Помощь в написании студенческих работ
Антистрессовый сервис

Построение оптимальных моделей ДНК-сайтов связывания факторов транскрипции высших эукариот на основе данных различных экспериментальных методов

ДиссертацияПомощь в написанииУзнать стоимостьмоей работы

Создан набор программных средств, реализующих предложенные алгоритмы. Созданные программы позволяют на базе различных вычислительных платформ анализировать данные, полученные с использованием широкого спектра экспериментальных методик. Создан единый вычислительный конвейер, интегрирующий новые алгоритмы и существующие программные инструменты АЬоРго и 8е81МСМС. Разработан метод построения… Читать ещё >

Построение оптимальных моделей ДНК-сайтов связывания факторов транскрипции высших эукариот на основе данных различных экспериментальных методов (реферат, курсовая, диплом, контрольная)

Содержание

  • Актуальность темы
  • Цели и задачи исследования
  • Научная новизна
  • Практическое значение
  • Апробация работы

Выводы.

1. Разработан метод построения оптимальной модели ССТФ с использованием экспериментальных данных, полученных традиционными экспериментальными методами. Метод реализован в виде вычислительного алгоритма Показано, что при использовании данных ДНК футпринтинга для построения мотивов, распознаваемых ССТФ, необходимо использовать участки генома, прилегающие к картированным футпринтам. Предложен алгоритм, реализующий учет информации, содержащейся в геномных фланках футпринтов, при построении ОБЛВ.

2. Разработан метод построения оптимальной модели ССТФ путем интеграции данных различных экспериментальных методов, включая современные высокопроизводительные техники на базе иммунопреципитации хроматина. Метод реализован в виде вычислительного алгоритма СЫршипк.

3. Создан набор программных средств, реализующих предложенные алгоритмы. Созданные программы позволяют на базе различных вычислительных платформ анализировать данные, полученные с использованием широкого спектра экспериментальных методик. Создан единый вычислительный конвейер, интегрирующий новые алгоритмы и существующие программные инструменты АЬоРго и 8е81МСМС.

4. Создана коллекция мотивов связывания факторов регуляции транскрипции ВгоБорЬИа те1апо^аз1ег, содержащая мотивы, полученные с использованием практически всей экспериментальной информации, представленной в открытых источниках. Показано, что разработанные методы позволяют выявить мотивы связывания, превосходящие по своим характеристикам известные мотивы связывания, для широкого набора белков-регуляторов транскрипции.

5. Разработанные программные средства и построенные коллекции уточненных мотивов доступны в сети Интернет по адресам: http://line.imb .ac.ru/DMMPMM, http://line.imb. ac.ru/iDMMPMM, http://line.imb.ac.ru/Chipmunk.

1. Abramowitz, M. and Stegun, I.A. (1972) Handbook of Mathematical Functions, Dover Publications, New York.

2. Angarica, V.E., Perez, A.G., Vasconcelos, A.T. et al. (2008) Prediction of TF target sites based on atomistic models of protein-DNA complexes. BMC Bioinformatics, 9, 436.

3. Ao, W., Gaudet, J., Kent, W.J. et al. (2004) Environmentally induced foregut remodeling by PHA-4/FoxA and D AF-12/NHR. Science, 305, 1743−1746.

4. Badis, G., Berger, M.F., Philippakis, A.A. et al. (2009) Diversity and complexity in DNA recognition by transcription factors. Science, 324(5935), 1720−1723.

5. Bailey, T.L., Boden, M., Buske, F. A. et al. (2009) MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res, 37, W202-W208.

6. Barski, A., Cuddapah, S., Cui, K. et al. (2007) High-resolution profiling of histone methylations in the human genome. Cell, 129, 823−837.

7. Beckstette, M., Homann, R., Giegerich, R. et al. (2006) Fast index based algorithms and software for matching position specific scoring matrices. BMC Bioinformatics, 1, 389.

8. Ben-Gal, I., Shani, A., Gohr, A. et al. (2005) Identification of transcription factor binding sites with variable-order Bayesian networks. Bioinformatics, 21, 2657−2666.

9. Ben-Tabou de-Leon, S. and Davidson, E.H. (2007) Gene regulation: gene control network in development. An пи Rev Biophys Biomol Struct, 36, 191.

10. Benizri, E., Ginouves, A. and Berra, E. (2008) The magic of the hypoxia-signaling cascade. Cell Mol Life Sei, 65, 1133−1149.

11. Benos, P.V., Bulyk, M.L. and Stormo, G.D. (2002) Additivity in protein-DNAinteractions: how good an approximation is it?. Nucleic Acids Res, 30, 4442−4451.

12. Berg, O.G. and von Hippel, P.H. (1987) Selection of DNA binding sites by regulatory proteins. Statistical-mechanical theory and application to operators and promoters. JMolBiol, 193, 723−750.

13. Berger, M.F., Philippakis, A.A., Qureshi, A.M. et al. (2006) Compact, universal DNA microarrays to comprehensively determine transcription-factor binding site specificities. Nat Biotechnol, 24, 1429−1435.

14. Bergman, C.M., Carlson, J.W. and Celniker, S.E. (2005) Drosophila DNase I footprint database: a systematic genome annotation of transcription factor binding sites in the fruitfly, Drosophila melanogaster. Bioinformatics, 21, 1747−1749.

15. Berman, H.M., Olson, W.K., Beveridge, D.L. et al. (1992) The nucleic acid database. A comprehensive relational database of three-dimensional structures of nucleic acids. BiophysJ, 63, 751−759.

16. Blackwell, T.K. and Weintraub, H. (1990) Differences and similarities in DNA-binding preferences of MyoD and E2A protein complexes revealed by binding site selection. Science, 250, 1104−1110.

17. Blanchette, M., Schwikowski, B. and Tompa, M. (2002) Algorithms for phylogenetic footprinting. J Comput Biol, 9, 211−223.

18. Boeva, V., Clement, J., Regnier, M. et al. (2007) Exact P-value calculation for heterotypic clusters of regulatory motifs and its application in computational annotation of cis-regulatory modules. Algorithms Mol Biol, 2, 13.

19. Boeva, V., Regnier, M., Papatsenko, D. et al. (2006) Short fuzzy tandem repeats in genomic sequences, identification, and possible role in regulation of gene expression. Bioinformatics, 22, 676−684.

20. Boffelli, D., McAuliffe, J., Ovcharenko, D. et al. (2003) Phylogenetic shadowing of primate sequences to find functional regions of the human genome. Science, 299, 1391−1394.

21. Brazma, A., Jonassen, I., Vilo, J. et al. (1998) Predicting gene regulatoryelements in silico on a genomic scale. Genome Res, 8, 1202−1215.

22. Brivanlou, A.H. and Darnell, J E, Jr (2002) Signal transduction and the control of gene expression. Science, 295, 813−818.

23. Biyne, J.C., Valen, E., Tang, M.H. et al. (2008) JASPAR, the open access database of transcription factor-binding profiles: new content and tools in the 2008 update. Nucleic Acids Res, 36, D102−6.

24. Buck, M.J. and Lieb, J.D. (2004) ChlP-chip: considerations for the design, analysis, and application of genome-wide chromatin immunoprecipitation experiments. Genomics, 83, 349−360.

25. Bulyk, M.L. (2006) DNA microarray technologies for measuring protein-DNA interactions. Curr Opin Biotechnol, 17, 422−430.

26. Bulyk, M.L., Johnson, P.L. and Church, G.M. (2002) Nucleotides of transcription factor binding sites exert interdependent effects on the binding affinities of transcription factors. Nucleic Acids Res, 30, 1255−1261.

27. Butler, J.E. and Kadonaga, J.T. (2002) The RNA polymerase II core promoter: a key component in the regulation of gene expression. Genes Dev, 16, 2583−2592.

28. Cawley, S., Bekiranov, S., Ng, H.H. et al. (2004) Unbiased mapping of transcription factor binding sites along human chromosomes 21 and 22 points to widespread regulation of noncoding RNAs. Cell, 116(4), 499−509.

29. Chen, X., Guo, L., Fan, Z. et al. (2008) W-AlignACE: an improved Gibbs sampling algorithm based on more accurate position weight matrices learned from sequence and gene expression/ChlP-chip data. Bioinformatics, 24, 1121−1128.

30. Chen, Z., Lewis, K.A., Shultzaberger, R.K. et al. (2007) Discovery of Fur binding site clusters in Escherichia coli by information theory models. Nucleic Acids Res, 35, 6762−6777.

31. Cliften, P.F., Hillier, L.W., Fulton, L. et al. (2001) Surveying Saccharomyces genomes to identify functional elements by comparative DNA sequence analysis. Genome Res, 11, 1175−1186.

32. Contreras-Moreira, B., Branger, P.A. and Collado-Vides, J. (2007) TFmodeller: comparative modelling of protein-DNA complexes. Bioinformatics, 23, 1694−1696.

33. Dai, S.M., Chen, H.H., Chang, C. et al. (2000) Ligation-mediated PCR for quantitative in vivo footprinting. Nat Biotechnol, 18, 1108−1111.

34. Das, D., Banerjee, N. and Zhang, M.Q. (2004) Interacting models of cooperative gene regulation. Proc Natl Acad Sci USA, 101, 16 234−16 239.

35. Das, M.K. and Dai, H.K. (2007) A survey of DNA motif finding algorithms. BMC Bioinformatics, 8 Suppl 7, S21.

36. Day, W.H. and McMorris, F.R. (1992) Critical comparison of consensus methods for molecular sequences. Nucleic Acids Res, 20, 1093−1099.

37. Eskin, E. and Pevzner, P.A. (2002) Finding composite regulatory patterns in DNA sequences. Bioinformatics, 18 Suppl 1, S354−63.

38. Ettwiller, L., Paten, B., Ramialison, M. et al. (2007) Trawler: de novo regulatory motif discovery pipeline for chromatin immunoprecipitation. Nat Methods, 4, 563 565.

39. Euskirchen, G.M., Rozowsky, J.S., Wei, C.L. et al. (2007) Mapping of transcription factor binding regions in mammalian cells by ChIP: comparison of arrayand sequencing-based technologies. Genome Res, 17, 898−909.

40. Evan, G., Harrington, E., Fanidi, A. et al. (1994) Integrated control of cell proliferation and cell death by the c-myc oncogene. Philos Trans R Soc Lond B Biol Sci, 345, 269−275.

41. Favorov, A.V., Gelfand, M.S., Gerasimova, A.V. et al. (2005) A Gibbs sampler for identification of symmetrically structured, spaced DNA motifs with improved estimation of the signal length. Bioinformatics, 21, 2240−2245.

42. Fields, D.S., He, Y., Al-Uzri, A.Y. et al. (1997) Quantitative specificity of the Mnt repressor. JMol Biol, 271, 178−194.

43. Fratkin, E., Naughton, B.T., Brutlag, D.L. et al. (2006) MotifCut: regulatory motifs finding with maximum density subgraphs. Bioinformatics, 22, el50−7.

44. Frith, M.C., Saunders, N.F., Kobe, B. et al. (2008) Discovering sequence motifs with arbitrary insertions and deletions. PLoS Comput Biol, 4, el000071.

45. Fujioka, M., Miskiewicz, P., Raj, L. et al. (1996) Drosophila Paired regulates late even-skipped expression through a composite binding site for the paired domain and the homeodomain. Development, 122(9), 2697−2707.

46. Gershenzon, N.I., Stormo, G.D. and Ioshikhes, I.P. (2005) Computational technique for improvement of the position-weight matrices for the DNA/protein binding sites. Nucleic Acids Res, 33, 2290−2301.

47. Goodman, S.D., Velten, N.J., Gao, Q. et al. (1999) In vitro selection of integration host factor binding sites. JBacteriol, 181, 3246−3255.

48. Guille, M.J. and Kneale, G.G. (1997) Methods for the analysis of DNA-protein interactions. Mol Biotech, 8, 35−52.

49. Gupta, S., Stamatoyannopoulos, J.A., Bailey, T.L. et al. (2007) Quantifying similarity between motifs. Genome Biol, 8, R24.

50. Hampshire, A.J., Rusling, D.A., Broughton-Head, V.J. et al. (2007) Footprinting: a method for determining the sequence selectivity, affinity and kinetics of DNA-binding ligands. Methods, 42, 128−140.

51. Hannenhalli, S. (2008) Eukaryotic transcription factor binding sites-modeling and integrative search methods. Bioinformatics, 24, 1325−1331.

52. Hannenhalli, S. and Wang, L.S. (2005) Enhanced position weight matrices usingmixture models. Bioinformatics, 21 Suppl 1, i204−12.

53. Harr, R., Haggstrom, M. and Gustafsson, R (1983) Search algorithm for pattern match analysis of nucleic acid sequences. Nucleic Acids Res, 11, 2943−2957.

54. Heinemeyer, T., Wingender, E., Reuter, I. et al. (1998) Databases on transcriptional regulation: TRANSFAC, TRRD and COMPEL. Nucleic Acids Res, 26, 362−367.

55. Hertz, G.Z. and Stormo, G.D. (1999) Identifying DNA and protein patterns with statistically significant alignments of multiple sequences. Bioinformatics, 15, 563−577.

56. Hertz, G.Z., Hartzell, G W, 3rd and Stormo, G.D. (1990) Identification of consensus patterns in unaligned DNA sequences known to be functionally related. ComputAppl Biosci, 6, 81−92.

57. Hochheimer, A. and Tjian, R. (2003) Diversified transcription initiation complexes expand promoter selectivity and tissue-specific gene expression. Genes Dev, 17,1309−1320.

58. Ji, H., Vokes, S.A. and Wong, W.H. (2006) A comparative analysis of genome-wide chromatin immunoprecipitation data for mammalian transcription factors. Nucleic Acids Res, 34, el46.

59. Karin, M. (1990) Too many transcription factors: positive and negative interactions. New Biol, 2, 126−131.

60. Keilwagen, J., Baumbach, J., Kohl, T. A. et al. (2009) MotifAdjuster: a tool for computational reassessment of transcription factor binding site annotations. Genome Biol, 10(5), R46.

61. Kel-Margoulis, O.V., Kel, A.E., Reuter, I. et al. (2002) TRANSCompel: a database on composite regulatory elements in eukaryotic genes. Nucleic Acids Res, 30, 332−334.

62. Khouiy, G. and Gruss, P. (1983) Enhancer elements. Cell, 33, 313−314 ICing, O.D. and Roth, F.P. (2003) A non-parametric model for transcription factor binding sites. Nucleic Acids Res, 31, el 16.

63. Kolchanov, N.A., Ignatieva, E.V., Ananko, E.A. et al. (2002) Transcription Regulatory Regions Database (TRRD): its status in 2002. Nucleic Acids Res, 30, 312−317.

64. Man, T.K. and Stormo, G.D. (2001) Non-independence of Mnt repressor-operator interaction determined by a new quantitative multiple fluorescence relative affinity (QuMFRA) assay. Nucleic Acids Res, 29, 2471−2478.

65. Maniatis, T., Ptashne, M., Backman, K. et al. (1975) Recognition sequences of repressor and polymerase in the operators of bacteriophage lambda. Cell, 5, 109−113.

66. Mardis, E.R. (2007) ChlP-seq: welcome to the new frontier. Nat Methods, 4, 613−614.

67. Matys, V., Fricke, E., Geffers, R. et al. (2003) TRANSFAC: transcriptionalregulation, from patterns to profiles. Nucleic Acids Res, 31, 374−378.

68. Matys, V., Kel-Margoulis, O.V., Fricke, E. et al. (2006) TRANSFAC and its module TRANSCompel: transcriptional gene regulation in eukaryotes. Nucleic Acids Res, 34, D108−10.

69. McGinnis, S. and Madden, T.L. (2004) BLAST: at the core of a powerful and diverse set of sequence analysis tools. Nucleic Acids Res, 32, W20−5.

70. Meng, X., Brodsky, M.H. and Wolfe, S.A. (2005) A bacterial one-hybrid system for determining the DNA-binding specificity of transcription factors. Nat Biotechnol, 23(8), 988−994.

71. Mitchell, P.J. and Tjian, R. (1989) Transcriptional regulation in mammalian cells by sequence-specific DNA binding proteins. Science, 245, 371−378.

72. Moens, C.B. and Selleri, L. (2006) Hox cofactors in vertebrate development. Dev Biol, 291, 193−206.

73. Morozov, A.V. and Siggia, E.D. (2007) Connecting protein structure with predictions of regulatory sites. P roc Natl Acad Sei USA, 104, 7068−7073.

74. Moses, A.M., Chiang, D.Y., Kellis, M. et al. (2003) Position specific variation in the rate of evolution in transcription factor binding sites. BMC Evol Biol, 3,19.

75. Mueller, P.R. and Wold, B. (1989) In vivo footprinting of a muscle specific enhancer by ligation mediated PCR. Science, 246, 780−786.

76. Mukherjee, S., Berger, M.F., Jona, G. et al. (2004) Rapid analysis of the DNA-binding specificities of transcription factors with DNA microarrays. Nat Genet, 36, 1331−1339.

77. Mulligan, M.E., Hawley, D.K., Entriken, R. et al. (1984) Escherichia coli promoter sequences predict in vitro RNA polymerase selectivity. Nucleic Acids Res, 12, 789−800.

78. Myers, E.W. and Miller, W. (1989) Approximate matching of regular expressions. Bull Math Biol, 51, 5−37.

79. Newberg, L.A., Thompson, W.A., Conlan, S. et al. (2007) A phylogenetic Gibbssampler that yields centroid solutions for cis-regulatoiy site prediction. Bioinformatics, 23, 1718−1727.

80. Newburger, D.E. and Bulyk, M.L. (2009) UniPROBE: an online database of protein binding microarray data on protein-DNA interactions. Nucleic Acids Res, 37, D77−82.

81. Ng, P., Tan, J. J., Ooi, H.S. et al. (2006) Multiplex sequencing of paired-end ditags (MS-PET): a strategy for the ultra-high-throughput analysis of transcriptomes and genomes. Nucleic Acids Res, 34, e84.

82. Noyes, M.B., Christensen, R.G., Wakabayashi, A. et al. (2008a) Analysis of homeodomain specificities allows the family-wide prediction of preferred recognition sites. Cell, 133, 1277−1289.

83. Noyes, M.B., Meng, X., Wakabayashi, A. et al. (2008b) A systematic characterization of factors that regulate Drosophila segmentation via a bacterial one-hybrid system. Nucleic Acids Res, 36, 2547−2560.

84. Oliphant, A.R., Brandl, C.J. and Struhl, K. (1989) Defining the sequence specificity of DNA-binding proteins by selecting binding sites from random-sequence oligonucleotides: analysis of yeast GCN4 protein. Mol Cell Biol, 9, 2944−2949.

85. Osada, R., Zaslavsky, E. and Singh, M. (2004) Comparative analysis of methods for representing and searching for transcription factor binding sites. Bioinformatics, 20,3516−3525.

86. Ottolenghi, C., Uda, M., Crisponi, L. et al. (2007) Determination and stability of sex. Bioessays, 29, 15−25.

87. Papatsenko, D. (2007) ClusterDraw web server: a tool to identify and visualize clusters of binding motifs for transcription factors. Bioinformatics, 23, 1032−1034.

88. Papatsenko, D. and Levine, M. (2007) A rationale for the enhanceosome and other evolutionarily constrained enhancers. Curr Biology, 17, R955−7.

89. Papatsenko, D.A., Makeev, V.J., Lifanov, A.P. et al. (2002) Extraction of functional binding sites from unique regulatory regions: the Drosophila early developmental enhancers. Genome Res, 12,470−481.

90. Pavesi, G., Mereghetti, P., Mauri, G. et al. (2004) Weeder Web: discovery of transcription factor binding sites in a set of sequences from co-regulated genes. Nucleic Acids Res, 32, W199−203.

91. Pawson, T. (1993) Signal transduction-^ conserved pathway from the membrane to the nucleus. Dev Genet, 14, 333−338.

92. Philippakis, A.A., Qureshi, A.M., Berger, M.F. et al. (2008) Design of compact, universal DNA microarrays for protein binding microarray experiments. J Comput Biol, 15, 655−665.

93. Pollard, D.A., Moses, A.M., Iyer, V.N. et al. (2006) Detecting the limits of regulatory element conservation and divergence estimation using pairwise and multiple alignments. BMC Bioinformatics, 7, 376.

94. Ponomarenko, J.V., Orlova, G.V., Frolov, A.S. et al. (2002) SELEXJDB: a database on in vitro selected oligomers adapted for recognizing natural sites and for analyzing both SNPs and site-directed mutagenesis data. Nucleic Acids /^, 30(1), 195−199.

95. Pribnow, D. (1975) Nucleotide sequence of an RN A polymerase binding site at an early T7 promoter. Proc Natl Acad Sci USA, 72, 784−788.

96. Ptashne, M. and Gann, A. (1997) Transcriptional activation by recruitment. Nature, 386, 569−577.

97. Pudimat, R., Schukat-Talamazzmi, E.G. and Backofen, R. (2005) A multiple-feature framework for modelling and predicting transcription factor binding sites. Bioinformatics, 21, 3082−3088.

98. Reese, J.C. (2003) Basal transcription factors. Curr Opin Genet Dev, 13, 114 118.

99. Roeder, R.G. (1996) Nuclear RNA polymerases: role of general initiation factors and cofactors in eukaryotic transcription. Methods Enzymol, 273, 165−171.

100. Roulet, E., Busso, S., Camargo, A.A. et al. (2002) High-throughput SELEX • SAGE method for quantitative modeling of transcription-factor binding sites. Nat Biotechnol, 20, 831−835.

101. Rozanov, U.A. (1995) Probability Theory, Random Processes, and Mathematical Statistics. Kluwer Academic Publishers, Dordrecht (Netherlands)/Boston (MA).

102. Saffer, J.D., Jackson, S.P. and Annarella, M.B. (1991) Developmental expression of Spl in the mouse. Mol Cell Biol, 11, 2189−2199.

103. Sandelin, A. and Wasserman, W. W. (2004) Constrained binding site diversity within families of transcription factors enhances pattern discovery bioinfonhatics. J Mol Biol, 338, 207−215.

104. Sandve, G.K., Abul, O., Walseng, V. et al. (2007) Improved benchmarks for computational motif discovery. BMC Bioinformatics, 8, 193.

105. Schneider, T.D., Stormo, G.D., Gold, L. et al. (1986) Information content of binding sites on nucleotide sequences. J Mol Biol, 188, 415−431.

106. Shamovsky, I. and Nudler, E. (2008) New insights into the mechanism of heat shock response activation. Cell Mol Life Sci, 65, 855−861.

107. Sharon, E., Lubliner, S. and Segal, E. (2008) A feature-based approach to modeling protein-DNA interactions. PLoS Comput Biol, 4, el000154.

108. Singh, S.P. and Mishra, B.N. (2008) Prediction of MHC binding peptide using Gibbs motif sampler, weight matrix and artificial neural network. Bioinformation, 3,150.155.

109. Sinha, S. and Torapa, M. (2003) YMF: A program for discovery of novel transcription factor binding sites by statistical overrepresentation. Nucleic Acids Res, 31, 3586−3588.

110. Sinha, S., Blanchette, M. and Tompa, M. (2004) PhyME: a probabilistic algorithm for finding motifs in sets of orthologous sequences. BMC Bioinformatics, 5, 170.

111. Stavrovskaia, E.D., Makeev, V. and Mironov, A.A. (2006) ClusterTree-RS: the binary tree algorithm for identification of co-regulated genes by clustering regulatory signals. Mol Biol (Mosk), 40, 524−532.

112. Stormo, G.D. (1990) Consensus patterns in DNA. Methods Enzymol, 183, 211 221.

113. Stormo, G.D. (2000) DNA binding sites: representation and discovery. Bioinformatics, 16, 16−23.

114. Stormo, G.D., Schneider, T.D. and Gold, L. (1986) Quantitative analysis of the relationship between nucleotide sequence and functional activity. Nucleic Acids Res, 14, 6661−6679.

115. Stormo, G.D., Schneider, T.D., Gold, L. et al. (1982) algorithm to distinguish translational initiation sites in E. coli. Nucleic Acids Res, 10, 2997−3011.

116. Thiesen, H.J. and Bach, C. (1990) Target Detection Assay (TDA): a versatile procedure to determine DNA binding sites as demonstrated on SP1 protein. Nucleic Acids Res, 18(11), 3203−3209.

117. Thompson, J.D., Gibson, T.J. and Higgins, D.G. (2002) Multiple sequence alignment using ClustalW and ClustalX. Curr Protoc Bioinformatics, Chapter 2, Unit 2 3.

118. Thompson, W., Conlan, S., McCue, L.A. et al. (2007) Using the Gibbs Motif Sampler for phylogenetic footprinting. Methods Mol Biol, 395, 403−424.

119. Thompson, W., Rouchka, E.C. and Lawrence, C.E. (2003) Gibbs Recursive.

120. Sampler: finding transcription factor binding sites. Nucleic Acids Res, 31, 3580−3585.

121. Tornaletti, S. and Pfeifer, G.P. (1995) UV light as a footprinting agent: modulation of UV-induced DNA damage by transcription factors bound at the promoters of three human genes. J Mol Biol, 249, 714−728.

122. Treisman, R., Marais, R.' and Wynne, J. (1992) Spatial flexibility in ternary complexes between SRF and its accessory proteins. EMBOJ, 11, 4631−4640.

123. Tuerk, C. and Gold, L. (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science, 249, 505 510.

124. Vanet, A., Marsan, L., Labigne, A. et al. (2000) Inferring regulatory elements from a whole genome. An analysis of Helicobacter pylori sigma (80) family of promoter signals. J Mol Biol, 297, 335−353.

125. Velculescu, V.E., Zhang, L., Vogelstein, B. et al. (1995) Serial analysis of gene expression. Science, 270, 484−487.

126. Venter, J.C., Adams, M.D., Myers, E.W. et al. (2001) The sequence of the human genome. Science, 291, 1304−1351.

127. Warren, C.L., Kratochvil, N.C.S., Hauschild, K.E. et al. (2006) Defining the sequence-recognition profile of DNA-binding molecules. Proc Natl Acad Sci U SA, 103(4), 867−872.

128. Wasserman, W.W. and Sandelin, A. (2004) Applied bioinformatics for the identification of regulatory elements. Nat Rev Genet, 5, 276−287.

129. Waterman, M.S. (1986) Multiple sequence alignment by consensus. Nucleic Acids Res, 14, 9095−9102.

130. Wei, C.L., Wu, Q., Vega, V.B. et al. (2006) A global map of p53 transcription-factor binding sites in the human genome. Cell, 124, 207−219.

131. Werner, M.H. and Burley, S.K. (1997) Architectural transcription factors: proteins that remodel DNA. Cell, 88, 733−736.

132. Wheeler, D.A., Srinivasan, M., Egholm, M. et al. (2008) The complete genome of an individual by massively parallel DNA sequencing. Nature, 452, 872−876.

133. Xing, E.P., Wu, W., Jordan, M.I. et al. (2003) LOGOS: a modular Bayesian model for de novo motif detection. Proc IEEE Comput Soc Bioinform Conf, 2, 266 276.

134. Yudkovsky, N, Ranish, J. A. and Hahn, S. (2000) A transcription reinitiation intermediate that is stabilized by activator. Nature, 408(6809), 225−229.

135. Zhang, M.Q. and Marr, T.G. (1993) A weight array method for splicing signal analysis. ComputAppl Biosci, 9,499−509.

136. Zhang, Y., Shin, H., Song, J.S. et al. (2008) Identifying positioned nucleosomes with epigenetic marks in human from ChlP-Seq. BMC Genomics, 9, 537.

137. Zhao, X., Huang, H. and Speed, T.P. (2005) Finding short DNA motifs using permuted Markov models. J Comput Biol, 12, 894−906.

Показать весь текст
Заполнить форму текущей работой