΠ°Ρ Ρ Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊΠ° ΠΏΡΠ΅Π΄Π²Π°ΡΠΈΡΠ΅Π»ΡΠ½ΠΎΠΉ ΡΡΡΠΏΠ΅Π½ΠΈ Π΄ΠΎΠ»ΠΆΠ½Π° ΠΏΡΠΎΠΉΡΠΈ ΡΠ΅ΡΠ΅Π· ΡΠΎΡΠΊΡ Ρ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ°ΠΌΠΈ ΠΈ .
ΠΠΎ ΡΠΎΡΠΌΡΠ»Π΅ 2.2.5 Π½Π°Ρ ΠΎΠ΄ΠΈΠΌ ΠΊΡΠΈΡΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΡΠΊΠΎΠ»ΡΠΆΠ΅Π½ΠΈΠ΅ ΠΌΠ΅Ρ Π°Π½ΠΈΡΠ΅ΡΠΊΠΎΠΉ Ρ Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊΠΈ ΠΏΡΠ΅Π΄Π²Π°ΡΠΈΡΠ΅Π»ΡΠ½ΠΎΠΉ ΡΡΡΠΏΠ΅Π½ΠΈ:
ΠΠ°Π΄Π°Π²Π°ΡΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΡΠΌΠΈ Π² ΠΏΡΠ΅Π΄Π΅Π»Π°Ρ (0;1) ΠΏΠΎΠ»ΡΡΠΈΠΌ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΡ ΡΡΠΈΡΡΠ²Π°Ρ, ΡΡΠΎ
Π³Π΄Π΅ — ΡΠΈΠ½Ρ ΡΠΎΠ½Π½Π°Ρ ΡΠ°ΡΡΠΎΡΠ° Π²ΡΠ°ΡΠ΅Π½ΠΈΡ Π²Π°Π»Π° Π΄Π²ΠΈΠ³Π°ΡΠ΅Π»Ρ;
ΠΠΎΠ»ΡΡΠ΅Π½Π½ΡΠ΅ Π΄Π°Π½Π½ΡΠ΅ ΡΠ²Π΅Π΄ΡΠΌ Π² ΡΠ°Π±Π»ΠΈΡΡ 2.7.
Π’Π°Π±Π»ΠΈΡΠ° 2.7
0,1 | 0,2 | 0,4 | 0,5 | 0,6 | 0,8 | 0,9 | ||||
150,82 | 301,60 | 602,79 | 753,11 | 903,19 | 1202,39 | 1351,42 | ||||
52,36 | 47,12 | 41,89 | 31,42 | 26,18 | 20,94 | 10,47 | 5,24 | |||
ΠΠΎ Π΄Π°Π½Π½ΡΠΌ ΡΠ°Π±Π»ΠΈΡΡ 2.4 ΡΡΡΠΎΠΈΠΌ ΠΏΡΠ΅Π΄Π²Π°ΡΠΈΡΠ΅Π»ΡΠ½ΡΡ ΡΡΡΠΏΠ΅Π½Ρ.
ΠΠΎ ΡΠΎΡΠΌΡΠ»Π΅ 2.2.6 Π½Π°Ρ ΠΎΠ΄ΠΈΠΌ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅ ΠΏΡΠ΅Π΄Π²Π°ΡΠΈΡΠ΅Π»ΡΠ½ΠΎΠΉ ΡΡΡΠΏΠ΅Π½ΠΈ:
2.4 ΠΠΎΡΡΡΠΎΠ΅Π½ΠΈΠ΅ ΡΠΎΡΠΌΠΎΠ·Π½ΠΎΠΉ Π΄ΠΈΠ°Π³ΡΠ°ΠΌΠΌΡ ΠΠΎΡΡΡΠΎΠ΅Π½ΠΈΠ΅ ΡΠΎΡΠΌΠΎΠ·Π½ΠΎΠΉ Π΄ΠΈΠ°Π³ΡΠ°ΠΌΠΌΡ ΡΠ°ΠΊΠΆΠ΅ ΠΎΡΡΡΠ΅ΡΡΠ²Π»ΡΠ΅ΡΡΡ Π°Π½Π°Π»ΠΈΡΠΈΡΠ΅ΡΠΊΠΈΠΌ ΡΠΏΠΎΡΠΎΠ±ΠΎΠΌ (ΡΠΈΡΡΠ½ΠΎΠΊ 2.1). Π’ΠΎΡΠΌΠΎΠΆΠ΅Π½ΠΈΠ΅ Π½Π° ΡΡΠ°ΡΡΠΊΠ΅ Π΄ΠΈΠ°Π³ΡΠ°ΠΌΠΌΡ (ΡΠΈΡΡΠ½ΠΎΠΊ 1.2) ΠΏΡΠΎΠΈΡΡ ΠΎΠ΄ΠΈΡ Π² Π΄Π²ΠΈΠ³Π°ΡΠ΅Π»ΡΠ½ΠΎΠΌ ΡΠ΅ΠΆΠΈΠΌΠ΅, Ρ.ΠΊ. ΠΌΠΎΠΌΠ΅Π½Ρ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΡΠΉ ().
ΠΠΎΡΡΡΠΎΠ΅Π½ΠΈΠ΅ ΡΠΎΡΠΌΠΎΠ·Π½ΡΡ Ρ Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊ ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΡΡΡ Π°Π½Π°Π»ΠΎΠ³ΠΈΡΠ½ΠΎ ΠΏΠΎΡΡΡΠΎΠ΅Π½ΠΈΡ ΠΏΡΡΠΊΠΎΠ²ΡΡ ΠΈΡΠΊΡΡΡΡΠ²Π΅Π½Π½ΡΡ Ρ Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊ. Π’ΠΎΡΠΌΠΎΠΆΠ΅Π½ΠΈΠ΅ Π½Π°ΡΠΈΠ½Π°Π΅ΡΡΡ ΡΠΎ ΡΠΊΠΎΡΠΎΡΡΠΈ .
ΠΠ°Π΄Π°ΡΠΌΡΡ ΠΈ (ΡΠΈΡΠ»ΠΎΠΌ ΡΡΡΠΏΠ΅Π½Π΅ΠΉ). ΠΡΠΈΠΌΠ΅ΠΌ,, (ΠΈΠ· ΡΡΠ»ΠΎΠ²ΠΈΡ, ΡΡΠΎ ,) Π°. ΠΠΏΡΠ΅Π΄Π΅Π»ΠΈΠΌ ΡΠΊΠΎΠ»ΡΠΆΠ΅Π½ΠΈΠ΅, ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡΠ΅Π΅ ΡΠΊΠΎΡΠΎΡΡΠΈ ΠΏΡΠΈ ΠΊΠΎΡΠΎΡΠΎΠΉ ΠΏΡΠΎΠΈΡΡ ΠΎΠ΄ΠΈΡ ΠΏΠ΅ΡΠ΅ΠΊΠ»ΡΡΠ΅Π½ΠΈΠ΅ Ρ Π΅ΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎΠΉ Ρ Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊΠΈ Π½Π° ΠΈΡΠΊΡΡΡΡΠ²Π΅Π½Π½ΡΡ (ΠΏΠΎ ΡΠΎΡΠΌΡΠ»Π΅ 2.2.7):
ΠΠ°Π»Π΅Π΅ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ΅ΠΌ — ΡΠΊΠΎΠ»ΡΠΆΠ΅Π½ΠΈΠ΅, ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡΠ΅Π΅ ΠΏΠ΅ΡΠ΅ΡΠ΅ΡΠ΅Π½ΠΈΡ Π²ΡΠΎΡΠΎΠΉ ΡΡΡΠΏΠ΅Π½ΠΈ ΡΠΎΡΠΌΠΎΠΆΠ΅Π½ΠΈΡ Ρ (ΡΠΎΡΠΌΡΠ»Π° 2.2.8):
Π³Π΄Π΅ — ΡΠΊΠΎΠ»ΡΠΆΠ΅Π½ΠΈΠ΅ ΠΏΡΠΈ ΠΊΠΎΠ½Π΅ΡΠ½ΠΎΠΉ ΡΠΊΠΎΡΠΎΡΡΠΈ ;
ΠΠΏΡΠ΅Π΄Π΅Π»ΡΠ΅ΠΌ ΠΊΡΠΈΡΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΡΠΊΠΎΠ»ΡΠΆΠ΅Π½ΠΈΡ Π΄Π»Ρ ΠΏΠ΅ΡΠ²ΠΎΠΉ ΡΠΎΡΠΌΠΎΠ·Π½ΠΎΠΉ ΡΡΡΠΏΠ΅Π½ΠΈ (ΠΏΠΎ ΡΠΎΡΠΌΡΠ»Π΅ 2.2.9):
Π³Π΄Π΅
ΠΠΏΡΠ΅Π΄Π΅Π»ΡΠ΅ΠΌ ΠΌΠΎΠΌΠ΅Π½Ρ ΠΏΠ΅ΡΠ΅ΠΊΠ»ΡΡΠ΅Π½ΠΈΡ (ΠΏΠΎ ΡΠΎΡΠΌΡΠ»Π΅ 2.2.10):
ΠΠΏΡΠ΅Π΄Π΅Π»ΡΠ΅ΠΌ ΠΊΡΠΈΡΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΡΠΊΠΎΠ»ΡΠΆΠ΅Π½ΠΈΠ΅ Π΄Π»Ρ Π²ΡΠΎΡΠΎΠΉ ΡΠΎΡΠΌΠΎΠ·Π½ΠΎΠΉ ΡΡΡΠΏΠ΅Π½ΠΈ (ΠΏΠΎ ΡΠΎΡΠΌΡΠ»Π΅ 2.2.11):
Π³Π΄Π΅
ΠΠΏΡΠ΅Π΄Π΅Π»ΡΠ΅ΠΌ ΡΠΊΠΎΠ»ΡΠΆΠ΅Π½ΠΈΠ΅ ΠΏΠ΅ΡΠ΅ΠΊΠ»ΡΡΠ΅Π½ΠΈΡ Π΄Π»Ρ i-ΠΎΠΉ ΡΠΎΡΠΌΠΎΠ·Π½ΠΎΠΉ ΡΡΡΠΏΠ΅Π½ΠΈ (ΠΏΠΎ ΡΠΎΡΠΌΡΠ»Π΅ 2.2.12):
ΠΠΏΡΠ΅Π΄Π΅Π»ΡΠ΅ΠΌ ΠΊΡΠΈΡΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΡΠΊΠΎΠ»ΡΠΆΠ΅Π½ΠΈΠ΅ Π΄Π»Ρ i-ΠΎΠΉ ΡΠΎΡΠΌΠΎΠ·Π½ΠΎΠΉ ΡΡΡΠΏΠ΅Π½ΠΈ (ΠΏΠΎ ΡΠΎΡΠΌΡΠ»Π΅ 2.2.13):
ΠΠ΅ΡΠ²Π°Ρ ΡΡΡΠΏΠ΅Π½Ρ:
ΠΡΠΎΡΠ°Ρ ΡΡΡΠΏΠ΅Π½Ρ:
ΠΠ»Ρ ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ ΡΠΊΠΎΠ»ΡΠΆΠ΅Π½ΠΈΠΉ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ΅ΠΌ:
Π°) ΡΠΊΠΎΡΠΎΡΡΡ (ΠΏΠΎ ΡΠΎΡΠΌΡΠ»Π΅ 2.1.4):
Π±) ΠΏΠ΅ΡΠ²ΡΡ ΡΠΎΡΠΌΠΎΠ·Π½ΡΡ Ρ Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊΡ:
Π’Π°Π±Π»ΠΈΡΠ° 2.8
S | 0,01 | 0,069 | 0,1 | 0,3 | 0,5 | 0,794 | |||
52,36 | 51,83 | 48,75 | 47,12 | 36,65 | 26,18 | 10,67 | |||
38,64 | 266,22 | 386,26 | 1155,42 | 1914,58 | 3000,00 | 3728,34 | |||
Π²) ΠΡΠΎΡΡΡ ΡΠΎΡΠΌΠΎΠ·Π½ΡΡ Ρ Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊΡ:
Π’Π°Π±Π»ΠΈΡΠ° 2.9
S | 0,006 | 0,069 | 0,15 | 0,25 | 0,35 | 0,455 | 0,55 | ||
52,36 | 48,75 | 44,50 | 39,27 | 34,03 | 28,54 | 23,56 | |||
266,22 | 3000,00 | 6024,87 | 8550,51 | 9790,24 | 10 128,34 | 9948,37 | |||
ΠΠΎ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠ°ΠΌ ΡΠ°Π±Π»ΠΈΡ 2.8−2.9 ΡΡΡΠΎΠΈΠΌ ΡΠΎΡΠΌΠΎΠ·Π½ΡΡ Π΄ΠΈΠ°Π³ΡΠ°ΠΌΠΌΡ (ΡΠΈΡΡΠ½ΠΎΠΊ 2.1).
ΠΠΎ ΡΠΎΡΠΌΡΠ»Π΅ 2.1.4 Π½Π°Ρ ΠΎΠ΄ΠΈΠΌ ΡΠΊΠΎΡΠΎΡΡΠΈ ΠΏΠ΅ΡΠ΅ΠΊΠ»ΡΡΠ΅Π½ΠΈΡ:
ΠΠΎ ΡΠΎΡΠΌΡΠ»Π΅ 2.2.6 Π½Π°Ρ ΠΎΠ΄ΠΈΠΌ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΡ ΡΡΡΠΏΠ΅Π½Π΅ΠΉ ΠΏΡΡΠΊΠΎΠ²ΠΎΠ³ΠΎ ΡΠ΅ΠΎΡΡΠ°ΡΠ°:
ΠΠΎΡΡΡΠΎΠ΅Π½ΠΈΠ΅ ΡΠΎΡΠΌΠΎΠ·Π½ΠΎΠΉ Ρ Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊΠΈ ΠΏΡΠΈ ΡΠ°Π±ΠΎΡΠ΅ Π½Π° ΡΡΠ°ΡΡΠΊΠ΅ :
ΠΡΠ±ΠΈΡΠ°Π΅ΠΌ ΡΠΎΡΠΊΡ Ρ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ°ΠΌΠΈ
.
ΠΠΎ ΡΠΎΡΠΌΡΠ»Π΅ 2.2.5 Π½Π°Ρ ΠΎΠ΄ΠΈΠΌ ΠΊΡΠΈΡΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΡΠΊΠΎΠ»ΡΠΆΠ΅Π½ΠΈΠ΅ ΡΠΎΡΠΌΠΎΠ·Π½ΠΎΠΉ ΠΌΠ΅Ρ Π°Π½ΠΈΡΠ΅ΡΠΊΠΎΠΉ Ρ Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊΠΈ:
ΠΠ°Π΄Π°Π²Π°ΡΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΡΠΌΠΈ Π² ΠΏΡΠ΅Π΄Π΅Π»Π°Ρ (0;1) ΠΏΠΎΠ»ΡΡΠΈΠΌ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΡ ΡΡΠΈΡΡΠ²Π°Ρ, ΡΡΠΎ
Π³Π΄Π΅ — ΡΠΈΠ½Ρ ΡΠΎΠ½Π½Π°Ρ ΡΠ°ΡΡΠΎΡΠ° Π²ΡΠ°ΡΠ΅Π½ΠΈΡ Π²Π°Π»Π° Π΄Π²ΠΈΠ³Π°ΡΠ΅Π»Ρ;
ΠΠΎΠ»ΡΡΠ΅Π½Π½ΡΠ΅ Π΄Π°Π½Π½ΡΠ΅ ΡΠ²ΠΎΠ΄ΠΈΠΌ Π² ΡΠ°Π±Π»ΠΈΡΡ 2.10.
Π’Π°Π±Π»ΠΈΡΠ° 2.10
0,1 | 0,2 | 0,4 | 0,6 | 0,794 | 0,898 | ||||
52,36 | 47,12 | 41,89 | 31,42 | 20,94 | 10,67 | 5,33 | |||
312,54 | 624,63 | 1245,70 | 1859,73 | 2446,08 | 2754,77 | 3053,41 | |||
ΠΠΎ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠ°ΠΌ, ΡΠ²Π΅Π΄ΡΠ½Π½ΡΠΌ Π² ΡΠ°Π±Π»ΠΈΡΡ 2.10, ΡΡΡΠΎΠΈΠΌ ΡΠΎΡΠΌΠΎΠ·Π½ΡΡ Ρ Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊΡ (ΡΠΈΡΡΠ½ΠΎΠΊ 2.1).
ΠΠΎ ΡΠΎΡΠΌΡΠ»Π΅ 2.2.6 Π½Π°Ρ ΠΎΠ΄ΠΈΠΌ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅ ΡΡΡΠΏΠ΅Π½ΠΈ ΡΠΎΡΠΌΠΎΠ·Π½ΠΎΠ³ΠΎ ΡΠ΅ΠΎΡΡΠ°ΡΠ°:
2.5 Π Π°ΡΡΠ΅Ρ Π΄ΠΈΠ½Π°ΠΌΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΡΠΎΡΠΌΠΎΠΆΠ΅Π½ΠΈΡ
ΠΠΈΠ½Π°ΠΌΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΡΠΎΡΠΌΠΎΠΆΠ΅Π½ΠΈΠ΅ Π±ΡΠ΄Π΅Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΎ Π² Π°Π²Π°ΡΠΈΠΉΠ½ΠΎΠΌ ΡΠ΅ΠΆΠΈΠΌΠ΅. Π‘ΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅ ΠΏΡΠΈΠ½ΠΈΠΌΠ°Π΅ΠΌ ΡΠ°Π²Π½ΡΠΌ (ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΡ ΠΏΡΠ΅Π΄Π²Π°ΡΠΈΡΠ΅Π»ΡΠ½ΠΎΠΉ ΡΡΡΠΏΠ΅Π½ΠΈ). ΠΡΠΈΡΠΈΡΠ΅ΡΠΊΠΈΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ ΠΈ ΡΠΊΠΎΠ»ΡΠΆΠ΅Π½ΠΈΠ΅ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²Π΅Π½Π½ΠΎ ΡΠΎΠΆΠ΅ Π±ΡΠ΄ΡΡ ΡΠ°Π²Π½Ρ Π΄Π°Π½Π½ΡΠΌ ΠΏΡΠ΅Π΄Π²Π°ΡΠΈΡΠ΅Π»ΡΠ½ΠΎΠΉ ΡΡΡΠΏΠ΅Π½ΠΈ. ΠΡΠ»ΠΈΡΠΈΠ΅ Π² ΡΠΎΠΌ, ΡΡΠΎ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΡ ΡΠΊΠΎΡΠΎΡΡΠΈ ΠΎΡ ΡΠΊΠΎΠ»ΡΠΆΠ΅Π½ΠΈΡ ΠΏΡΠΈ Π΄ΠΈΠ½Π°ΠΌΠΈΡΠ΅ΡΠΊΠΎΠΌ ΡΠΎΡΠΌΠΎΠΆΠ΅Π½ΠΈΠΈ Π±ΡΠ΄Π΅Ρ Π΄ΡΡΠ³ΠΎΠΉ:
(2.5.1)
ΠΠ°Π΄Π°Π²Π°ΡΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΡΠΌΠΈ S Π² ΠΏΡΠ΅Π΄Π΅Π»Π°Ρ ΠΏΠΎΠ»ΡΡΠΈΠΌ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΡ
ΠΠΎΠ»ΡΡΠ΅Π½Π½ΡΠ΅ Π΄Π°Π½Π½ΡΠ΅ ΡΠ²ΠΎΠ΄ΠΈΠΌ Π² ΡΠ°Π±Π»ΠΈΡΡ 2.11
Π’Π°Π±Π»ΠΈΡΠ° 2.11
0,1 | 0,3 | 0,5 | 0,7 | 0,9 | ||||
5,24 | 15,71 | 26,18 | 36,65 | 47,12 | 52,36 | |||
— 150,82 | — 452,27 | — 753,11 | — 1052,96 | — 1351,42 | — 1500 | |||
ΠΠΎΠ»Π½Π°Ρ Π΄ΠΈΠ°Π³ΡΠ°ΠΌΠΌΠ° ΡΠ°Π±ΠΎΡΡ ΡΠ»Π΅ΠΊΡΡΠΎΠΏΡΠΈΠ²ΠΎΠ΄Π° ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½Π° Π½Π° ΡΠΈΡΡΠ½ΠΊΠ΅ 2.1.
ΠΠ½Π°ΡΠ΅Π½ΠΈΡ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠΉ ΡΠ²Π΅Π΄Π΅Π½Ρ Π² ΡΠ°Π±Π»ΠΈΡΡ 2.9.
2.6 ΠΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠΉ ΡΠ΅ΠΊΡΠΈΠΉ ΡΠ΅ΠΎΡΡΠ°ΡΠ° ΠΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Π΄ΠΎΠ±Π°Π²ΠΎΡΠ½ΡΡ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠΉ:
(2.6.1)
Π³Π΄Π΅ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΡ ΠΏΡΡΠΊΠΎΠ²ΡΡ ΠΈ ΡΠΎΡΠΌΠΎΠ·Π½ΡΡ ΡΡΡΠΏΠ΅Π½Π΅ΠΉ.
Π‘ΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅ ΠΏΠΎΡΠ»Π΅Π΄Π½Π΅ΠΉ ΡΠ΅ΠΊΡΠΈΠΈ:
(2.6.2)
Π³Π΄Π΅ Π½ΠΎΠΌΠ΅Ρ ΠΏΠΎΡΠ»Π΅Π΄Π½Π΅ΠΉ ΡΡΡΠΏΠ΅Π½ΠΈ;
ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅ ΡΠΎΡΠΎΡΠ°.
ΠΠ½Π°ΡΠ΅Π½ΠΈΡ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠΉ ΠΈ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½Ρ Π² ΡΠ°Π±Π»ΠΈΡΠ΅ 2.8.
Π’Π°Π±Π»ΠΈΡΠ° 2.8
3,4965 | 1,6870 | 1,3648 | 0,9365 | 0,3403 | 0,1419 | 0,1184 | 0,0591 | 0,0246 | ||
1,8095 | 0,3221 | 0,4283 | 0,5962 | 0,1985 | 0,0234 | 0,0593 | 0,0345 | 0,0144 | ||
ΠΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΡ Π΅ΠΌΠ° ΡΠ΅ΠΏΠΈ ΡΠΎΡΠΎΡΠ° ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½Π° Π½Π° ΡΠΈΡΡΠ½ΠΊΠ΅ 2.2.
Π ΠΈΡΡΠ½ΠΎΠΊ 2.2 Π‘Ρ Π΅ΠΌΠ° ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠΉ ΡΡΡΠΏΠ΅Π½Π΅ΠΉ ΡΠ΅ΠΎΡΡΠ°ΡΠ°
2.7 Π Π°ΡΡΠ΅Ρ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΡΠ°Π±ΠΎΡΡ ΡΡΡΠΏΠ΅Π½Π΅ΠΉ ΡΠ΅ΠΎΡΡΠ°ΡΠ° ΠΡΠ΅Π΄Π²Π°ΡΠΈΡΠ΅Π»ΡΠ½Π°Ρ ΡΡΡΠΏΠ΅Π½Ρ. ΠΡΠ΅ΠΌΡ Ρ.
Π Π°Π·Π³ΠΎΠ½ ΠΎΡ 0 Π΄ΠΎ
(2.7.1)
Π³Π΄Π΅ — ΠΏΡΠΈΡΠ°ΡΠ΅Π½ΠΈΠ΅ ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΡΠΊΠΎΡΠΎΡΡΠΈ ΠΏΡΠΈ ΡΠ°Π·Π³ΠΎΠ½Π΅ ΠΎΡ 0 Π΄ΠΎ .
Π Π°Π·Π³ΠΎΠ½ ΠΎΡ Π΄ΠΎ :
; (2.7.2)
Π³Π΄Π΅ — ΠΏΡΠΈΡΠ°ΡΠ΅Π½ΠΈΠ΅ ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΡΠΊΠΎΡΠΎΡΡΠΈ ΠΏΡΠΈ ΠΏΡΡΠΊΠ΅ Π½Π° i-ΠΎΠΉ ΡΡΡΠΏΠ΅Π½ΠΈ.
(2.7.3)
Π Π°Π±ΠΎΡΠ° Ρ ΠΏΠΎΡΡΠΎΡΠ½Π½ΠΎΠΉ ΡΠΊΠΎΡΠΎΡΡΡΡ .
Ρ.
Π’ΠΎΡΠΌΠΎΠΆΠ΅Π½ΠΈΠ΅ (Π΄Π²ΠΈΠ³Π°ΡΠ΅Π»ΡΠ½ΡΠΉ ΡΠ΅ΠΆΠΈΠΌ) ΠΎΡ Π΄ΠΎ :
ΠΡΠ΅ΠΌΡ ΡΠΎΡΠΌΠΎΠΆΠ΅Π½ΠΈΡ:
(2.7.4)
Π’ΠΎΡΠΌΠΎΠΆΠ΅Π½ΠΈΠ΅ Π΄Π²ΠΈΠ³Π°ΡΠ΅Π»Ρ ΠΎΡ Π΄ΠΎ 0.
ΠΠ²Π°ΡΠΈΠΉΠ½ΠΎΠ΅ ΡΠΎΡΠΌΠΎΠΆΠ΅Π½ΠΈΠ΅ (Π΄ΠΈΠ½Π°ΠΌΠΈΡΠ΅ΡΠΊΠΎΠ΅) ΠΎΡ Π΄ΠΎ 0:
Π Π°Π·Π±ΠΈΠ²Π°Π΅ΠΌ ΠΊΡΠΈΠ²ΡΡ Π½Π° ΡΡΠ°ΡΡΠΊΠΈ. ΠΡΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΠΌ ΠΈΠ½ΡΠ΅Π³ΡΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ Π·Π°ΠΌΠ΅Π½ΡΠ΅ΠΌ ΠΊΡΠΈΠ²ΡΡ Π½Π° ΡΡΡΠΏΠ΅Π½ΡΠ°ΡΡΠΉ Π³ΡΠ°ΡΠΈΠΊ (ΡΠΈΡΡΠ½ΠΎΠΊ 2.1).
ΠΠΎΠΌΠ΅Π½Ρ ΠΈΠ½Π΅ΡΡΠΈΠΈ Π΄Π²ΠΈΠ³Π°ΡΠ΅Π»Ρ :
ΠΡΡΠΈΡΠ»ΡΠ΅ΠΌ Π΄Π»Ρ ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ ΡΡΠ°ΡΡΠΊΠ°:
Π Π΅Π·ΡΠ»ΡΡΠ°ΡΡ ΡΠ°ΡΡΠ΅ΡΠ° Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ Π°Π²Π°ΡΠΈΠΉΠ½ΠΎΠ³ΠΎ Π΄ΠΈΠ½Π°ΠΌΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΡΠΎΡΠΌΠΎΠΆΠ΅Π½ΠΈΡ ΡΠ²ΠΎΠ΄ΠΈΠΌ Π² ΡΠ°Π±Π»ΠΈΡΡ 2.9.
Π’Π°Π±Π»ΠΈΡΠ° 2.9
— 3453,95 | |||||||
— 300 | — 150 | — 3603,95 | 0,29 699 | 0,0297 | |||
— 600 | — 450 | — 3903,95 | 0,27 417 | 0,0571 | |||
— 850 | — 700 | — 4153,95 | 0,25 767 | 0,0829 | |||
— 1150 | — 1000 | — 4453,95 | 0,24 031 | 0,1069 | |||
— 1450 | — 1300 | — 4753,95 | 0,27 018 | 0,13 | |||
ΠΡΠ΅ΠΌΡ Π°Π²Π°ΡΠΈΠΉΠ½ΠΎΠ³ΠΎ Π΄ΠΈΠ½Π°ΠΌΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΡΠΎΡΠΌΠΎΠΆΠ΅Π½ΠΈΡ ΡΠΎΡΡΠ°Π²ΠΈΠ»ΠΎ
3. Π Π°Π·ΡΠ°Π±ΠΎΡΠΊΠ° ΠΏΡΠΈΠ½ΡΠΈΠΏΠΈΠ°Π»ΡΠ½ΠΎΠΉ ΡΡ Π΅ΠΌΡ ΡΠΏΡΠ°Π²Π»Π΅Π½ΠΈΡ ΡΠ»Π΅ΠΊΡΡΠΎΠΏΡΠΈΠ²ΠΎΠ΄ΠΎΠΌ
3.1 ΠΡΠ½ΠΎΠ²Π½ΡΠ΅ ΡΡΠ΅Π±ΠΎΠ²Π°Π½ΠΈΡ ΠΊ ΡΡ Π΅ΠΌΠ΅ Π‘Ρ Π΅ΠΌΠ° ΡΠΏΡΠ°Π²Π»Π΅Π½ΠΈΡ, ΠΊΠΎΡΠΎΡΡΡ Π½Π΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΠΎ ΡΠΎΠ±ΡΠ°ΡΡ Π½Π° ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΠΈ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠΎΠ² ΡΠ°Π±ΠΎΡΡ ΡΠ»Π΅ΠΊΡΡΠΎΠΏΡΠΈΠ²ΠΎΠ΄Π°, ΠΎΡΡΠ°ΠΆΡΠ½Π½ΡΡ Π½Π° ΠΊΠΈΠ½Π΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΡ Π΅ΠΌΠ΅ ΠΈ Π½Π°Π³ΡΡΠ·ΠΎΡΠ½ΠΎΠΉ Π΄ΠΈΠ°Π³ΡΠ°ΠΌΠΌΠ΅, Π΄ΠΎΠ»ΠΆΠ½Π° ΠΎΠ±Π΅ΡΠΏΠ΅ΡΠΈΠ²Π°ΡΡ ΡΠΈΠΊΠ»ΠΈΡΠ½ΠΎΡΡΡ ΡΠ°Π±ΠΎΡΡ ΡΠ»Π΅ΠΊΡΡΠΎΠΏΡΠΈΠ²ΠΎΠ΄Π°, ΠΏΡΡΠΊ Π΄Π²ΠΈΠ³Π°ΡΠ΅Π»Ρ Π² ΡΠ΅ΡΡΡΠ΅ ΡΡΡΠΏΠ΅Π½ΠΈ Π² ΡΡΠ½ΠΊΡΠΈΠΈ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ, ΡΠΎΡΠΌΠΎΠΆΠ΅Π½ΠΈΠ΅ — Π² Π΄Π²Π΅ ΡΡΡΠΏΠ΅Π½ΠΈ Π² ΡΡΠ½ΠΊΡΠΈΠΈ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ. Π ΡΠ»ΡΡΠ°Π΅ ΠΏΡΠΈΠ½ΡΠ΄ΠΈΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ ΠΈΠ»ΠΈ Π°Π²Π°ΡΠΈΠΉΠ½ΠΎΠ³ΠΎ ΠΎΡΠΊΠ»ΡΡΠ΅Π½ΠΈΡ Π΄ΠΎΠ»ΠΆΠ½ΠΎ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡΡΡ Π΄ΠΈΠ½Π°ΠΌΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΡΠΎΡΠΌΠΎΠΆΠ΅Π½ΠΈΠ΅.
Π‘Ρ Π΅ΠΌΠ° ΡΠΏΡΠ°Π²Π»Π΅Π½ΠΈΡ Π΄ΠΎΠ»ΠΆΠ½Π° ΠΈΠΌΠ΅ΡΡ ΡΠ»Π΅Π΄ΡΡΡΠΈΠ΅ Π²ΠΈΠ΄Ρ Π·Π°ΡΠΈΡ: Π·Π°ΡΠΈΡΡ ΠΎΡ ΠΏΠ΅ΡΠ΅Π³ΡΡΠ·ΠΊΠΈ ΠΈ Π·Π°ΡΠΈΡΡ ΠΎΡ ΡΠ½ΠΈΠΆΠ΅Π½ΠΈΡ ΠΏΠΈΡΠ°ΡΡΠ΅Π³ΠΎ Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΡ. ΠΠ»Ρ Π½Π°Π΄Π΅ΠΆΠ½ΠΎΠΉ ΡΠΈΠΊΡΠ°ΡΠΈΠΈ ΠΈΡΠΏΠΎΠ»Π½ΠΈΡΠ΅Π»ΡΠ½ΡΡ ΠΎΡΠ³Π°Π½ΠΎΠ² Π½Π΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΠΎ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡ ΡΠ»Π΅ΠΊΡΡΠΎΠΌΠ°Π³Π½ΠΈΡΠ½ΡΠΉ ΡΠΎΡΠΌΠΎΠ·. Π’Π°ΠΊΠΆΠ΅ Π½Π΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΠΎ ΡΠΎΡΡΠ°Π²ΠΈΡΡ ΡΡ Π΅ΠΌΡ ΡΠΈΠ³Π½Π°Π»ΠΈΠ·Π°ΡΠΈΠΈ ΠΎ ΡΠ΅ΠΆΠΈΠΌΠ΅ ΡΠ°Π±ΠΎΡΡ ΡΠ»Π΅ΠΊΡΡΠΎΠΏΡΠΈΠ²ΠΎΠ΄Π° ΠΈ ΠΏΡΠΈΡΠΈΠ½Π°Ρ Π΅Π³ΠΎ Π°Π²Π°ΡΠΈΠΉΠ½ΠΎΠ³ΠΎ ΠΎΡΠΊΠ»ΡΡΠ΅Π½ΠΈΡ.
3.2 ΠΠΏΠΈΡΠ°Π½ΠΈΠ΅ ΡΠ°Π±ΠΎΡΡ ΡΡ Π΅ΠΌΡ ΡΠΏΡΠ°Π²Π»Π΅Π½ΠΈΡ Π‘Ρ Π΅ΠΌΠ° ΡΠΏΡΠ°Π²Π»Π΅Π½ΠΈΡ ΠΏΠΎΠ΄ΠΊΠ»ΡΡΠ°Π΅ΡΡΡ ΠΊ ΡΠ΅ΡΠΈ Π°Π²ΡΠΎΠΌΠ°ΡΠΎΠΌ QF. ΠΠ½ ΡΠ°ΡΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ Π² ΡΠ΅ΠΏΠΈ ΠΏΠΈΡΠ°Π½ΠΈΡ Π΄Π²ΠΈΠ³Π°ΡΠ΅Π»Ρ. Π€ΡΠ½ΠΊΡΠΈΡ ΠΊΠΎΠΌΠΌΡΡΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΠΎΠ±ΠΌΠΎΡΠΎΠΊ ΡΡΠ°ΡΠΎΡΠΎΠ² Π²ΡΠΏΠΎΠ»Π½ΡΡΡ Π»ΠΈΠ½Π΅ΠΉΠ½ΡΠ΅ ΠΊΠΎΠ½ΡΠ°ΠΊΡΠΎΡΡ ΠΠ1 ΠΈ ΠΠ2. Π‘Ρ Π΅ΠΌΠ° ΡΠΏΡΠ°Π²Π»Π΅Π½ΠΈΡ ΠΈ ΡΠ»Π΅ΠΊΡΡΠΎΠΌΠ°Π³Π½ΠΈΡΠ½ΡΠΉ ΡΠΎΡΠΌΠΎΠ· ΠΏΠΈΡΠ°ΡΡΡΡ ΡΠ΅ΡΠ΅Π· Π²ΡΠΏΡΡΠΌΠΈΡΠ΅Π»ΡΠ½ΡΠΉ ΠΌΠΎΡΡ VD1, ΠΏΠΎΠ΄ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½Π½ΠΎΠ³ΠΎ ΠΊ ΡΠ΅ΡΠΈ ΡΠ΅ΡΠ΅Π· ΠΏΠΎΠ½ΠΈΠΆΠ°ΡΡΠΈΠΉ ΡΡΠ°Π½ΡΡΠΎΡΠΌΠ°ΡΠΎΡ Π’Π. ΠΡΠ»ΠΈ Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΠ΅ ΡΠ΅ΡΠΈ Π½Π°Ρ ΠΎΠ΄ΠΈΡΡΡ Π² Π΄ΠΎΠΏΡΡΡΠΈΠΌΡΡ ΠΏΡΠ΅Π΄Π΅Π»Π°Ρ ΠΈ ΠΊΠΎΠ½ΡΠ°ΠΊΡΡ ΡΠ΅ΠΏΠ»ΠΎΠ²ΡΡ ΡΠ΅Π»Π΅ ΠΠ1, ΠΠ2, ΠΠ3 ΠΈ ΠΠ4 Π² ΡΠ΅ΠΏΠΈ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΎΡΠ½ΠΎΠ³ΠΎ ΡΠ΅Π»Π΅ ΠL1 Π·Π°ΠΌΠΊΠ½ΡΡΡ, ΡΠΎ ΠΎΠ½ΠΎ Π·Π°ΠΌΡΠΊΠ°Π΅Ρ ΡΠ²ΠΎΠΉ ΠΊΠΎΠ½ΡΠ°ΠΊΡ Π² ΡΠ΅ΠΏΠΈ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΎΡΠ½ΠΎΠ³ΠΎ ΡΠ΅Π»Π΅ ΠL2. Π‘ΠΈΡΡΠ΅ΠΌΠ° ΡΠΏΡΠ°Π²Π»Π΅Π½ΠΈΡ Π³ΠΎΡΠΎΠ²Π° ΠΊ ΡΠ°Π±ΠΎΡΠ΅. Π ΡΡ Π΅ΠΌΠ΅ ΡΠΈΠ³Π½Π°Π»ΠΈΠ·Π°ΡΠΈΠΉ Π·Π°Π³ΠΎΡΠ°ΡΡΡΡ Π»Π°ΠΌΠΏΡ HL1 «Π‘Π΅ΡΡ» ΠΈ HL3 «ΠΡΡΠ°Π½ΠΎΠ² Π΄Π²ΠΈΠ³Π°ΡΠ΅Π»Ρ».
ΠΡΠΈ Π½Π°ΠΆΠ°ΡΠΈΠΈ ΠΊΠ½ΠΎΠΏΠΊΠΈ SB1 («ΠΡΡΠΊ») Π²ΠΊΠ»ΡΡΠ°Π΅ΡΡΡ ΡΠ΅Π»Π΅ KL2, ΠΊΠΎΡΠΎΡΠΎΠ΅ ΠΎΠ΄Π½ΠΈΠΌ ΠΈΠ· ΡΠ²ΠΎΠΈΡ ΠΊΠΎΠ½ΡΠ°ΠΊΡΠΎΠ² ΡΡΠ½ΡΠΈΡΡΠ΅Ρ ΠΊΠ½ΠΎΠΏΠΊΡ «ΠΡΡΠΊ» (SB1) ΠΈ Π²ΠΊΠ»ΡΡΠ°Π΅Ρ ΡΠ΅Π»Π΅ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΏΡΠ΅Π΄Π²Π°ΡΠΈΡΠ΅Π»ΡΠ½ΠΎΠΉ ΡΡΡΠΏΠ΅Π½ΠΈ ΠΠ’1, Π²ΡΠΎΡΡΠΌ ΠΊΠΎΠ½ΡΠ°ΠΊΡΠΎΠΌ ΠΏΠΎΠ΄ΠΊΠ»ΡΡΠ°Π΅Ρ ΡΠ΅ΠΏΠΈ Π»ΠΈΠ½Π΅ΠΉΠ½ΡΡ ΠΊΠΎΠ½ΡΠ°ΠΊΡΠΎΡΠΎΠ² ΠΠ1 ΠΈ ΠΠ2, ΠΏΠΎΠ΄Π³ΠΎΡΠ°Π²Π»ΠΈΠ²Π°Π΅Ρ ΠΊ Π²ΠΊΠ»ΡΡΠ΅Π½ΠΈΡ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΎΡΠ½ΠΎΠ΅ ΡΠ΅Π»Π΅ ΠL5 ΠΈ ΠΏΠΎΠ΄ΠΊΠ»ΡΡΠ°Π΅Ρ ΡΠ΅ΠΏΡ ΡΠ΅Π»Π΅ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ Π΄ΠΈΠ½Π°ΠΌΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΡΠΎΡΠΌΠΎΠΆΠ΅Π½ΠΈΡ ΠΠ’13, ΡΡΠ΅ΡΡΠΈΠΌ ΠΊΠΎΠ½ΡΠ°ΠΊΡΠΎΠΌ ΠΏΠΎΠ΄Π³ΠΎΡΠ°Π²Π»ΠΈΠ²Π°Π΅Ρ ΠΊ Π²ΠΊΠ»ΡΡΠ΅Π½ΠΈΡ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΎΡΠ½ΠΎΠ΅ ΡΠ΅Π»Π΅ ΠL4, Π° ΡΠ΅ΡΠ²ΡΡΡΡΠΌ ΠΈ ΠΏΡΡΡΠΌ ΠΊΠΎΠ½ΡΠ°ΠΊΡΠ°ΠΌΠΈ ΡΠ°Π·ΡΡΠ²Π°Π΅Ρ ΡΠ΅ΠΏΡ ΠΊΠΎΠ½ΡΠ°ΠΊΡΠΎΡΠΎΠ² ΠΠ12 ΠΈ ΠΠ13. ΠΠΎΠ½ΡΠ°ΠΊΡΠΎΡΡ ΠΠ1 ΠΈ ΠΠ2 ΠΏΠΎΠ΄ΠΊΠ»ΡΡΠ°ΡΡ ΡΠ²ΠΎΠΈΠΌΠΈ ΡΠΈΠ»ΠΎΠ²ΡΠΌΠΈ ΠΊΠΎΠ½ΡΠ°ΠΊΡΠ°ΠΌΠΈ ΠΎΠ±ΠΌΠΎΡΠΊΠΈ ΡΡΠ°ΡΠΎΡΠΎΠ² Π΄Π²ΠΈΠ³Π°ΡΠ΅Π»Π΅ΠΉ ΠΊ ΡΠ΅ΡΠΈ, ΠΏΡΠΈ ΡΡΠΎΠΌ Π²Π°Π» ΠΈΡΠΏΠΎΠ»Π½ΠΈΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ ΠΌΠ΅Ρ Π°Π½ΠΈΠ·ΠΌΠ° Π·Π°ΡΠΈΠΊΡΠΈΡΠΎΠ²Π°Π½ ΡΠ»Π΅ΠΊΡΡΠΎΠΌΠ°Π³Π½ΠΈΡΠ½ΡΠΌ ΡΠΎΡΠΌΠΎΠ·ΠΎΠΌ YB.
ΠΠ°ΡΠΈΠ½Π°Π΅ΡΡΡ ΠΏΡΠ΅Π΄Π²Π°ΡΠΈΡΠ΅Π»ΡΠ½ΠΎΠ΅ «Π½Π°ΡΡΠΆΠ΅Π½ΠΈΠ΅» ΠΏΡΠΈΠ²ΠΎΠ΄Π° ΠΏΡΠΈ ΠΏΠΎΠ»Π½ΠΎΡΡΡΡ Π²Π²Π΅Π΄Π΅Π½Π½ΡΡ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΡΡ Π² ΡΠ΅ΠΏΡ ΡΠΎΡΠΎΡΠ°.
Π Π΅Π»Π΅ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΠ’1 ΠΎΡΡΡΠΈΡΠ°Π΅Ρ Π²ΡΠ΅ΠΌΡ ΡΠ°Π±ΠΎΡΡ Π½Π° ΠΏΡΠ΅Π΄Π²Π°ΡΠΈΡΠ΅Π»ΡΠ½ΠΎΠΉ ΡΡΡΠΏΠ΅Π½ΠΈ (0,5 Ρ), ΠΏΠΎΡΠ»Π΅ ΡΠ΅Π³ΠΎ ΠΏΡΠΎΠΈΠ·ΠΎΠΉΠ΄Π΅Ρ Π²ΠΊΠ»ΡΡΠ΅Π½ΠΈΠ΅ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΎΡΠ½ΠΎΠ³ΠΎ ΡΠ΅Π»Π΅ ΠL5, ΠΊΠΎΡΠΎΡΠΎΠ΅ ΠΎΠ΄Π½ΠΈΠΌ ΠΈΠ· ΡΠ²ΠΎΠΈΡ ΠΊΠΎΠ½ΡΠ°ΠΊΡΠΎΠ² ΡΡΠ½ΡΠΈΡΡΠ΅Ρ ΠΊΠΎΠ½ΡΠ°ΠΊΡ ΠΠ’1. ΠΡΠΎΡΠΎΠΉ ΠΊΠΎΠ½ΡΠ°ΠΊΡ ΡΠ΅Π»Π΅ ΠL5 Π²ΠΊΠ»ΡΡΠ°Π΅Ρ ΠΊΠΎΠ½ΡΠ°ΠΊΡΠΎΡ ΠΠ8, ΠΊΠΎΠ½ΡΠ°ΠΊΡΡ ΠΊΠΎΡΠΎΡΠΎΠ³ΠΎ, Π·Π°ΠΌΠΊΠ½ΡΠ²ΡΠΈΡΡ, Π²Π²Π΅Π΄ΡΡ Π² ΡΠ΅ΠΏΡ ΡΠΎΡΠΎΡΠ° ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅ R4, ΠΊΠΎΡΠΎΡΠΎΠ΅ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΠ΅Ρ ΡΠ°Π·Π³ΠΎΠ½Ρ Π΄Π²ΠΈΠ³Π°ΡΠ΅Π»Ρ ΠΎΡ 0 Π΄ΠΎ. Π’ΡΠ΅ΡΠΈΠΉ ΠΊΠΎΠ½ΡΠ°ΠΊΡ ΡΠ΅Π»Π΅ ΠL5 ΠΏΠΎΠ΄ΠΊΠ»ΡΡΠΈΡ ΠΊ ΡΠ΅ΡΠΈ ΡΠΏΡΠ°Π²Π»Π΅Π½ΠΈΡ ΠΊΠΎΠ½ΡΠ°ΠΊΡΠΎΡ ΠΠ12, ΠΊΠΎΠ½ΡΠ°ΠΊΡ ΠΊΠΎΡΠΎΡΠΎΠ³ΠΎ, Π·Π°ΠΌΠΊΠ½ΡΠ²ΡΠΈΡΡ, ΠΏΠΎΠ΄ΠΊΠ»ΡΡΠΈΡ ΠΏΠΈΡΠ°Π½ΠΈΠ΅ ΠΊ ΠΎΠ±ΠΌΠΎΡΠΊΠ°ΠΌ ΡΠ»Π΅ΠΊΡΡΠΎΠΌΠ°Π³Π½ΠΈΡΠ½ΠΎΠ³ΠΎ ΡΠΎΡΠΌΠΎΠ·Π° YB ΠΈ Π²Π°Π» ΠΈΡΠΏΠΎΠ»Π½ΠΈΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ ΠΎΡΠ³Π°Π½Π° ΠΎΡΠ²ΠΎΠ±ΠΎΠΆΠ΄Π°Π΅ΡΡΡ. Π§Π΅ΡΠ²Π΅ΡΡΡΠΉ ΠΊΠΎΠ½ΡΠ°ΠΊΡ ΡΠ΅Π»Π΅ ΠL5 Π²ΠΊΠ»ΡΡΠ°Π΅Ρ ΡΠ΅Π»Π΅ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΠ’2.
Π Π΅Π»Π΅ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΠ’2 ΠΎΡΡΡΠΈΡΠ°Π΅Ρ Π²ΡΠ΅ΠΌΡ ΡΠ°Π·Π³ΠΎΠ½Π° Π΄ΠΎ ΡΠΊΠΎΡΠΎΡΡΠΈ (2 Ρ), ΠΏΠΎΡΠ»Π΅ ΡΠ΅Π³ΠΎ ΠΏΡΠΎΠΈΠ·ΠΎΠΉΠ΄Π΅Ρ Π²ΠΊΠ»ΡΡΠ΅Π½ΠΈΠ΅ ΠΊΠΎΠ½ΡΠ°ΠΊΡΠΎΡΠ° ΡΡΠΊΠΎΡΠ΅Π½ΠΈΡ ΠΠ7, ΠΊΠΎΠ½ΡΠ°ΠΊΡΡ ΠΊΠΎΡΠΎΡΠΎΠ³ΠΎ, Π·Π°ΠΌΠΊΠ½ΡΠ²ΡΠΈΡΡ, Π²Π²Π΅Π΄ΡΡ Π² ΡΠ΅ΠΏΡ ΡΠΎΡΠΎΡΠ° ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅ R5, ΠΊΠΎΡΠΎΡΠΎΠ΅ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΠ΅Ρ ΡΠ°Π·Π³ΠΎΠ½Ρ Π΄Π²ΠΈΠ³Π°ΡΠ΅Π»Ρ ΠΎΡ Π΄ΠΎ. ΠΡΠΎΡΠΎΠΉ ΠΊΠΎΠ½ΡΠ°ΠΊΡ ΡΠ΅Π»Π΅ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΠ’2 Π²ΠΊΠ»ΡΡΠ°Π΅Ρ ΡΠ΅Π»Π΅ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΠ’3.
Π Π΅Π»Π΅ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΠ’3 ΠΎΡΡΡΠΈΡΠ°Π΅Ρ Π²ΡΠ΅ΠΌΡ ΡΠ°Π·Π³ΠΎΠ½Π° Π΄ΠΎ ΡΠΊΠΎΡΠΎΡΡΠΈ (2,57 Ρ), ΠΏΠΎΡΠ»Π΅ ΡΠ΅Π³ΠΎ ΠΏΡΠΎΠΈΠ·ΠΎΠΉΠ΄Π΅Ρ Π²ΠΊΠ»ΡΡΠ΅Π½ΠΈΠ΅ ΠΊΠΎΠ½ΡΠ°ΠΊΡΠΎΡΠ° ΡΡΠΊΠΎΡΠ΅Π½ΠΈΡ ΠΠ6, ΠΊΠΎΠ½ΡΠ°ΠΊΡΡ ΠΊΠΎΡΠΎΡΠΎΠ³ΠΎ, Π·Π°ΠΌΠΊΠ½ΡΠ²ΡΠΈΡΡ, Π²Π²Π΅Π΄ΡΡ Π² ΡΠ΅ΠΏΡ ΡΠΎΡΠΎΡΠ° ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅ R6, ΠΊΠΎΡΠΎΡΠΎΠ΅ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΠ΅Ρ ΡΠ°Π·Π³ΠΎΠ½Ρ Π΄Π²ΠΈΠ³Π°ΡΠ΅Π»Ρ ΠΎΡ Π΄ΠΎ. ΠΡΠΎΡΠΎΠΉ ΠΊΠΎΠ½ΡΠ°ΠΊΡ ΡΠ΅Π»Π΅ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΠ’3 Π²ΠΊΠ»ΡΡΠ°Π΅Ρ ΡΠ΅Π»Π΅ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΠ’4.
Π Π΅Π»Π΅ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΠ’4 ΠΎΡΡΡΠΈΡΠ°Π΅Ρ Π²ΡΠ΅ΠΌΡ ΡΠ°Π·Π³ΠΎΠ½Π° Π΄ΠΎ ΡΠΊΠΎΡΠΎΡΡΠΈ (1,07 Ρ), ΠΏΠΎΡΠ»Π΅ ΡΠ΅Π³ΠΎ ΠΏΡΠΎΠΈΠ·ΠΎΠΉΠ΄Π΅Ρ Π²ΠΊΠ»ΡΡΠ΅Π½ΠΈΠ΅ ΠΊΠΎΠ½ΡΠ°ΠΊΡΠΎΡΠ° ΡΡΠΊΠΎΡΠ΅Π½ΠΈΡ ΠΠ5, ΠΊΠΎΠ½ΡΠ°ΠΊΡΡ ΠΊΠΎΡΠΎΡΠΎΠ³ΠΎ, Π·Π°ΠΌΠΊΠ½ΡΠ²ΡΠΈΡΡ, Π²Π²Π΅Π΄ΡΡ Π² ΡΠ΅ΠΏΡ ΡΠΎΡΠΎΡΠ° ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅ R8, ΠΊΠΎΡΠΎΡΠΎΠ΅ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΠ΅Ρ ΡΠ°Π·Π³ΠΎΠ½Ρ Π΄Π²ΠΈΠ³Π°ΡΠ΅Π»Ρ ΠΎΡ Π΄ΠΎ. ΠΡΠΎΡΠΎΠΉ ΠΊΠΎΠ½ΡΠ°ΠΊΡ ΡΠ΅Π»Π΅ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΠ’4 Π²ΠΊΠ»ΡΡΠ°Π΅Ρ ΡΠ΅Π»Π΅ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΠ’5.
Π Π΅Π»Π΅ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΠ’5 ΠΎΡΡΡΠΈΡΠ°Π΅Ρ Π²ΡΠ΅ΠΌΡ ΡΠ°Π·Π³ΠΎΠ½Π° Π΄ΠΎ ΡΠΊΠΎΡΠΎΡΡΠΈ (0,44 Ρ), ΠΏΠΎΡΠ»Π΅ ΡΠ΅Π³ΠΎ ΠΏΡΠΎΠΈΠ·ΠΎΠΉΠ΄Π΅Ρ Π²ΠΊΠ»ΡΡΠ΅Π½ΠΈΠ΅ ΠΊΠΎΠ½ΡΠ°ΠΊΡΠΎΡΠ° ΡΡΠΊΠΎΡΠ΅Π½ΠΈΡ ΠΠ4, ΠΊΠΎΠ½ΡΠ°ΠΊΡΡ ΠΊΠΎΡΠΎΡΠΎΠ³ΠΎ, Π·Π°ΠΌΠΊΠ½ΡΠ²ΡΠΈΡΡ, Π²Π²Π΅Π΄ΡΡ Π² ΡΠ΅ΠΏΡ ΡΠΎΡΠΎΡΠ° ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅ R9, ΠΊΠΎΡΠΎΡΠΎΠ΅ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΠ΅Ρ ΡΠ°Π·Π³ΠΎΠ½Ρ Π΄Π²ΠΈΠ³Π°ΡΠ΅Π»Ρ ΠΎΡ Π΄ΠΎ. ΠΡΠΎΡΠΎΠΉ ΠΊΠΎΠ½ΡΠ°ΠΊΡ ΡΠ΅Π»Π΅ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΠ’5 Π²ΠΊΠ»ΡΡΠ°Π΅Ρ ΡΠ΅Π»Π΅ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΠ’6.
Π Π΅Π»Π΅ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΠ’6 ΠΎΡΡΡΠΈΡΠ°Π΅Ρ Π²ΡΠ΅ΠΌΡ ΡΠ°Π·Π³ΠΎΠ½Π° Π΄ΠΎ ΡΠΊΠΎΡΠΎΡΡΠΈ (0,19 Ρ), ΠΏΠΎΡΠ»Π΅ ΡΠ΅Π³ΠΎ ΠΏΡΠΎΠΈΠ·ΠΎΠΉΠ΄Π΅Ρ Π²ΠΊΠ»ΡΡΠ΅Π½ΠΈΠ΅ ΠΊΠΎΠ½ΡΠ°ΠΊΡΠΎΡΠ° ΡΡΠΊΠΎΡΠ΅Π½ΠΈΡ ΠΠ3, ΠΊΠΎΠ½ΡΠ°ΠΊΡΡ ΠΊΠΎΡΠΎΡΠΎΠ³ΠΎ, Π·Π°ΠΌΠΊΠ½ΡΠ²ΡΠΈΡΡ, Π²ΡΠ²Π΅Π΄ΡΡ ΠΈΠ· ΡΠ΅ΠΏΠΈ ΡΠΎΡΠΎΡΠ° Π²ΡΠ΅ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΡ, Π½Π°ΡΠ½ΡΡΡΡ ΡΠ°Π·Π³ΠΎΠ½ ΠΏΠΎ Π΅ΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎΠΉ Ρ Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊΠ΅ ΠΎΡ Π΄ΠΎ. ΠΡΠΎΡΠΎΠΉ ΠΊΠΎΠ½ΡΠ°ΠΊΡ ΡΠ΅Π»Π΅ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΠ’6 Π²ΠΊΠ»ΡΡΠ°Π΅Ρ ΡΠ΅Π»Π΅ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΠ’7.
Π Π΅Π»Π΅ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΠ’7 ΠΎΡΡΡΠΈΡΠ°Π΅Ρ Π²ΡΠ΅ΠΌΡ ΡΠ°Π·Π³ΠΎΠ½Π° Π΄ΠΎ ΡΠΊΠΎΡΠΎΡΡΠΈ (0,1 Ρ), ΠΏΠΎΡΠ»Π΅ ΡΠ΅Π³ΠΎ ΠΏΡΠΎΠΈΠ·ΠΎΠΉΠ΄Π΅Ρ Π²ΠΊΠ»ΡΡΠ΅Π½ΠΈΠ΅ ΡΠ΅Π»Π΅ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΠ’8. ΠΠ²ΠΈΠ³Π°ΡΠ΅Π»Ρ ΡΠ°Π±ΠΎΡΠ°Π΅Ρ Π½Π° ΡΠΊΠΎΡΠΎΡΡΠΈ (ΠΏΡΠΈ).
Π Π΅Π»Π΅ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΠ’8 ΠΎΡΡΡΠΈΡΠ°Π΅Ρ Π²ΡΠ΅ΠΌΡ ΡΠ°Π±ΠΎΡΡ Π½Π° ΡΠΊΠΎΡΠΎΡΡΠΈ (70 Ρ), ΠΏΠΎΡΠ»Π΅ ΡΠ΅Π³ΠΎ ΠΏΡΠΎΠΈΠ·ΠΎΠΉΠ΄Π΅Ρ Π²ΠΊΠ»ΡΡΠ΅Π½ΠΈΠ΅ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΎΡΠ½ΠΎΠ³ΠΎ ΡΠ΅Π»Π΅ ΠL3, ΠΊΠΎΡΠΎΡΠΎΠ΅ ΠΎΠ΄Π½ΠΈΠΌ ΠΈΠ· ΡΠ²ΠΎΠΈΡ ΠΊΠΎΠ½ΡΠ°ΠΊΡΠΎΠ² ΡΡΠ½ΡΠΈΡΡΠ΅Ρ ΠΊΠΎΠ½ΡΠ°ΠΊΡ ΠΠ’8. ΠΡΠΎΡΠΎΠΉ ΠΊΠΎΠ½ΡΠ°ΠΊΡ ΡΠ΅Π»Π΅ ΠL3 Π²ΠΊΠ»ΡΡΠ°Π΅Ρ ΡΠ΅ΠΏΡ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΎΡΠ½ΠΎΠ³ΠΎ ΠΊΠΎΠ½ΡΠ°ΠΊΡΠΎΡΠ° ΠL7, ΠΊΠΎΡΠΎΡΡΠΉ ΡΠ²ΠΎΠΈΠΌ ΠΊΠΎΠ½ΡΠ°ΠΊΡΠΎΠΌ ΡΠ°Π·ΡΡΠ²Π°Π΅Ρ ΡΠ΅ΠΏΡ ΡΠ΅Π»Π΅ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΠ’1-ΠΠ’8. Π’ΡΠ΅ΡΠΈΠΉ ΠΊΠΎΠ½ΡΠ°ΠΊΡ ΡΠ΅Π»Π΅ ΠL3 ΡΠ°Π·ΡΡΠ²Π°Π΅Ρ ΡΠ΅ΠΏΡ ΠΊΠΎΠ½ΡΠ°ΠΊΡΠΎΡΠΎΠ² ΡΡΠΊΠΎΡΠ΅Π½ΠΈΡ ΠΠ3-ΠΠ8. Π§Π΅ΡΠ²ΡΡΡΡΠΉ ΠΊΠΎΠ½ΡΠ°ΠΊΡ ΡΠ΅Π»Π΅ ΠL3 Π²ΠΊΠ»ΡΡΠ°Π΅Ρ ΠΊΠΎΠ½ΡΠ°ΠΊΡΠΎΡ ΠΠ9, ΠΊΠΎΠ½ΡΠ°ΠΊΡΡ ΠΊΠΎΡΠΎΡΠΎΠ³ΠΎ, Π·Π°ΠΌΠΊΠ½ΡΠ²ΡΠΈΡΡ, Π²Π²Π΅Π΄ΡΡ Π² ΡΠ΅ΠΏΡ ΡΠΎΡΠΎΡΠ° ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅ R7, ΠΊΠΎΡΠΎΡΠΎΠ΅ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΠ΅Ρ ΡΠΎΡΠΌΠΎΠΆΠ΅Π½ΠΈΡ ΠΎΡ Π΄ΠΎ. ΠΡΡΡΠΉ ΠΊΠΎΠ½ΡΠ°ΠΊΡ ΡΠ΅Π»Π΅ ΠL3 Π²ΠΊΠ»ΡΡΠ°Π΅Ρ ΡΠ΅Π»Π΅ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΠ’9.
Π Π΅Π»Π΅ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΠ’9 ΠΎΡΡΡΠΈΡΠ°Π΅Ρ Π²ΡΠ΅ΠΌΡ ΡΠΎΡΠΌΠΎΠΆΠ΅Π½ΠΈΡ Π΄ΠΎ ΡΠΊΠΎΡΠΎΡΡΠΈ
(0,24 Ρ), ΠΏΠΎΡΠ»Π΅ ΡΠ΅Π³ΠΎ ΠΏΡΠΎΠΈΠ·ΠΎΠΉΠ΄Π΅Ρ Π²ΠΊΠ»ΡΡΠ΅Π½ΠΈΠ΅ ΠΊΠΎΠ½ΡΠ°ΠΊΡΠΎΡΠ° ΡΠΎΡΠΌΠΎΠΆΠ΅Π½ΠΈΡ ΠΠ10, ΠΊΠΎΠ½ΡΠ°ΠΊΡΡ ΠΊΠΎΡΠΎΡΠΎΠ³ΠΎ Π²Π²Π΅Π΄ΡΡ Π² ΡΠ΅ΠΏΡ ΡΠΎΡΠΎΡΠ° ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅ R3, ΠΊΠΎΡΠΎΡΠΎΠ΅ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΠ΅Ρ ΡΠΎΡΠΌΠΎΠΆΠ΅Π½ΠΈΡ Π΄Π²ΠΈΠ³Π°ΡΠ΅Π»Ρ ΠΎΡ Π΄ΠΎ. ΠΡΠΎΡΠΎΠΉ ΠΊΠΎΠ½ΡΠ°ΠΊΡ ΡΠ΅Π»Π΅ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΠ’9 Π²ΠΊΠ»ΡΡΠ°Π΅Ρ ΡΠ΅Π»Π΅ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΠ’10.
Π Π΅Π»Π΅ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΠ’10 ΠΎΡΡΡΠΈΡΠ°Π΅Ρ Π²ΡΠ΅ΠΌΡ ΡΠΎΡΠΌΠΎΠΆΠ΅Π½ΠΈΡ Π΄ΠΎ ΡΠΊΠΎΡΠΎΡΡΠΈ
(2,82 Ρ), ΠΏΠΎΡΠ»Π΅ ΡΠ΅Π³ΠΎ ΠΏΡΠΎΠΈΠ·ΠΎΠΉΠ΄Π΅Ρ Π²ΠΊΠ»ΡΡΠ΅Π½ΠΈΠ΅ ΠΊΠΎΠ½ΡΠ°ΠΊΡΠΎΡΠ° ΡΠΎΡΠΌΠΎΠΆΠ΅Π½ΠΈΡ ΠΠ11, ΠΊΠΎΠ½ΡΠ°ΠΊΡΡ ΠΊΠΎΡΠΎΡΠΎΠ³ΠΎ Π²Π²Π΅Π΄ΡΡ Π² ΡΠ΅ΠΏΡ ΡΠΎΡΠΎΡΠ° ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅ R2, ΠΊΠΎΡΠΎΡΠΎΠ΅ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΠ΅Ρ ΡΠΎΡΠΌΠΎΠΆΠ΅Π½ΠΈΡ Π΄Π²ΠΈΠ³Π°ΡΠ΅Π»Ρ ΠΎΡ Π΄ΠΎ 0. ΠΡΠΎΡΠΎΠΉ ΠΊΠΎΠ½ΡΠ°ΠΊΡ ΡΠ΅Π»Π΅ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΠ’10 Π²ΠΊΠ»ΡΡΠ°Π΅Ρ ΡΠ΅Π»Π΅ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΠ’11.
Π Π΅Π»Π΅ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΠ’11 ΠΎΡΡΡΠΈΡΠ°Π΅Ρ Π²ΡΠ΅ΠΌΡ ΡΠΎΡΠΌΠΎΠΆΠ΅Π½ΠΈΡ Π΄ΠΎ ΡΠΊΠΎΡΠΎΡΡΠΈ (2,82 Ρ), ΠΏΠΎΡΠ»Π΅ ΡΠ΅Π³ΠΎ ΠΏΡΠΎΠΈΠ·ΠΎΠΉΠ΄Π΅Ρ Π²ΠΊΠ»ΡΡΠ΅Π½ΠΈΠ΅ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΎΡΠ½ΠΎΠ³ΠΎ ΡΠ΅Π»Π΅ ΠL4, ΠΊΠΎΡΠΎΡΠΎΠ΅ ΠΎΠ΄Π½ΠΈΠΌ ΠΈΠ· ΡΠ²ΠΎΠΈΡ ΠΊΠΎΠ½ΡΠ°ΠΊΡΠΎΠ² ΡΡΠ½ΡΠΈΡΡΠ΅Ρ ΠΊΠΎΠ½ΡΠ°ΠΊΡ ΠΠ’11. ΠΡΠΎΡΠΎΠΉ ΠΊΠΎΠ½ΡΠ°ΠΊΡ ΡΠ΅Π»Π΅ ΠL4 ΡΠ°Π·ΡΡΠ²Π°Π΅Ρ ΡΠ΅ΠΏΡ ΡΠ΅Π»Π΅ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΠ’9-ΠΠ’11. Π’ΡΠ΅ΡΠΈΠΉ ΠΊΠΎΠ½ΡΠ°ΠΊΡ ΡΠ΅Π»Π΅ ΠL4 ΡΠ°Π·ΡΡΠ²Π°Π΅Ρ ΡΠ΅ΠΏΡ ΠΊΠΎΠ½ΡΠ°ΠΊΡΠΎΡΠΎΠ² ΡΠΎΡΠΌΠΎΠΆΠ΅Π½ΠΈΡ ΠΠ9-ΠΠ11. Π§Π΅ΡΠ²ΡΡΡΡΠΉ ΠΊΠΎΠ½ΡΠ°ΠΊΡ ΡΠ΅Π»Π΅ ΠL4 ΠΎΡΠΊΠ»ΡΡΠ°Π΅Ρ Π»ΠΈΠ½Π΅ΠΉΠ½ΡΠ΅ ΠΊΠΎΠ½ΡΠ°ΠΊΡΠΎΡΡ ΠΠ1 ΠΈ ΠΠ2, ΠΊΠΎΠ½ΡΠ°ΠΊΡΡ ΠΊΠΎΡΠΎΡΡΡ ΠΎΡΠΊΠ»ΡΡΠ°ΡΡ ΠΎΠ±ΠΌΠΎΡΠΊΠΈ ΡΡΠ°ΡΠΎΡΠΎΠ² Π΄Π²ΠΈΠ³Π°ΡΠ΅Π»Π΅ΠΉ ΠΎΡ ΡΠ΅ΡΠΈ. ΠΡΡΡΠΉ ΠΊΠΎΠ½ΡΠ°ΠΊΡ ΡΠ΅Π»Π΅ ΠL4 ΡΠ°Π·ΠΌΡΠΊΠ°Π΅Ρ ΡΠ΅ΠΏΡ Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ³ΠΎ ΠΊΠΎΠ½ΡΠ°ΠΊΡΠΎΡΠ° KL5, ΠΊΠΎΡΠΎΡΡΠΉ ΠΎΡΠΊΠ»ΡΡΠΈΡ ΠΎΡ ΡΠ΅ΡΠΈ ΡΠΏΡΠ°Π²Π»Π΅Π½ΠΈΡ ΠΊΠΎΠ½ΡΠ°ΠΊΡΠΎΡ ΠΠ12, ΠΊΠΎΠ½ΡΠ°ΠΊΡ ΠΊΠΎΡΠΎΡΠΎΠ³ΠΎ, ΡΠ°Π·ΠΎΠΌΠΊΠ½ΡΠ²ΡΠΈΡΡ, ΠΎΡΠΊΠ»ΡΡΠΈΡ ΠΏΠΈΡΠ°Π½ΠΈΠ΅ ΠΎΠ±ΠΌΠΎΡΠΎΠΊ ΡΠ»Π΅ΠΊΡΡΠΎΠΌΠ°Π³Π½ΠΈΡΠ½ΠΎΠ³ΠΎ ΡΠΎΡΠΌΠΎΠ·Π° YB ΠΈ Π·Π°ΡΠΈΠΊΡΠΈΡΡΠ΅Ρ Π²Π°Π» ΠΈΡΠΏΠΎΠ»Π½ΠΈΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ ΠΎΡΠ³Π°Π½Π°. Π¨Π΅ΡΡΠΎΠΉ ΠΊΠΎΠ½ΡΠ°ΠΊΡ ΡΠ΅Π»Π΅ ΠL4 Π²ΠΊΠ»ΡΡΠ°Π΅Ρ ΡΠ΅Π»Π΅ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΠ’12.
Π Π΅Π»Π΅ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΠ’12 ΠΎΡΡΡΠΈΡΠ°Π΅Ρ Π²ΡΠ΅ΠΌΡ ΠΏΠ°ΡΠ·Ρ (10 Ρ), ΠΏΠΎΡΠ»Π΅ ΡΠ΅Π³ΠΎ ΠΏΡΠΎΠΈΠ·ΠΎΠΉΠ΄Π΅Ρ ΠΎΡΠΊΠ»ΡΡΠ΅Π½ΠΈΠ΅ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΎΡΠ½ΡΡ ΡΠ΅Π»Π΅ ΠL3 ΠΈ ΠL4. Π Π°Π±ΠΎΡΠΈΠΉ ΡΠΈΠΊΠ» ΠΏΠΎΠ²ΡΠΎΡΡΠ΅ΡΡΡ.
ΠΠ»Ρ ΠΎΡΠΊΠ»ΡΡΠ΅Π½ΠΈΡ ΡΠ»Π΅ΠΊΡΡΠΎΠΏΡΠΈΠ²ΠΎΠ΄Π° Π½Π°ΠΆΠΈΠΌΠ°Π΅ΠΌ ΠΊΠ½ΠΎΠΏΠΊΡ SB2 («Π‘ΡΠΎΠΏ»), ΡΠ΅ΠΏΡ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΎΡΠ½ΠΎΠ³ΠΎ ΡΠ΅Π»Π΅ KL2 ΡΠ°Π·ΡΡΠ²Π°Π΅ΡΡΡ ΠΈ ΠΎΠ½ΠΎ ΠΎΡΠΊΠ»ΡΡΠ°Π΅Ρ ΠΎΠ±ΠΌΠΎΡΠΊΠΈ ΠΊΠΎΠ½ΡΠ°ΠΊΡΠΎΡΠΎΠ² ΠΠ1, ΠΠ2, ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΎΡΠ½ΡΡ ΡΠ΅Π»Π΅ ΠL3-ΠL5 ΠΈ ΡΠ΅Π»Π΅ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΠ’13. ΠΠΎΠ½ΡΠ°ΠΊΡΡ Π»ΠΈΠ½Π΅ΠΉΠ½ΡΡ ΠΊΠΎΠ½ΡΠ°ΠΊΡΠΎΡΠΎΠ² ΠΠ1 ΠΈ ΠΠ2 ΠΎΡΠΊΠ»ΡΡΠ°ΡΡ ΠΎΠ±ΠΌΠΎΡΠΊΠΈ ΡΡΠ°ΡΠΎΡΠΎΠ² Π΄Π²ΠΈΠ³Π°ΡΠ΅Π»Π΅ΠΉ ΠΎΡ ΡΠ΅ΡΠΈ. ΠΡΠΎΠΌΠ΅ΠΆΡΡΠΎΡΠ½ΠΎΠ΅ ΡΠ΅Π»Π΅ KL2 Π·Π°ΠΌΠΊΠ½ΡΡ ΡΠ΅ΠΏΠΈ ΠΊΠΎΠ½ΡΠ°ΠΊΡΠΎΡΠΎΠ² ΠΠ12 ΠΈ ΠΠ13. ΠΠΎΠ½ΡΠ°ΠΊΡΠΎΡ KM13 ΠΏΠΎΠ΄ΠΊΠ»ΡΡΠΈΡ Π΄Π²Π΅ ΡΠ°Π·Ρ ΠΎΠ±ΠΌΠΎΡΠΎΠΊ ΡΡΠ°ΡΠΎΡΠ° ΡΠ»Π΅ΠΊΡΡΠΎΠ΄Π²ΠΈΠ³Π°ΡΠ΅Π»Ρ ΠΊ ΠΈΡΡΠΎΡΠ½ΠΈΠΊΡ ΠΏΠΎΡΡΠΎΡΠ½Π½ΠΎΠ³ΠΎ ΡΠΎΠΊΠ°, ΡΠ°Π·ΠΎΡΠ²ΡΡ ΡΠ²ΠΎΠΉ Π²ΡΠΏΠΎΠΌΠΎΠ³Π°ΡΠ΅Π»ΡΠ½ΡΠΉ ΠΊΠΎΠ½ΡΠ°ΠΊΡ Π² ΡΠ΅ΠΏΠΈ ΠΊΠ½ΠΎΠΏΠΊΠΈ SB1 («ΠΡΡΠΊ») Π΄Π»Ρ ΡΠΎΠ³ΠΎ, ΡΡΠΎΠ±Ρ Π½Π΅ ΠΏΡΠΎΠΈΠ·ΠΎΡΠ»ΠΎ Π²ΠΊΠ»ΡΡΠ΅Π½ΠΈΠ΅ ΡΠ»Π΅ΠΊΡΡΠΎΠΏΡΠΈΠ²ΠΎΠ΄Π° Π²ΠΎ Π²ΡΠ΅ΠΌΡ Π΄ΠΈΠ½Π°ΠΌΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΡΠΎΡΠΌΠΎΠΆΠ΅Π½ΠΈΡ. ΠΠ°ΡΠ½Π΅ΡΡΡ Π΄ΠΈΠ½Π°ΠΌΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΡΠΎΡΠΌΠΎΠΆΠ΅Π½ΠΈΠ΅ ΡΠ»Π΅ΠΊΡΡΠΎΠΏΡΠΈΠ²ΠΎΠ΄Π° ΠΏΡΠΈ ΠΏΠΎΠ»Π½ΠΎΡΡΡΡ Π²Π²Π΅Π΄ΡΠ½Π½ΠΎΠΌ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠΈ Π² ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ, Π·Π°Π΄Π°Π²Π°Π΅ΠΌΠΎΠ³ΠΎ ΡΠ΅Π»Π΅ KT13 (0,13 Ρ), ΠΏΠΎ ΠΈΡΡΠ΅ΡΠ΅Π½ΠΈΠΈ ΠΊΠΎΡΠΎΡΠΎΠ³ΠΎ ΠΎΠ½ΠΎ ΠΎΡΠΊΠ»ΡΡΠΈΡΡΡ ΠΈ ΠΎΡΠΊΠ»ΡΡΠΈΡ ΠΊΠΎΠ½ΡΠ°ΠΊΡΠΎΡΡ ΠΠ12 ΠΈ ΠΠ13. ΠΡΠΎΠΈΠ·ΠΎΠΉΠ΄ΡΡ ΡΠΈΠΊΡΠ°ΡΠΈΡ ΡΠ°Π±ΠΎΡΠ΅Π³ΠΎ ΠΌΠ΅Ρ Π°Π½ΠΈΠ·ΠΌΠ° ΡΠΎΡΠΌΠΎΠ·ΠΎΠΌ YB ΠΈ ΠΎΡΠΊΠ»ΡΡΠ΅Π½ΠΈΠ΅ ΠΎΠ±ΠΌΠΎΡΠΊΠΈ ΡΡΠ°ΡΠΎΡΠ° ΡΠ»Π΅ΠΊΡΡΠΎΠ΄Π²ΠΈΠ³Π°ΡΠ΅Π»Ρ ΠΎΡ Π²ΡΠΏΡΡΠΌΠΈΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ ΠΌΠΎΡΡΠ° VD1. Π‘Ρ Π΅ΠΌΠ° Π²Π΅ΡΠ½ΡΡΡΡ Π² ΠΈΡΡ ΠΎΠ΄Π½ΠΎΠ΅ ΡΠΎΡΡΠΎΡΠ½ΠΈΠ΅.
3.3 ΠΠΏΠΈΡΠ°Π½ΠΈΠ΅ Π·Π°ΡΠΈΡ ΠΏΡΠΈΠΌΠ΅Π½ΡΠ΅ΠΌΡΡ Π² ΡΡ Π΅ΠΌΠ΅ ΡΠΏΡΠ°Π²Π»Π΅Π½ΠΈΡ Π ΡΡ Π΅ΠΌΠ΅ ΡΠΏΡΠ°Π²Π»Π΅Π½ΠΈΡ ΠΏΡΠ΅Π΄ΡΡΠΌΠΎΡΡΠ΅Π½ΠΎ Π΄Π²Π° Π²ΠΈΠ΄Π° Π·Π°ΡΠΈΡ: Π·Π°ΡΠΈΡΠ° ΠΎΡ ΠΏΠ΅ΡΠ΅Π³ΡΡΠ·ΠΊΠΈ ΠΈ Π·Π°ΡΠΈΡΠ° ΠΎΡ ΡΠ½ΠΈΠΆΠ΅Π½ΠΈΡ ΠΏΠΈΡΠ°ΡΡΠ΅Π³ΠΎ Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΡ. ΠΠ½ΠΈ ΠΎΠ±Π΅ΡΠΏΠ΅ΡΠΈΠ²Π°ΡΡΡΡ Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΡΠ΅Π»Π΅ KK1-KK4 ΠΈ KV ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²Π΅Π½Π½ΠΎ. ΠΡΠΎΡΠ΅ΡΡ ΠΎΡΠΊΠ»ΡΡΠ΅Π½ΠΈΡ ΠΏΡΠΈ ΡΡΠ°Π±Π°ΡΡΠ²Π°Π½ΠΈΠΈ ΠΊΠ°ΠΊΠΎΠ³ΠΎ-Π»ΠΈΠ±ΠΎ Π²ΠΈΠ΄Π° Π·Π°ΡΠΈΡΡ Π°Π½Π°Π»ΠΎΠ³ΠΈΡΠ΅Π½ ΠΏΡΠΈΠ½ΡΠ΄ΠΈΡΠ΅Π»ΡΠ½ΠΎΠΌΡ ΠΎΡΠΊΠ»ΡΡΠ΅Π½ΠΈΡ ΠΏΡΠΈΠ²ΠΎΠ΄Π°, Ρ ΡΠΎΠΉ Π»ΠΈΡΡ ΡΠ°Π·Π½ΠΈΡΠ΅ΠΉ, ΡΡΠΎ ΠΏΡΠΈ ΠΏΠ΅ΡΠ΅Π³ΡΡΠ·ΠΊΠ΅ ΡΠ΅ΠΏΠ»ΠΎΠ²ΡΠ΅ ΡΠ΅Π»Π΅ ΠΎΡΠΊΠ»ΡΡΠ°ΡΡ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΎΡΠ½ΠΎΠ΅ ΡΠ΅Π»Π΅ KL1, Π° Π·Π°ΡΠ΅ΠΌ ΠΎΠ½ΠΎ ΡΠ°Π·ΡΡΠ²Π°Π΅Ρ ΡΠ΅ΠΏΡ ΡΠ΅Π»Π΅ KL2.
3.4 ΠΠΏΠΈΡΠ°Π½ΠΈΠ΅ ΡΠ°Π±ΠΎΡΡ ΡΠΈΠ³Π½Π°Π»ΠΈΠ·Π°ΡΠΈΠΈ ΠΡΠΈ ΠΏΠΎΠ΄Π°ΡΠ΅ Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΡ ΡΡΠ°Π±ΠΎΡΠ°Π΅Ρ ΡΠ΅Π»Π΅ ΠL6, ΡΠ΅ΠΉ ΠΊΠΎΠ½ΡΠ°ΠΊΡ Π·Π°ΠΌΠΊΠ½Π΅ΡΡΡ Π² ΡΠ΅ΠΏΠΈ HL1 («Π‘Π΅ΡΡ») ΠΈ ΠΎΠ½Π° Π·Π°Π³ΠΎΡΠ°Π΅ΡΡΡ. ΠΡΠΈ ΠΏΠΎΠ΄Π°ΡΠ΅ Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΡ Π½Π° ΠΎΠ±ΠΌΠΎΡΠΊΡ ΡΡΠ°ΡΠΎΡΠ° Π²ΡΠΏΠΎΠΌΠΎΠ³Π°ΡΠ΅Π»ΡΠ½ΡΠΉ ΠΊΠΎΠ½ΡΠ°ΠΊΡ Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ³ΠΎ ΠΊΠΎΠ½ΡΠ°ΠΊΡΠΎΡΠ° ΠΠ1 Π·Π°ΠΌΡΠΊΠ°Π΅ΡΡΡ Π² ΡΠ΅ΠΏΠΈ Π»Π°ΠΌΠΏΠΎΡΠΊΠΈ HL2 («Π Π°Π±ΠΎΡΠ°») ΠΈ ΠΎΠ½Π° Π·Π°Π³ΠΎΡΠ°Π΅ΡΡΡ. ΠΡΠΈ ΡΡΠ°Π±Π°ΡΡΠ²Π°Π½ΠΈΠΈ ΡΠ΅ΠΏΠ»ΠΎΠ²ΡΡ ΡΠ΅Π»Π΅ ΠΠ1 ΠΈΠ»ΠΈ ΠΠ2 ΠΈΡ ΠΊΠΎΠ½ΡΠ°ΠΊΡΡ Π·Π°ΠΌΠΊΠ½ΡΡΡΡ Π² ΡΠ΅ΠΏΠΈ Π»Π°ΠΌΠΏΠΎΡΠΊΠΈ HL4 ΠΈ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΎΡΠ½ΠΎΠ³ΠΎ ΡΠ΅Π»Π΅ ΠL8, ΠΊΠΎΡΠΎΡΠΎΠ΅ ΡΡΠ½ΡΠΈΡΡΠ΅Ρ ΠΊΠΎΠ½ΡΠ°ΠΊΡΡ ΡΠ΅ΠΏΠ»ΠΎΠ²ΡΡ ΡΠ΅Π»Π΅ ΠΠ1 ΠΈ ΠΠ2, Π·Π°Π³ΠΎΡΠ°Π΅ΡΡΡ Π»Π°ΠΌΠΏΠΎΡΠΊΠ° HL4 («ΠΠ΅ΡΠ΅Π³ΡΡΠ·ΠΊΠ° Π΄Π²ΠΈΠ³Π°ΡΠ΅Π»Ρ № 1»). ΠΡΠΈ ΡΡΠ°Π±Π°ΡΡΠ²Π°Π½ΠΈΠΈ ΡΠ΅ΠΏΠ»ΠΎΠ²ΡΡ ΡΠ΅Π»Π΅ ΠΠ3 ΠΈΠ»ΠΈ ΠΠ4 ΠΈΡ ΠΊΠΎΠ½ΡΠ°ΠΊΡΡ Π·Π°ΠΌΠΊΠ½ΡΡΡΡ Π² ΡΠ΅ΠΏΠΈ Π»Π°ΠΌΠΏΠΎΡΠΊΠΈ HL5 ΠΈ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΎΡΠ½ΠΎΠ³ΠΎ ΡΠ΅Π»Π΅ ΠL9, ΠΊΠΎΡΠΎΡΠΎΠ΅ ΡΡΠ½ΡΠΈΡΡΠ΅Ρ ΠΊΠΎΠ½ΡΠ°ΠΊΡΡ ΡΠ΅ΠΏΠ»ΠΎΠ²ΡΡ ΡΠ΅Π»Π΅ ΠΠ3 ΠΈ ΠΠ4, Π·Π°Π³ΠΎΡΠ°Π΅ΡΡΡ Π»Π°ΠΌΠΏΠΎΡΠΊΠ° HL5 («ΠΠ΅ΡΠ΅Π³ΡΡΠ·ΠΊΠ° Π΄Π²ΠΈΠ³Π°ΡΠ΅Π»Ρ № 2»). ΠΡΠΈ ΡΠ½ΠΈΠΆΠ΅Π½ΠΈΠΈ Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΡ Π² ΡΠ΅ΡΠΈ ΠΎΡΠΊΠ»ΡΡΠΈΡΡΡ ΡΠ΅Π»Π΅ Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΡ ΠV, ΠΊΠΎΠ½ΡΠ°ΠΊΡ ΠΊΠΎΡΠΎΡΠΎΠ³ΠΎ Π·Π°ΠΌΠΊΠ½Π΅ΡΡΡ Π² ΡΠ΅ΠΏΠΈ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΎΡΠ½ΠΎΠ³ΠΎ ΡΠ΅Π»Π΅ ΠL10, ΠΊΠΎΡΠΎΡΠΎΠ΅, ΡΡΠ°Π±ΠΎΡΠ°Π², Π·Π°ΡΡΠ½ΡΠΈΡΡΠ΅Ρ ΠΊΠΎΠ½ΡΠ°ΠΊΡ ΠV, Π·Π°Π³ΠΎΡΠ°Π΅ΡΡΡ Π»Π°ΠΌΠΏΠΎΡΠΊΠ° HL5 («Π‘Π½ΠΈΠΆΠ΅Π½ΠΈΠ΅ Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΡ»). Π ΡΠ΅ΠΆΠΈΠΌΠ΅ ΠΏΠ°ΡΠ·Ρ ΠΈΠ»ΠΈ ΠΏΠΎΡΠ»Π΅ Π΄ΠΈΠ½Π°ΠΌΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ (Π°Π²Π°ΡΠΈΠΉΠ½ΠΎΠ³ΠΎ) ΡΠΎΡΠΌΠΎΠΆΠ΅Π½ΠΈΡ Π»ΠΈΠ½Π΅ΠΉΠ½ΡΠΉ ΠΊΠΎΠ½ΡΠ°ΠΊΡΠΎΡ ΠΠ12 ΠΎΡΠΊΠ»ΡΡΠ°Π΅ΡΡΡ ΠΎΡ ΡΠ΅ΡΠΈ ΠΈ Π·Π°ΠΌΡΠΊΠ°Π΅Ρ ΡΠ²ΠΎΠΈΠΌ Π²ΡΠΏΠΎΠΌΠΎΠ³Π°ΡΠ΅Π»ΡΠ½ΡΠΌ ΠΊΠΎΠ½ΡΠ°ΠΊΡΠΎΠΌ ΡΠ΅ΠΏΡ Π»Π°ΠΌΠΏΠΎΡΠΊΠΈ HL3 («ΠΡΡΠ°Π½ΠΎΠ²»).
4. ΠΡΠ±ΠΎΡ Π·Π°ΡΠΈΡΠ½ΠΎ-ΠΊΠΎΠΌΠΌΡΡΠ°ΡΠΈΠΎΠ½Π½ΠΎΠΉ Π°ΠΏΠΏΠ°ΡΠ°ΡΡΡΡ
4.1 ΠΡΠ±ΠΎΡ ΡΠ΅Π»Π΅ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ Π Π΅Π»Π΅ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ Π²ΡΠ±ΠΈΡΠ°Π΅ΠΌ ΠΈΡΡ ΠΎΠ΄Ρ ΠΈΠ· Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΡΠ°Π±ΠΎΡΡ Π΄Π²ΠΈΠ³Π°ΡΠ΅Π»Ρ Π½Π° ΡΡΡΠΏΠ΅Π½ΡΡ ΠΏΡΡΠΊΠ° ΠΈ ΡΠΎΡΠΌΠΎΠΆΠ΅Π½ΠΈΡ, ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²Π° Π·Π°ΠΌΡΠΊΠ°ΡΡΠΈΡ ΠΈ ΡΠ°Π·ΠΌΡΠΊΠ°ΡΡΠΈΡ ΠΊΠΎΠ½ΡΠ°ΠΊΡΠΎΠ² ΠΈ Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΡ ΠΏΠΈΡΠ°Π½ΠΈΡ.
ΠΠ»Ρ ΠΏΡΠ΅Π΄Π²Π°ΡΠΈΡΠ΅Π»ΡΠ½ΠΎΠΉ ΡΡΡΠΏΠ΅Π½ΠΈ ©, ΡΠ΅Π»Π΅ ΠΠ’1; Π΄Π»Ρ ΡΠ°Π·Π³ΠΎΠ½Π° Π΄Π²ΠΈΠ³Π°ΡΠ΅Π»Ρ ΠΏΠΎ:
— Π²ΡΠΎΡΠΎΠΉ ΡΡΡΠΏΠ΅Π½ΠΈ ©, ΡΠ΅Π»Π΅ ΠΠ’4;
— ΡΡΠ΅ΡΡΠ΅ΠΉ ΡΡΡΠΏΠ΅Π½ΠΈ ©, ΡΠ΅Π»Π΅ ΠΠ’5;
— ΡΠ΅ΡΠ²ΡΡΡΠΎΠΉ ΡΡΡΠΏΠ΅Π½ΠΈ ©, ΡΠ΅Π»Π΅ ΠΠ’6;
— Π΅ΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎΠΉ Ρ Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊΠ΅ ©, ΡΠ΅Π»Π΅ ΠΠ’7;
Π΄Π»Ρ ΡΠΎΡΠΌΠΎΠΆΠ΅Π½ΠΈΡ ΠΏΠΎ ΠΏΠ΅ΡΠ²ΠΎΠΉ ΡΡΡΠΏΠ΅Π½ΠΈ ©, ΡΠ΅Π»Π΅ ΠΠ’9 ΠΈ Π΄Π»Ρ Π΄ΠΈΠ½Π°ΠΌΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΡΠΎΡΠΌΠΎΠΆΠ΅Π½ΠΈΡ ©, ΡΠ΅Π»Π΅ ΠΠ’13, Π²ΡΠ±ΠΈΡΠ°Π΅ΠΌ ΡΠ΅Π»Π΅ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΠ-113 ΡΠΎ Π²ΡΠ΅ΠΌΠ΅Π½Π΅ΠΌ ΡΡΠ°Π±Π°ΡΡΠ²Π°Π½ΠΈΡ Ρ. ΠΠΎΠ½ΡΠ°ΠΊΡΠ½Π°Ρ ΡΠΈΡΡΠ΅ΠΌΠ° ΡΠ΅Π»Π΅ ΡΠΎΡΡΠΎΠΈΡ ΠΈΠ· 1-Π³ΠΎ ΠΌΠ³Π½ΠΎΠ²Π΅Π½Π½ΠΎ Π·Π°ΠΌΡΠΊΠ°ΡΡΠ΅Π³ΠΎ ΠΈ 1-Π³ΠΎ ΠΎΡΠ½ΠΎΠ²Π½ΠΎΠ³ΠΎ Π·Π°ΠΌΡΠΊΠ°ΡΡΠ΅Π³ΠΎ Ρ Π²ΡΠ΄Π΅ΡΠΆΠΊΠΎΠΉ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΊΠΎΠ½ΡΠ°ΠΊΡΠΎΠ².
ΠΠ»Ρ ΡΠ°Π·Π³ΠΎΠ½Π° Π΄Π²ΠΈΠ³Π°ΡΠ΅Π»Ρ Π΄ΠΎ ΡΠΊΠΎΡΠΎΡΡΠΈ ©, ΡΠ΅Π»Π΅ ΠΠ’2; Π΄Π»Ρ ΡΠ°Π·Π³ΠΎΠ½Π° Π΄Π²ΠΈΠ³Π°ΡΠ΅Π»Ρ ΠΏΠΎ ΠΏΠ΅ΡΠ²ΠΎΠΉ ΡΡΡΠΏΠ΅Π½ΠΈ ©, ΡΠ΅Π»Π΅ ΠΠ’3 ΠΈ Π΄Π»Ρ ΡΠΎΡΠΌΠΎΠΆΠ΅Π½ΠΈΡ ΠΏΠΎ Π²ΡΠΎΡΠΎΠΉ ΡΡΡΠΏΠ΅Π½ΠΈ ©, ΡΠ΅Π»Π΅ ΠΠ’10, Π²ΡΠ±ΠΈΡΠ°Π΅ΠΌ ΡΠ΅Π»Π΅ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΠ-123 Ρ Π²ΡΠ΅ΠΌΠ΅Π½Π΅ΠΌ ΡΡΠ°Π±Π°ΡΡΠ²Π°Π½ΠΈΡ Ρ. ΠΠΎΠ½ΡΠ°ΠΊΡΠ½Π°Ρ ΡΠΈΡΡΠ΅ΠΌΠ° ΡΠ΅Π»Π΅ ΡΠΎΡΡΠΎΠΈΡ ΠΈΠ· 1-Π³ΠΎ ΠΌΠ³Π½ΠΎΠ²Π΅Π½Π½ΠΎ Π·Π°ΠΌΡΠΊΠ°ΡΡΠ΅Π³ΠΎ ΠΈ 1-Π³ΠΎ ΠΎΡΠ½ΠΎΠ²Π½ΠΎΠ³ΠΎ Π·Π°ΠΌΡΠΊΠ°ΡΡΠ΅Π³ΠΎ Ρ Π²ΡΠ΄Π΅ΡΠΆΠΊΠΎΠΉ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΊΠΎΠ½ΡΠ°ΠΊΡΠΎΠ².
ΠΠ»Ρ ΡΠΎΡΠΌΠΎΠΆΠ΅Π½ΠΈΡ Ρ Π΄ΠΎ 0 ©, ΡΠ΅Π»Π΅ ΠΠ’11, Π²ΡΠ±ΠΈΡΠ°Π΅ΠΌ ΡΠ΅Π»Π΅ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΠ-133 ΡΠΎ Π²ΡΠ΅ΠΌΠ΅Π½Π΅ΠΌ ΡΡΠ°Π±Π°ΡΡΠ²Π°Π½ΠΈΡ Ρ. ΠΠΎΠ½ΡΠ°ΠΊΡΠ½Π°Ρ ΡΠΈΡΡΠ΅ΠΌΠ° ΡΠ΅Π»Π΅ ΡΠΎΡΡΠΎΠΈΡ ΠΈΠ· 1-Π³ΠΎ ΠΌΠ³Π½ΠΎΠ²Π΅Π½Π½ΠΎ Π·Π°ΠΌΡΠΊΠ°ΡΡΠ΅Π³ΠΎ ΠΈ 1-Π³ΠΎ ΠΎΡΠ½ΠΎΠ²Π½ΠΎΠ³ΠΎ Π·Π°ΠΌΡΠΊΠ°ΡΡΠ΅Π³ΠΎ Ρ Π²ΡΠ΄Π΅ΡΠΆΠΊΠΎΠΉ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΊΠΎΠ½ΡΠ°ΠΊΡΠΎΠ².
ΠΠ»Ρ ΡΠ°Π±ΠΎΡΡ Π΄Π²ΠΈΠ³Π°ΡΠ΅Π»Ρ Ρ ΡΡΡΠ°Π½ΠΎΠ²ΠΈΠ²ΡΠ΅ΠΉΡΡ ΡΠΊΠΎΡΠΎΡΡΡΡ ©, ΡΠ΅Π»Π΅ ΠΠ’8, Π²ΡΠ±ΠΈΡΠ°Π΅ΠΌ ΡΠ΅Π»Π΅ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΠ69-Π‘ ΡΠΎ Π²ΡΠ΅ΠΌΠ΅Π½Π΅ΠΌ ΡΡΠ°Π±Π°ΡΡΠ²Π°Π½ΠΈΡ Ρ. ΠΠΎΠ½ΡΠ°ΠΊΡΠ½Π°Ρ ΡΠΈΡΡΠ΅ΠΌΠ° ΡΠ΅Π»Π΅ ΡΠΎΡΡΠΎΠΈΡ ΠΈΠ· 1-Π³ΠΎ Π·Π°ΠΌΡΠΊΠ°ΡΡΠ΅Π³ΠΎ ΠΈ 1-Π³ΠΎ ΡΠ°Π·ΠΌΡΠΊΠ°ΡΡΠ΅Π³ΠΎ ΠΊΠΎΠ½ΡΠ°ΠΊΡΠΎΠ².
ΠΠ»Ρ ΡΠ°Π±ΠΎΡΡ Π΄Π²ΠΈΠ³Π°ΡΠ΅Π»Ρ Π² ΡΠ΅ΠΆΠΈΠΌΠ΅ ΠΏΠ°ΡΠ·Ρ ©, ΡΠ΅Π»Π΅ ΠΠ’12, Π²ΡΠ±ΠΈΡΠ°Π΅ΠΌ ΡΠ΅Π»Π΅ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΠ-882 ΡΠΎ Π²ΡΠ΅ΠΌΠ΅Π½Π΅ΠΌ ΡΡΠ°Π±Π°ΡΡΠ²Π°Π½ΠΈΡ Ρ. ΠΠΎΠ½ΡΠ°ΠΊΡΠ½Π°Ρ ΡΠΈΡΡΠ΅ΠΌΠ° ΡΠ΅Π»Π΅ ΡΠΎΡΡΠΎΠΈΡ ΠΈΠ· 1-Π³ΠΎ Π·Π°ΠΌΡΠΊΠ°ΡΡΠ΅Π³ΠΎ ΠΈ 1-Π³ΠΎ ΡΠ°Π·ΠΌΡΠΊΠ°ΡΡΠ΅Π³ΠΎ ΠΊΠΎΠ½ΡΠ°ΠΊΡΠΎΠ².
4.2 ΠΡΠ±ΠΎΡ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΎΡΠ½ΡΡ ΡΠ΅Π»Π΅ ΠΡΠΎΠΌΠ΅ΠΆΡΡΠΎΡΠ½ΡΠ΅ ΡΠ΅Π»Π΅ Π²ΡΠ±ΠΈΡΠ°Π΅ΠΌ ΠΏΠΎ Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΡ, ΡΠΎΠΊΡ ΠΈ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²Ρ Π½Π΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΡΡ ΠΊΠΎΠ½ΡΠ°ΠΊΡΠΎΠ². ΠΡΠΎΠΌΠ΅ΠΆΡΡΠΎΡΠ½ΡΠ΅ ΡΠ΅Π»Π΅ KL1-KL7 Π½Π°Ρ ΠΎΠ΄ΡΡΡΡ Π² ΡΠ΅ΠΏΠΈ ΡΠΏΡΠ°Π²Π»Π΅Π½ΠΈΡ, ΠΏΠΎΡΡΠΎΠΌΡ Π²ΡΠ±ΠΈΡΠ°Π΅ΠΌ ΡΠ΅Π»Π΅ ΡΠΈΠΏΠ° ΠΠ-21 Ρ Π½ΠΎΠΌΠΈΠ½Π°Π»ΡΠ½ΡΠΌ Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΠ΅ΠΌ 220 Π, ΡΠΎΠΊΠΎΠΌ ΠΊΠΎΠ½ΡΠ°ΠΊΡΠΎΠ² 5Π. ΠΠ°Π½Π½ΠΎΠ΅ ΡΠ΅Π»Π΅ ΠΈΠΌΠ΅Π΅Ρ 4−8 Π·Π°ΠΌΡΠΊΠ°ΡΡΠΈΡ ΠΈ ΡΠ°Π·ΠΌΡΠΊΠ°ΡΡΠΈΡ ΠΊΠΎΠ½ΡΠ°ΠΊΡΠΎΠ².
ΠΡΠΎΠΌΠ΅ΠΆΡΡΠΎΡΠ½ΡΠ΅ ΡΠ΅Π»Π΅ KL8-KL11 Π½Π°Ρ ΠΎΠ΄ΡΡΡΡ Π² ΡΠ΅ΠΏΠΈ ΡΠΈΠ³Π½Π°Π»ΠΈΠ·Π°ΡΠΈΠΈ, ΠΏΠΎΡΡΠΎΠΌΡ Π²ΡΠ±ΠΈΡΠ°Π΅ΠΌ ΡΠ΅Π»Π΅ ΡΠΈΠΏΠ° ΠΠ-21 Ρ Π½ΠΎΠΌΠΈΠ½Π°Π»ΡΠ½ΡΠΌ Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΠ΅ΠΌ 24 Π, ΡΠΎΠΊΠΎΠΌ ΠΊΠΎΠ½ΡΠ°ΠΊΡΠΎΠ² 5 Π. ΠΠ°Π½Π½ΠΎΠ΅ ΡΠ΅Π»Π΅ ΠΈΠΌΠ΅Π΅Ρ 4−8 Π·Π°ΠΌΡΠΊΠ°ΡΡΠΈΡ ΠΈ ΡΠ°Π·ΠΌΡΠΊΠ°ΡΡΠΈΡ ΠΊΠΎΠ½ΡΠ°ΠΊΡΠΎΠ².
4.3 ΠΡΠ±ΠΎΡ ΡΠ΅Π»Π΅ Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΡ Π Π΅Π»Π΅ Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΡ KV Π²ΡΠ±ΠΈΡΠ°Π΅ΠΌ ΠΏΠΎ Π½Π΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΠΎΠΌΡ Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΡ ΠΎΡΠΏΡΡΠΊΠ°Π½ΠΈΡ ΡΠ°Π²Π½ΠΎΠΌΡ 0,8UΠ½ΠΎΠΌ. ΠΡΠ±ΠΈΡΠ°Π΅ΠΌ ΡΠ΅Π»Π΅ ΠΌΠΈΠ½ΠΈΠΌΠ°Π»ΡΠ½ΠΎΠ³ΠΎ Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΡ Π ΠΠ 825, UΠ½ΠΎΠΌ=220 Π. ΠΠΈΠ°ΠΏΠ°Π·ΠΎΠ½ ΡΡΡΠ°Π²ΠΎΠΊ 80−180 Π. Π£ΡΡΠ°Π²ΠΊΠ° ΠΎΡΠΊΠ»ΡΡΠ΅Π½ΠΈΡ Π½Π°ΡΡΡΠΎΠ΅Π½Π° Π½Π° 0,8β’UΠ½ΠΎΠΌ. Π‘ΠΏΠΎΡΠΎΠ± ΡΠ΅Π³ΡΠ»ΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΡΡΡΠ°Π²ΠΎΠΊ Π΄ΠΈΡΠΊΡΠ΅ΡΠ½ΡΠΉ, ΡΡΡΠΏΠ΅Π½Ρ ΡΠ΅Π³ΡΠ»ΠΈΡΠΎΠ²ΠΊΠΈ 5 Π. ΠΡΠ±Π΅ΡΠ΅ΠΌ UΠΎΡΠΏ=180 Π. Π Π΅Π»Π΅ ΠΈΠΌΠ΅Π΅Ρ Π΄Π²Π° Π·Π°ΠΌΡΠΊΠ°ΡΡΠΈΡ ΠΈ Π΄Π²Π° ΡΠ°Π·ΠΌΡΠΊΠ°ΡΡΠΈΡ ΠΊΠΎΠ½ΡΠ°ΠΊΡΠ°.
4.4 ΠΡΠ±ΠΎΡ ΡΠ΅Π»Π΅ ΡΠΎΠΊΠ° Π Π΅Π»Π΅ ΡΠΎΠΊΠ° (ΡΠ΅ΠΏΠ»ΠΎΠ²ΠΎΠ΅ ΡΠ΅Π»Π΅) Π΄ΠΎΠ»ΠΆΠ½ΠΎ ΡΡΠ°Π±Π°ΡΡΠ²Π°ΡΡ ΠΏΡΠΈ ΠΏΡΠ΅Π²ΡΡΠ΅Π½ΠΈΠΈ ΡΠΎΠΊΠΎΠΌ ΡΡΠ°ΡΠΎΡΠ° ΡΠ²ΠΎΠ΅Π³ΠΎ Π½ΠΎΠΌΠΈΠ½Π°Π»ΡΠ½ΠΎΠ³ΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΡ Π, ΠΏΠΎΡΡΠΎΠΌΡ Π²ΡΠ±ΠΈΡΠ°Π΅ΠΌ ΡΠ΅Π»Π΅ ΡΠΎΠΊΠ° Π’Π Π34 Ρ ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡΠ½ΡΠΌ ΡΠΎΠΊΠΎΠΌ ΡΡΠ°Π±Π°ΡΡΠ²Π°Π½ΠΈΡ Π. Π Π΅Π»Π΅ ΠΈΠΌΠ΅Π΅Ρ ΠΎΠ΄ΠΈΠ½ Π·Π°ΠΌΡΠΊΠ°ΡΡΠΈΠΉ ΠΈ ΠΎΠ΄ΠΈΠ½ ΡΠ°Π·ΠΌΡΠΊΠ°ΡΡΠΈΠΉ ΠΊΠΎΠ½ΡΠ°ΠΊΡΡ.
4.5 ΠΡΠ±ΠΎΡ ΡΠ»Π΅ΠΊΡΡΠΎΠΌΠ°Π³Π½ΠΈΡΠ½ΠΎΠ³ΠΎ ΡΠΎΡΠΌΠΎΠ·Π° ΠΠ»Π΅ΠΊΡΡΠΎΠΌΠ°Π³Π½ΠΈΡΠ½ΡΠΉ ΡΠΎΡΠΌΠΎΠ· Π²ΡΠ±ΠΈΡΠ°Π΅ΠΌ ΠΈΡΡ ΠΎΠ΄Ρ ΠΈΠ· ΠΌΠΎΠΌΠ΅Π½ΡΠ° ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΡ Π½Π° Π²Π°Π»Ρ Π΄Π²ΠΈΠ³Π°ΡΠ΅Π»Ρ. ΠΠ΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΡΠΉ ΡΠΎΡΠΌΠΎΠ·Π½ΠΎΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ ΡΠΎΡΡΠ°Π²Π»ΡΠ΅Ρ:
(4.4.1)
Π³Π΄Π΅ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ Π·Π°ΠΏΠ°ΡΠ° ΡΠΎΡΠΌΠΎΠ·Π½ΠΎΠ³ΠΎ ΠΌΠΎΠΌΠ΅Π½ΡΠ° ΠΠΎ Π΄Π°Π½Π½ΠΎΠΌΡ ΡΠΎΡΠΌΠΎΠ·Π½ΠΎΠΌΡ ΠΌΠΎΠΌΠ΅Π½ΡΡ Π²ΡΠ±ΠΈΡΠ°Π΅ΠΌ ΡΠ»Π΅ΠΊΡΡΠΎΠΌΠ°Π³Π½ΠΈΡΠ½ΡΠΉ ΡΠΎΡΠΌΠΎΠ· ΠΏΠΎΡΡΠΎΡΠ½Π½ΠΎΠ³ΠΎ ΡΠΎΠΊΠ° Π’ΠΠ 800 Ρ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠ°ΠΌΠΈ:
— ΡΠΎΡΠΌΠΎΠ·Π½ΠΎΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ, ΠΒ· ΠΌ;
— ΠΌΠΎΡΠ½ΠΎΡΡΡ, ΠΏΠΎΡΡΠ΅Π±Π»ΡΠ΅ΠΌΠ°Ρ ΠΊΠ°ΡΡΡΠΊΠΎΠΉ ΡΠ»Π΅ΠΊΡΡΠΎΠΌΠ°Π³Π½ΠΈΡΠ½ΠΎΠ³ΠΎ ΡΠΎΡΠΌΠΎΠ·Π°, ΠΡ.
4.6 ΠΡΠ±ΠΎΡ ΠΌΠ°Π³Π½ΠΈΡΠ½ΡΡ ΠΊΠΎΠ½ΡΠ°ΠΊΡΠΎΡΠΎΠ² ΠΠΎΠ½ΡΠ°ΠΊΡΠΎΡΡ KM1, ΠΠ2 Π·Π°ΠΌΡΠΊΠ°ΡΡ ΡΠ΅ΠΏΠΈ ΡΡΠ°ΡΠΎΡΠΎΠ².
Π Π°ΡΡΡΠΈΡΠ°Π΅ΠΌ ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡΠ½ΡΠΉ ΡΠΎΠΊ Π² ΡΡΠ°ΡΠΎΡΠ΅:
(4.6.1)
Π³Π΄Π΅ — ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡΠ½ΡΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ Π΄Π²ΠΈΠ³Π°ΡΠ΅Π»Ρ;
— Π½ΠΎΠΌΠΈΠ½Π°Π»ΡΠ½ΡΠΉ ΡΠΎΠΊ ΡΡΠ°ΡΠΎΡΠ°;
— Π½ΠΎΠΌΠΈΠ½Π°Π»ΡΠ½ΡΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ Π΄Π²ΠΈΠ³Π°ΡΠ΅Π»Ρ.
ΠΠ°ΠΊΡΠΈΠΌΠ°Π»ΡΠ½ΡΠΉ ΡΠΎΠΊ ΡΡΠ°ΡΠΎΡΠ°, ΠΏΠΎΡΡΠΎΠΌΡ Π²ΡΠ±ΠΈΡΠ°Π΅ΠΌ ΠΊΠΎΠ½ΡΠ°ΠΊΡΠΎΡ ΠΌΠ°Π³Π½ΠΈΡΠ½ΡΠΉ KΠ’-6003Π c Π½ΠΎΠΌΠΈΠ½Π°Π»ΡΠ½ΡΠΌ ΡΠΎΠΊΠΎΠΌ. ΠΠΎΠ½ΡΠ°ΠΊΡΠΎΡ ΠΈΠΌΠ΅Π΅Ρ: ΠΎΡΠ½ΠΎΠ²Π½ΡΠ΅ ΠΊΠΎΠ½ΡΠ°ΠΊΡΡ — 4 Π·Π°ΠΌΡΠΊΠ°ΡΡΠΈΡ , Π²ΡΠΏΠΎΠΌΠΎΠ³Π°ΡΠ΅Π»ΡΠ½ΡΠ΅ — ΠΏΠΎ 2 Π·Π°ΠΌΡΠΊΠ°ΡΡΠΈΡ ΠΈ ΡΠ°Π·ΠΌΡΠΊΠ°ΡΡΠΈΡ .
ΠΠΎΠ½ΡΠ°ΠΊΡΠΎΡΡ ΠΠ3-ΠΠ11 ΡΡΠ½ΡΠΈΡΡΡΡ ΡΠ΅ΠΏΡ ΡΠΎΡΠΎΡΠ°.
ΠΠ°ΠΊΡΠΈΠΌΠ°Π»ΡΠ½ΡΠΉ ΡΠΎΠΊ ΡΠΎΡΠΎΡΠ°:
(4.6.2)
Π³Π΄Π΅ — ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡΠ½ΡΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ Π΄Π²ΠΈΠ³Π°ΡΠ΅Π»Ρ;
— Π½ΠΎΠΌΠΈΠ½Π°Π»ΡΠ½ΡΠΉ ΡΠΎΠΊ ΡΠΎΡΠΎΡΠ°;
— Π½ΠΎΠΌΠΈΠ½Π°Π»ΡΠ½ΡΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ Π΄Π²ΠΈΠ³Π°ΡΠ΅Π»Ρ.
ΠΠ°ΠΊΡΠΈΠΌΠ°Π»ΡΠ½ΡΠΉ ΡΠΎΠΊ ΡΠΎΡΠΎΡΠ°, ΠΏΠΎΡΡΠΎΠΌΡ Π²ΡΠ±ΠΈΡΠ°Π΅ΠΌ ΠΊΠΎΠ½ΡΠ°ΠΊΡΠΎΡ ΠΌΠ°Π³Π½ΠΈΡΠ½ΡΠΉ, ΠΠ’Π6053 Ρ Π½ΠΎΠΌΠΈΠ½Π°Π»ΡΠ½ΡΠΌ ΡΠΎΠΊΠΎΠΌ. ΠΠΎΠ½ΡΠ°ΠΊΡΠΎΡ ΠΈΠΌΠ΅Π΅Ρ: ΠΎΡΠ½ΠΎΠ²Π½ΡΠ΅ ΠΊΠΎΠ½ΡΠ°ΠΊΡΡ — 4 Π·Π°ΠΌΡΠΊΠ°ΡΡΠΈΡ ; Π²ΡΠΏΠΎΠΌΠΎΠ³Π°ΡΠ΅Π»ΡΠ½ΡΠ΅ — 2 Π·Π°ΠΌΡΠΊΠ°ΡΡΠΈΡ ΠΈ 2 ΡΠ°Π·ΠΌΡΠΊΠ°ΡΡΠΈΡ .
ΠΠΎΠ½ΡΠ°ΠΊΡΠΎΡ ΠΠ12, Π·Π°ΠΌΡΠΊΠ°Π΅Ρ ΡΠ΅ΠΏΡ ΡΠ»Π΅ΠΊΡΡΠΎΠΌΠ°Π³Π½ΠΈΡΠ½ΠΎΠ³ΠΎ ΡΠΎΡΠΌΠΎΠ·Π°. ΠΡΠ±ΠΈΡΠ°Π΅ΠΌ ΠΊΠΎΠ½ΡΠ°ΠΊΡΠΎΡ ΠΌΠ°Π³Π½ΠΈΡΠ½ΡΠΉ, ΠΠΠ600 c Π½ΠΎΠΌΠΈΠ½Π°Π»ΡΠ½ΡΠΌ ΡΠΎΠΊΠΎΠΌ. ΠΠΎΠ½ΡΠ°ΠΊΡΠΎΡ ΠΈΠΌΠ΅Π΅Ρ: ΠΎΡΠ½ΠΎΠ²Π½ΡΠ΅ ΠΊΠΎΠ½ΡΠ°ΠΊΡΡ — 2 Π·Π°ΠΌΡΠΊΠ°ΡΡΠΈΡ , Π²ΡΠΏΠΎΠΌΠΎΠ³Π°ΡΠ΅Π»ΡΠ½ΡΠ΅ — ΠΏΠΎ 1 Π·Π°ΠΌΡΠΊΠ°ΡΡΠ΅ΠΌΡ ΠΈ 1 ΡΠ°Π·ΠΌΡΠΊΠ°ΡΡΠ΅ΠΌΡ.
ΠΠΎΠ½ΡΠ°ΠΊΡΠΎΡ ΠΠ13 ΠΏΠΎΠ΄ΠΊΠ»ΡΡΠ°Π΅Ρ ΡΠ΅ΠΏΡ Π΄ΠΈΠ½Π°ΠΌΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΡΠΎΡΠΌΠΎΠΆΠ΅Π½ΠΈΡ.
Π’ΠΎΠΊ ΡΡΠ°ΡΠΎΡΠ° ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ΅ΡΡΡ ΠΏΠΎ ΡΠ»Π΅Π΄ΡΡΡΠ΅ΠΉ ΡΠΎΡΠΌΡΠ»Π΅:
(4.6.3)
Π³Π΄Π΅ — Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΠ΅ ΠΏΠΈΡΠ°Π½ΠΈΡ ΡΡΠ°ΡΠΎΡΠ° Π² ΡΠ΅ΠΆΠΈΠΌΠ΅ Π΄ΠΈΠ½Π°ΠΌΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΡΠΎΡΠΌΠΎΠΆΠ΅Π½ΠΈΡ;
— ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅ ΠΎΠ±ΠΌΠΎΡΠΊΠΈ ΡΡΠ°ΡΠΎΡΠ°.
Π²ΡΡΠ°Π·ΠΈΠΌ ΠΈΠ· ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ:
(4.6.4)
ΠΠΎΠ»ΡΡΠΈΠΌ:
Π³Π΄Π΅ — ΠΊΡΠΈΡΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΡΠΊΠΎΠ»ΡΠΆΠ΅Π½ΠΈΠ΅;
— ΠΏΡΠΈΠ²Π΅Π΄Π΅Π½Π½ΠΎΠ΅ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅ ΡΠΎΡΠΎΡΠ°;
— ΡΠ°Π·Π½ΠΎΠ΅ Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΠ΅ ΡΡΠ°ΡΠΎΡΠ°.
ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ΅ΡΡΡ ΠΏΠΎ ΡΠ»Π΅Π΄ΡΡΡΠ΅ΠΉ ΡΠΎΡΠΌΡΠ»Π΅:
(4.6.5)
Π³Π΄Π΅ n — ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ ΡΡΠ°Π½ΡΡΠΎΡΠΌΠ°ΡΠΈΠΈ.
ΠΠ³ΠΎ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ ΠΈΠ· ΡΠΎΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΡ ΡΠΎΠΊΠΎΠ² ΡΡΠ°ΡΠΎΡΠ° ΠΈ ΡΠΎΡΠΎΡΠ°:
(4.6.6)
ΡΠΎΠ³Π΄Π°:
ΠΠ°ΠΉΠ΄Π΅Π½Π½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΡΠΎΠΊΠ° ΡΡΠ°ΡΠΎΡΠ° ΠΌΠ΅Π½ΡΡΠ΅ Π½ΠΎΠΌΠΈΠ½Π°Π»ΡΠ½ΠΎΠ³ΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΡ (), ΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ Π² Π΄ΠΎΠ±Π°Π²ΠΎΡΠ½ΠΎΠΌ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠΈ Π½Π΅Ρ Π½Π΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΠΎΡΡΠΈ.
ΠΡΠ±ΠΈΡΠ°Π΅ΠΌ ΠΊΠΎΠ½ΡΠ°ΠΊΡΠΎΡ ΠΌΠ°Π³Π½ΠΈΡΠ½ΡΠΉ KΠ’-6003Π c Π½ΠΎΠΌΠΈΠ½Π°Π»ΡΠ½ΡΠΌ ΡΠΎΠΊΠΎΠΌ. ΠΠΎΠ½ΡΠ°ΠΊΡΠΎΡ ΠΈΠΌΠ΅Π΅Ρ: ΠΎΡΠ½ΠΎΠ²Π½ΡΠ΅ ΠΊΠΎΠ½ΡΠ°ΠΊΡΡ — 4 Π·Π°ΠΌΡΠΊΠ°ΡΡΠΈΡ , Π²ΡΠΏΠΎΠΌΠΎΠ³Π°ΡΠ΅Π»ΡΠ½ΡΠ΅ — ΠΏΠΎ 2 Π·Π°ΠΌΡΠΊΠ°ΡΡΠΈΡ ΠΈ ΡΠ°Π·ΠΌΡΠΊΠ°ΡΡΠΈΡ .
4.7 ΠΡΠ±ΠΎΡ ΡΡΠ°Π½ΡΡΠΎΡΠΌΠ°ΡΠΎΡΠ° Π’.ΠΊ. ΡΠ΅ΠΏΡ ΡΠΏΡΠ°Π²Π»Π΅Π½ΠΈΡ ΠΏΠΈΡΠ°Π΅ΡΡΡ ΠΎΡ ΠΏΠΎΡΡΠΎΡΠ½Π½ΠΎΠ³ΠΎ Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΡ 220 Π, ΡΠΎ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠ΅ Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΠ΅ ΡΠ΅ΡΠΈ 6ΠΊΠ Π½Π΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΠΎ ΠΏΠΎΠ½ΠΈΠ·ΠΈΡΡ Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΡΡΠ°Π½ΡΡΠΎΡΠΌΠ°ΡΠΎΡΠ° Π΄ΠΎ 230 Π, Π° Π·Π°ΡΠ΅ΠΌ Π΅Π³ΠΎ Π²ΡΠΏΡΡΠΌΠΈΡΡ Ρ ΠΏΠΎΠΌΠΎΡΡΡ Π΄Π²ΡΡ ΠΏΠΎΠ»ΡΠΏΠ΅ΡΠΈΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΎΠ΄Π½ΠΎΡΠ°Π·Π½ΠΎΠ³ΠΎ Π²ΡΠΏΡΡΠΌΠΈΡΠ΅Π»Ρ.
ΠΠΎΡΠ½ΠΎΡΡΡ, ΠΏΠΎΡΡΠ΅Π±Π»ΡΠ΅ΠΌΠ°Ρ ΡΡ Π΅ΠΌΠΎΠΉ ΡΠΏΡΠ°Π²Π»Π΅Π½ΠΈΡ ΠΈ ΡΠ»Π΅ΠΊΡΡΠΎΠΌΠ°Π³Π½ΠΈΡΠ½ΡΠΌ ΡΠΎΡΠΌΠΎΠ·ΠΎΠΌ:
(4.7.1)
Π³Π΄Π΅ — ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²ΠΎ ΡΠ΅Π»Π΅ Π² ΡΡ Π΅ΠΌΠ΅ ΡΠΏΡΠ°Π²Π»Π΅Π½ΠΈΡ;
y=13 — ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²ΠΎ ΡΠ»Π΅ΠΊΡΡΠΎΠΌΠ°Π³Π½ΠΈΡΠ½ΡΡ ΠΊΠΎΠ½ΡΠ°ΠΊΡΠΎΡΠΎΠ² Π² ΡΡ Π΅ΠΌΠ΅ ΡΠΏΡΠ°Π²Π»Π΅Π½ΠΈΡ;
ΠΠ — ΡΡΠ΅Π΄Π½ΡΡ ΠΏΠΎΠ»Π½Π°Ρ ΠΌΠΎΡΠ½ΠΎΡΡΡ ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΡΠ΅Π»Π΅;
ΠΠ — ΡΡΠ΅Π΄Π½ΡΡ ΠΏΠΎΠ»Π½Π°Ρ ΠΌΠΎΡΠ½ΠΎΡΡΡ ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΊΠΎΠ½ΡΠ°ΠΊΡΠΎΡΠ°;
ΠΠ — ΠΏΠΎΠ»Π½Π°Ρ ΠΌΠΎΡΠ½ΠΎΡΡΡ ΡΠ»Π΅ΠΊΡΡΠΎΠΌΠ°Π³Π½ΠΈΡΠ½ΠΎΠ³ΠΎ ΡΠΎΡΠΌΠΎΠ·Π°;
ΠΠ.
ΠΠΎΡΠ½ΠΎΡΡΡ ΡΡΠ°Π½ΡΡΠΎΡΠΌΠ°ΡΠΎΡΠ°:
ΠΠ.
ΠΡΠ±ΠΈΡΠ°Π΅ΠΌ ΠΎΠ΄Π½ΠΎΡΠ°Π·Π½ΡΠΉ Π΄Π²ΡΡ ΠΎΠ±ΠΌΠΎΡΠΎΡΠ½ΡΠΉ ΡΡΠ°Π½ΡΡΠΎΡΠΌΠ°ΡΠΎΡ ΠΠΠ-25/6 Ρ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠ°ΠΌΠΈ:
— ΠΏΠΎΠ»Π½Π°Ρ ΠΌΠΎΡΠ½ΠΎΡΡΡ ΡΡΠ°Π½ΡΡΠΎΡΠΌΠ°ΡΠΎΡΠ°, ΠΊΠΠ;
— Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΠ΅ Π²ΡΡΡΠ΅ΠΉ ΠΎΠ±ΠΌΠΎΡΠΊΠΈ, ΠΊΠ;
— Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΠ΅ Π½ΠΈΠ·ΡΠ΅ΠΉ ΠΎΠ±ΠΌΠΎΡΠΊΠΈ, Π.
ΠΠ°ΠΊΠ»ΡΡΠ΅Π½ΠΈΠ΅
Π Π°ΡΡΡΠΈΡΠ°Π½Π½ΡΠΉ ΡΠ»Π΅ΠΊΡΡΠΎΠΏΡΠΈΠ²ΠΎΠ΄ ΠΎΡΠ²Π΅ΡΠ°Π΅Ρ Π²ΡΠ΅ΠΌ ΡΡΠ΅Π±ΠΎΠ²Π°Π½ΠΈΡΠΌ ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΠΎΠ³ΠΎ Π·Π°Π΄Π°Π½ΠΈΡ. ΠΡΠΈ ΠΏΠΎΡΡΡΠΎΠ΅Π½ΠΈΠΈ ΠΏΡΡΠΊΠΎΠ²ΠΎΠΉ ΠΈ ΡΠΎΡΠΌΠΎΠ·Π½ΠΎΠΉ Π΄ΠΈΠ°Π³ΡΠ°ΠΌΠΌΡ ΠΏΠΎΠ³ΡΠ΅ΡΠ½ΠΎΡΡΡ Π² ΡΠ°ΡΡΠ΅ΡΠ°Ρ Π½Π΅ ΠΏΡΠ΅Π²ΡΡΠ°Π΅Ρ 5%, ΡΡΠΎ ΡΠ΄ΠΎΠ²Π»Π΅ΡΠ²ΠΎΡΡΠ΅Ρ ΠΈΠ½ΠΆΠ΅Π½Π΅ΡΠ½ΡΠΌ ΡΠ°ΡΡΠ΅ΡΠ°ΠΌ. Π‘ΠΏΡΠΎΠ΅ΠΊΡΠΈΡΠΎΠ²Π°Π½Π½ΡΠΉ Π°Π²ΡΠΎΠΌΠ°ΡΠΈΠ·ΠΈΡΠΎΠ²Π°Π½Π½ΡΠΉ ΡΠ»Π΅ΠΊΡΡΠΎΠΏΡΠΈΠ²ΠΎΠ΄ ΠΌΠΎΠΆΠ΅Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡΡΡ Π² Π΄Π»ΠΈΡΠ΅Π»ΡΠ½ΠΎΠΌ ΡΠ΅ΠΆΠΈΠΌΠ΅.
Π‘Ρ Π΅ΠΌΠ° ΡΠΏΡΠ°Π²Π»Π΅Π½ΠΈΡ ΠΎΠ±Π΅ΡΠΏΠ΅ΡΠΈΠ²Π°Π΅Ρ ΡΠΈΠΊΠ»ΠΈΡΠ½ΠΎΡΡΡ ΡΠ°Π±ΠΎΡΡ ΡΠ»Π΅ΠΊΡΡΠΎΠΏΡΠΈΠ²ΠΎΠ΄Π°, ΠΏΡΡΠΊ Π΄Π²ΠΈΠ³Π°ΡΠ΅Π»Ρ Π² ΡΠ΅ΡΡΡΠ΅ ΡΡΡΠΏΠ΅Π½ΠΈ Π² ΡΡΠ½ΠΊΡΠΈΠΈ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ, ΡΠΎΡΠΌΠΎΠΆΠ΅Π½ΠΈΠ΅ — Π² Π΄Π²Π΅ ΡΡΡΠΏΠ΅Π½ΠΈ Π² ΡΡΠ½ΠΊΡΠΈΠΈ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ. Π ΡΠ»ΡΡΠ°Π΅ ΠΏΡΠΈΠ½ΡΠ΄ΠΈΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ ΠΈΠ»ΠΈ Π°Π²Π°ΡΠΈΠΉΠ½ΠΎΠ³ΠΎ ΠΎΡΠΊΠ»ΡΡΠ΅Π½ΠΈΡ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡΡΡ Π΄ΠΈΠ½Π°ΠΌΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΡΠΎΡΠΌΠΎΠΆΠ΅Π½ΠΈΠ΅.
Π‘Ρ Π΅ΠΌΠ° ΡΠΏΡΠ°Π²Π»Π΅Π½ΠΈΡ ΠΈΠΌΠ΅Π΅Ρ ΡΠ»Π΅Π΄ΡΡΡΠΈΠ΅ Π²ΠΈΠ΄Ρ Π·Π°ΡΠΈΡ: Π·Π°ΡΠΈΡΡ ΠΎΡ ΠΏΠ΅ΡΠ΅Π³ΡΡΠ·ΠΊΠΈ ΠΈ Π·Π°ΡΠΈΡΡ ΠΎΡ ΡΠ½ΠΈΠΆΠ΅Π½ΠΈΡ, ΠΏΠΈΡΠ°ΡΡΠ΅Π³ΠΎ Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΡ. ΠΠ»Ρ Π½Π°Π΄Π΅ΠΆΠ½ΠΎΠΉ ΡΠΈΠΊΡΠ°ΡΠΈΠΈ ΠΈΡΠΏΠΎΠ»Π½ΠΈΡΠ΅Π»ΡΠ½ΡΡ ΠΎΡΠ³Π°Π½ΠΎΠ² ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½Ρ ΡΠ»Π΅ΠΊΡΡΠΎΠΌΠ°Π³Π½ΠΈΡΠ½ΡΠ΅ ΡΠΎΡΠΌΠΎΠ·Π°.
ΠΠΈΠ±Π»ΠΈΠΎΠ³ΡΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΠΉ ΡΠΏΠΈΡΠΎΠΊ
1. ΠΠ»ΠΈΠ΅Π² Π. Π. ΠΠ»Π΅ΠΊΡΡΠΎΡΠ΅Ρ Π½ΠΈΡΠ΅ΡΠΊΠΈΠΉ ΡΠΏΡΠ°Π²ΠΎΡΠ½ΠΈΠΊ. — 4-Π΅ ΠΈΠ·Π΄. ΠΈΡΠΏΡ. — Π. ΠΠ Π Π°Π΄ΠΈΠΎΠ‘ΠΎΡΡ 2006 — 384 Ρ. ΠΠ».
2. ΠΡΡΠΊΠΎΠ² Π. Π. ΠΠ΅ΡΠΎΠ΄ΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΠΊΠ°Π·Π°Π½ΠΈΡ ΠΊ ΠΊΡΡΡΠΎΠ²ΠΎΠΌΡ ΠΏΡΠΎΠ΅ΠΊΡΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΠΏΠΎ ΠΊΡΡΡΡ «Π’Π΅ΠΎΡΠΈΡ ΡΠ»Π΅ΠΊΡΡΠΎΠΏΡΠΈΠ²ΠΎΠ΄Π°» — Π£Ρ ΡΠ°. Π£ΠΠ 1989.
3. ΠΡΡΠ΅Π²ΠΈΡ Π. Π. Π‘ΠΏΡΠ°Π²ΠΎΡΠ½ΡΠ΅ Π΄Π°Π½Π½ΡΠ΅ ΠΏΠΎ ΡΠ»Π΅ΠΊΡΡΠΎΠΎΠ±ΠΎΡΡΠ΄ΠΎΠ²Π°Π½ΠΈΡ. Π’. 1−3. — Π. «ΠΠ½Π΅ΡΠ³ΠΈΡ», 1964 Π³.
4. ΠΠ°ΠΊΡΠ΅Π²ΠΈΡΠΊΠΈΠΉ Π. Π. Π‘ΠΏΡΠ°Π²ΠΎΡΠ½ΠΈΠΊ ΡΠ΅Π»Π΅ Π·Π°ΡΠΈΡΡ ΠΈ Π°Π²ΡΠΎΠΌΠ°ΡΠΈΠΊΠΈ — Π. ΠΠΎΡΡΠ΄Π°ΡΡΡΠ²Π΅Π½Π½ΠΎΠ΅ ΡΠ½Π΅ΡΠ³Π΅ΡΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΠΈΠ·Π΄Π°Π½ΠΈΠ΅ 1962 — 191Ρ.
5. ΠΠΎΡΠΊΠ°Π»Π΅Π½ΠΊΠΎ Π. Π. ΠΠ²ΡΠΎΠΌΠ°ΡΠΈΠ·ΠΈΡΠΎΠ²Π°Π½Π½ΡΠΉ ΡΠ»Π΅ΠΊΡΡΠΎΠΏΡΠΈΠ²ΠΎΠ΄ — Π. «ΠΠ½Π΅ΡΠ³ΠΎΠ°ΡΠΎΠΌΠΈΠ·Π΄Π°Ρ» 1986 — 416Ρ.