Помощь в написании студенческих работ
Антистрессовый сервис

Особенности взаимодействия культивируемых мезенхимальных и гемопоэтических стволовых клеток человека в условиях пониженного содержания кислорода

ДиссертацияПомощь в написанииУзнать стоимостьмоей работы

Представленные результаты являются важным шагом на пути к пониманию механизмов регуляции гемопоэза при пониженном содержании кислорода in vitro. Предложенная и успешно апробированная экспериментальная модель для изучения процессов экспансии и дифференцировки гемопоэтических предшественников дает возможность не только рассмотреть основные функциональные закономерности кроветворения, но и оценить… Читать ещё >

Особенности взаимодействия культивируемых мезенхимальных и гемопоэтических стволовых клеток человека в условиях пониженного содержания кислорода (реферат, курсовая, диплом, контрольная)

Содержание

  • ГЛАВА 1. ОБЗОР ЛИТЕРАТУРЫ
    • 1. Стволовые клетки человека
      • 1. 1. Типы стволовых клеток (источники, изучение и практическое применение)
      • 1. 2. Мезенхимальные стволовые клетки костного мозга человека
        • 1. 2. 1. Характеристика мезенхимальных стволовых клеток костного мозга
        • 1. 2. 2. Особенности культивирования мезенхимальных стволовых клеток костного мозга человека
      • 1. 3. Гемопоэтические стволовые клетки человека
        • 1. 3. 1. Характеристика гемопоэтических стволовых клеток из пуповинной крови человека
        • 1. 3. 2. Особенности культивирования гемопоэтических стволовых клеток
    • 2. Взаимодействие мезенхимальных и гемопоэтических стволовых клеток человека
      • 2. 1. Стимуляция гемопоэза факторами, синтезируемыми мезенхимальными стволовыми клетками костного мозга человека
      • 2. 2. Молекулы адгезии и фенотип мезенхимальнх стволовых клеток при взаимодействии с гемопоэтическими стволовыми клетками
      • 2. 3. Участие мезенхимальных стволовых клеток костного мозга человека в активации гемопоэза в условиях пониженного содержания кислорода
    • 3. Влияние пониженного содержания кислорода на культивируемые прогениторные клетки
      • 3. 1. Эффекты гипоксии на мезенхимальные стволовые клетки костного мозга человека in vitro
      • 3. 2. Возможные механизмы реализации действия пониженного содержания кислорода на клетки
  • ГЛАВА 2. МАТЕРИАЛЫ И МЕТОДЫ ИССЛЕДОВАНИЯ
    • 2. 1. Культуры мезенхимальных стволовых клеток костного мозга и эмбриональных фибробластов человека
      • 2. 1. 1. Культуральные среды, реактивы, пластик, оборудование
      • 2. 1. 2. Выделение и культивирование мезенхимальных стволовых клеток костного мозга человека
      • 2. 1. 3. Культивирование эмбриональных фибробластов человека
      • 2. 1. 4. Криоконсервация клеток
    • 2. 2. Исследование свойств мезенхимальных стволовых клеток костного мозга человека в нормоксии и при пониженном содержании кислорода
      • 2. 2. 1. Культивирование клеток при пониженном содержании кислорода
      • 2. 2. 2. Анализ пролиферативной активности мезенхимальных стволовых клеток костного мозга человека
      • 2. 2. 3. Иммуноцитофлюориметрический анализ клеток Иммунофенотипирование мезенхимальных стволовых клеток костного мозга человека
      • 2. 2. 4. Иммуноферментный анализ продукции цитокинов в среде культивирования мезенхимальных стволовых клеток костного мозга человека
      • 2. 2. 5. Оценка остеогенного дифференцировочного потенциала мезенхимальных стволовых клеток костного мозга человека
      • 2. 2. 6. Оценка адипогенного дифференцировочного потенциала мезенхимальных стволовых клеток костного мозга человека
      • 2. 2. 7. Оценка способности мезенхимальных стволовых клеток и эмбриональных фибробластов человека образовывать капилляроподобные структуры
      • 2. 2. 8. Цитофлюриметрический анализ уровня транскрипционного фактора, индуцируемого при гипоксии (HIF-la) в цитоплазме мезенхимальных стволовых клеток
    • 2. 3. Сокультивирование мезенхимальных клеток -предшественников и гемопоэтических стволовых клеток
      • 2. 3. 1. Выделение и культивирование гемопоэтических стволовых клеток пуповинной крови человека
      • 2. 3. 2. Выявление начальных этапов дифференцировки гемопоэтических стволовых клеток (постановка теста на колониеобразование)
      • 2. 3. 3. Сокультивирование эмбриональных фибробластов человека и гемопоэтических стволовых клеток
    • 2. 4. Статистическая обработка данных
  • ГЛАВА 3. РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЙ
    • 3. 1. Характеристика культивируемых мезенхимальных стволовых клеток костного мозга человека
      • 3. 1. 1. Морфофункциональная характеристика мезенхимальных стволовых клеток in vitro
      • 3. 1. 2. Анализ кинетики роста мезенхимальных стволовых клеток в культуре
      • 3. 1. 3. Иммунофенотипическая характеристика культивируемых мезенхимальных стволовых клеток
      • 3. 1. 4. Оценка дифференцировочного потенциала мезенхимальных стволовых клеток in vitro
      • 3. 1. 5. Анализ продукции мезенхимальных стволовых клеток в среде культивирования

      3.2. Сравнительная характеристика морфофункциональных и иммунофенотипических особенностей мезенхимальных стволовых клеток, культивируемых в нормоксии (20% Ог) и в условиях пониженного содержания кислорода (1 и 5% О2) 3.2.1. Морфофункциональная характеристика и оценка жизнеспособности мезенхимальных стволовых клеток, культивируемых в нормоксии и при пониженном содержании кислорода.

      3.2.2. Анализ кинетики роста мезенхимальных стволовых клеток в нормоксии и при пониженном содержании кислорода.

      3.2.3. Анализ иммунофенотипа мезенхимальных стволовых клеток, культивируемых в нормоксии и при пониженном содержании кислорода.

      3.2.4. Оценка дифференцировочного потенциала мезенхимальных стволовых клеток в нормоскии и при пониженном содержании кислорода.

      3.2.5. Анализ продукции цитокинов в среде культивирования мезенхимальных стволовых клеток в нормоксии и при пониженном содержании кислорода.

      3.2.6. Цитофлюриметрический анализ уровня транскрипционного фактора, индуцируемого при гипоксии (HIF-la) в мезенхимальных стволовых клетках, культивируемых в нормоксии и при пониженном содержании кислорода.

      3.3. Сокультивирование мезенхимальных клеток-предшественников и гемопоэтических стволовых клеток в пуповинной крови человека

      3.3.1. Формирование гемопоэтических островков при совместном культивировании мезенхимальных и гемопоэтических стволовых клеток в нормоксии и в условиях пониженного содержания кислорода.

      3.3.2. Цитофлюориметрический анализ экспрессии поверхностных маркеров мезенхимальных стволовых клеток при сокультивировании с гемопоэтическими стволовыми клетками в нормоксии и при пониженном содержании кислорода.

      3.3.3. Выявление способности гемопоэтических стволовых клеток к колониеобразованию в нормоксических условиях и при пониженном содержании кислорода после сокультивирования с мезенхимальными стволовыми клетками.

      3.3.4. Анализ продукции цитокинов при сокультивировании мезенхимальных и гемопоэтических стволовых клеток в нормоксии и при пониженном содержании кислорода.

      3.3.5. Сокультивирование эмбриональных фибробластов человека и гемопоэтических стволовых клеток в нормоксии и при пониженном содержании кислорода.

      Глава 4. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ.

      ВЫВОДЫ.

Стволовые клетки, обладающие способностью к самообновлению и высоким дифференцировочным потенциалом, заслужили пристальное внимание исследователей в связи с возможным использованием их в терапевтических целях. Мезенхимальные стволовые клетки, входящие в состав стромы костного мозга, главного кроветворного органа в постнатальном периоде онтогенеза, относятся к важным компонентам ниши гемопоэтических клеток, являющихся родоначальными элементами кроветворения (Фриденштейн, Чертков- 1969; Сухих, Малайцев, Богданова и др., 2002; Чертков, Дризе, 2005; Паюшина, Домарацкая, Старостин, 2006; Friedenstein, Gorskaja, Kulagin, 1976; Friedenstein, Ivanov-Smolenski, Chajlakjan et al., 1978). Несмотря на то, что к настоящему времени и мезенхимальные, и гемопоэтические стволовые клетки достаточно подробно охарактеризованы (Андреева, Кадагидзе, Тупицын и др., 1999; Андреева, Тупицьш, 2002; Тепляшин, Коржикова, Шарифулина и др., 2005; Owen, Cave, Joyner, 1987, Owen, 1988; Caplan, 1991; Pittenger, Mackay, Beck et al., 1999; Muraglia, Cancedda, Quarto, 2000; Colter, Class, DiGirolamo, Prockop, 2000; Prockop, Sekiya, Colter, 2001; Sekiya, Larson, Smith et al., 2002; Gronthos, Zannettino, Hay et al., 2003; Dominici, Pritchard, Garlits, 2004; Montgomery, Shivdasani, 2009), исследований, посвященных взаимодействию этих двух типов стволовых клеток, значительно меньше (McNiece, Harrington, Turney, 2004; Muguruma, Yahata, Miyatake et al., 2006; Walenda Т., Bork S., Horn P. et al., 2009). Известно, что комплекс межклеточных и клеточно-матриксных взаимодействий регулируется различными сигнальными молекулами (мембранно-ассоциированными рецепторами, цитокинами, факторами роста) (Пальцев, Иванов, 1995). При нормальном гемопоэзе так же важна непосредственная кооперация гемопоэтических клеток-предшественников с элементами кроветворного микроокружения, межмембранное связывание служит при этом для переноса регуляторной информации, передачи необходимых веществ, миграции, хоминга и представления ростовых факторов в биологически доступной форме (Гольдберг, Дыгай, Жданов, 1999). Следует отметить, что используемые в настоящее время экспериментальные модели дают неполное представление о реальных биологических эффектах от действия сигнальных молекул, поскольку не воспроизводят физиологические особенности происходящих при гемопоэзе процессов. Функциональные и структурные изменения элементов микроокружения под действием различных эндогенных факторов могут быть причиной нарушений кроветворения. Исследования в этой области на уровне клетки 8 немногочисленны. Кроме того, традиционно, культуральные исследования проводят в нормоксических условиях, при 20% Ог, в то время как, например, при эмбриональном развитии человека содержание кислорода в тканях не превышает 3% (Rodesch, Simon, Donner et al., 1992; Burton, Jaunaiux, 2001), в артериальной крови — 12%, венозной -5,3% (Fehrer, Brunauer, Laschober et al., 2007), в гипоталамусе — 1,4−2,1% (Silver, Erecinska, 1998), в костном мозге — 3−7% (Ishikava, Ito, 1988; Mostafa, Miller, Papoutsakis, 2000).

Участие мезенхимальных стволовых клеток костного мозга в создании микроокружения, способного поддерживать рост и развитие гемопоэтических клеток, показано во многих работах (Clausen, Stockschlader, Fehse et al., 2000; Shimakura, Kawada, Ando et al., 2000; Kusadasi, Koevoet, van Soest et al., 2001; Kadereit, Deeds, Haynesworth et al., 2002; McNiece, Harrington, Tumey, 2004; Muguruma, Yahata, Miyatake et al., 2006; Walenda, Bork, Horn et al., 2009). Однако функциональные особенности и тесные клеточные взаимодействия элементов кроветворного микроокружения с учетом парциального давления кислорода во внеклеточном пространстве костного мозга практически не исследованы. Таким образом, несомненный научный и практический интерес представляет не только изучение некоторых аспектов взаимодействия прогениторных клеток различных типов в условиях максимально приближенных in vivo, но и воссоздание гемопоэзиндуцирующей ниши, позволяющей оптимизировать рост и развитие кроветворных стволовых клеток в культуре.

Цель работы: Изучение роли мезенхимальных стволовых клеток костного мозга в создании гемопоэзиндуцирующего микроокружения при совместном культивировании с гемопоэтическими стволовыми клетками человека при различном содержании кислорода.

В соответствии с целью работы были поставлены следующие задачи исследования:

1. Изучить влияние пониженного содержания кислорода (1% и 5%) на морфофункциональные особенности культивируемых МСК;

2. Разработать экспериментальную модель совместного культивирования МСК и ГСК в нормоксии и в условиях пониженного содержания кислорода;

3. Оценить функциональную активность (способность поддерживать гемопоэз) МСК при сокультивировании с ГСК в нормоксии и при пониженном содержании кислорода;

4. Изучить колониеобразующую функцию ГСК после совместного культивирования с МСК в нормоксии и при пониженном содержании кислорода;

5. Исследовать иммунофенотип совместно культивируемых МСК с ГСК в нормоксии и при пониженном содержании кислорода;

6. Проанализировать продукцию цитокинов в культурах МСК, ГСК и совместно культивируемых МСК и ГСК в нормоксии и при пониженном содержании кислорода.

Научная новизна.

Проанализировано влияние пониженного содержания кислорода (1% и 5%) на совокупность морфофункциональных параметров культивируемых МСК костного мозга человека. Впервые показано, что при культивировании МСК костного мозга человека в условиях пониженного содержания кислорода происходит снижение доли клеток, несущих рецепторы адгезии (VCAM-1), на фоне устойчивости основного иммунофенотипа. Проведенные сравнительные исследования позволили установить, что при пониженном содержании кислорода на определенных этапах культивирования (96 ч, 5% Ог) МСК костного мозга человека скорость пролиферации возрастает по сравнению с нормоксией и снижается при 1% Ог на всех этапах субкультивирования. Показано, что при культивировании МСК в условиях пониженного содержания кислорода морфология и жизнеспособность клеток не меняется.

Оценено значение МСК костного мозга в регуляции гемопоэзиндуцирующего микроокружения, проявляющееся в межмембранном связывании с гемопоэтическими предшественниками и способности к секреции важных гемопоэтических ростовых факторов. Впервые показано, что в условиях пониженного содержания кислорода культивируемые МСК костного мозга человека способны к поддержанию гемопоэза, что выражается в активации образования очагов кроветворения. Впервые установлено, что при совместном культивировании МСК и ГСК в нормоксии и при пониженном содержании кислорода повышается доля клеток, экспрессирующих VCAM-1 и активируется продукция интерлейкинов (IL-6, IL-8).

Полученные экспериментальные данные расширяют существующие представления о функционировании системы «МСК-ГСК» в нормоксических условиях и при пониженном содержании кислорода.

Научно-практическая значимость работы.

Представленные результаты являются важным шагом на пути к пониманию механизмов регуляции гемопоэза при пониженном содержании кислорода in vitro. Предложенная и успешно апробированная экспериментальная модель для изучения процессов экспансии и дифференцировки гемопоэтических предшественников дает возможность не только рассмотреть основные функциональные закономерности кроветворения, но и оценить вклад мезенхимальных стволовых клеток в формирование гемопоэзиндуцирующего микроокружения.

Проведенные сравнительные исследования позволяют рекомендовать использование совместно культивируемых МСК и ГСК при пониженном содержании кислорода, а именно при 5% Ог, как наиболее приближенную к естественным условиям экспериментальную модель гемопоэза.

Положения, выносимые на защиту:

1. В условиях пониженного содержания кислорода функциональная активность культивируемых мезенхимальных стволовых клеток, выражающаяся в изменении скорости роста, способности к дифференцировке и продукции цитокинов, модифицировалась, при этом их основные морфологические и фенотипические особенности сохранялись.

2. Мезенхимальные стволовые клетки костного мозга человека способны in vitro к созданию кроветворного микроокружения и поддержанию гемопоэза путем прямых межклеточных контактов с кроветворными элементами и посредством продукции гемопоэтических ростовых факторов.

3. При совместном культивировании мезенхимальных стволовых клеток костного мозга человека и гемопоэтических стволовых клеток пуповинной крови человека при 5% содержании кислорода происходит стимуляция гемопоэза, которая проявляется в увеличении числа кроветворных островков.

выводы.

1. При культивировании МСК костного мозга человека в условиях пониженного содержания кислорода (5% 02), пролиферация клеток возрастает по сравнению с нормоксией. При 1% 02 скорость роста клеток в культуре снижается.

2. В условиях пониженного содержания кислорода МСК на всех этапах субкультивирования не экспрессируют антигены клеток гематогенного происхождения (CD34, CD38, CD45, CD117) и сохраняют экспрессию основных поверхностных маркеров (CD 13, CD29, CD44, CD54, CD73, CD90, HLA-I). При снижении уровня кислорода в среде, доля VCAM-I-положительных клеток уменьшается.

3. Разработана и апробирована экспериментальная модель совместного культивирования МСК и ГСК человека в нормоксии и в условиях пониженного содержания кислорода.

4. Культивируемые МСК способны поддерживать рост и развитие предшественников гемопоэза (ГСК), выражающиеся в активной адгезии двух типов клеток, формировании очагов кроветворения и последующем созревании ГСК. Сокультивирование при 5% 02 приводит к достоверному увеличению количества гемопоэтических островков по сравнению с нормоксией.

5. Показано увеличение доли клеток, положительных по VCAM-1, и. увеличение продукции IL-6 и IL-8 при сокультивировании МСК и ГСК в нормоксии и при пониженном содержании кислорода, по отношению к несокультивированным МСК.

6. В отличие от несокультивированных ГСК, кроветворные предшественники после сокультивирования с МСК при 5 и 20% 02 способны к интенсивному формированию колониеобразующих единиц.

Показать весь текст

Список литературы

  1. Л.Ю., Кадагидзе З. Г., Тупицын Н. Н. и др. Стволовые гемопоэтичеекие клетки в крови онкологических больных: экспрессия CD34 и колониеобразование. // Гематология и трансфузиология. 1999. — 44. — 4. — С. 3 — 11.
  2. Е.Б. Влияние пониженного содержания кислорода на культивируемые мезенхимальные стромальные клетки-предшественники костного мозга крыс: Автореферат дис.. канд. биол. наук. Москва, 2007. — 25с.
  3. Е.Б., Буравкова Л. Б. Гетерогенность стромальных клеток-предшественников, выделенных из костного мозга крыс. // Цитология. 2007. -Т.49. -№ 1. — С. 40−47.
  4. А.Е. Стволовые клетки: общая характеристика и перспективы применения в клинической практике. // Клиническая медицина. 2004. — № 1. — С. 5−11.
  5. Е.Б., Майорова О. А., Румянцев С. А. и др. Биологические основы и перспективы терапии стволовыми клетками. // М.: ИД Мед. Практика, 2005.-395 с.
  6. Е.Д., Дыгай A.M., Жданов В. В. Роль гемопоэзиндуцирующего окружения в регуляции кроветворения при цитостатических миелосупрессиях. // Томск: STT, 1999−128 с.
  7. Е.И., Буеверова Э. И., Паюшина О. В. и др. Повреждение алкилирующим препаратом дипином кроветворных и стромальных клеток костного мозга. // Известия РАН. Серия Биологическая. 2005. — № 3. — С. 267 -272.
  8. З.Г. Цитокины. // Практическая онкология. 2003. — Т. 4. — № 3. -С. 131−139.
  9. С.А., Почтарь М. Е., Тупицын Н. Н., 2 Иммунофенотипирование в диагностике гемобластозов. //М.: Тверь, Триада, 2005. 168 с.
  10. С.А., Козинец Г. И. Иерархия гемопоэтических клеток: кинетика, структура и функции. // Клиническая лабораторная диагностика. 2009. -№ 5.-С. 21 -37.
  11. Л.Д. Биоэнергетическая гипоксия: понятие, механизмы и способы коррекции. // Бюллетень экспериментальной биологии и медицины. -1997. Т. 124. — № 9. — С. 244 — 254.
  12. Л.Д. Сигнальная функция митохондрий при гипоксии и адаптации. // Патогенез. 2008. — № 3. — С. 4 — 12.
  13. Р.А., Бекчанова Е. С., Белявский А. В. и др. Мезенхимальные стволовые клетки пуповинной крови. // Клеточные технологии в биологии и медицине. 2007. — № 1. — С. 16 — 20.
  14. О.И. Роль гемопоэтического микроокружения костного мозга в норме и при лейкозе. // Экспериментальная онкология. 1992. — Т. 14. — № 1. — С. 11−20.
  15. Нормальное кроветворение и его регуляция. / Под ред. Федорова Н. А. // М.: Медицина, 1976. 543 с.
  16. М.А., Иванов А. А. Межклеточные взаимодействия // М.: Медицина, 1995. 224 с.
  17. М.А., Смирнов В. Н., Романов Ю. А. и др. Перспективы использования стволовых клеток в медицине. // Вестник Российской Академии Наук. 2006. — Т. 76. — № 2. — С. 99 — 111.
  18. О.В., Домарацкая Е. И., Старостин В. И. Мезенхимные стволовые клетки: источники, фенотип и потенции к дифференцировке. // Известия РАН. Серия Биологическая. 2006. — № 1. — С. 6 — 25.
  19. В.И. Органные, тканевые и клеточные механизмы регуляции кроветворения. // Стволовые клетки человека. Итоги науки и техники. Морфология человека и животных. М.: ВИНИТИ. 1988. — С. 87 — 150.
  20. Ю.Г., Бурунова В. В., Петракова Н. В. и др. Сравнительный анализ цитофенотипов клеток мезенхимального ряда, изолированных тканей человека // Клеточные технологии в биологии и медицине. 2007. — № 1. — С. 38 -45.
  21. А. С. Коржикова С.В., Шарифулина С. З. и др. Характеристика мезенхимальных стволовых клеток человека, выделенных из костного мозга и жировой ткани. // Цитология. 2005. — Т. 47. — № 2. — С. 130- 135.
  22. В.В., Васильев А. В., Воротеляк Е. А. Поляризация и ассиметричное деление стволовых клеток. // Цитология. 2007. — Т. 49. — № 11. -С. 933−938.
  23. А. Я., Чертков И. Л. Клеточные основы иммунитета. // М.: Медицина. 1969. — 256 с.
  24. А.Н. Интерлейкины: функциональная роль как медиаторов иммунной системы. // Лабораторное дело. 1990. -№ 10. — С. 4 — 11.
  25. И.Л., Воробьев А. И. Как обеспечивается поддержание кроветворной системы. // Гематология и трансфузиология. 1998. — 43. — 4. — С. 3 -8.
  26. И.Л., Дризе И. Н. Дифференцировочный потенциал стволовых клеток (проблема пластичности). // Вестник Российской АМН. 2005. — № 10. — С. 37.-44.
  27. В.П., Кокарев О. В., Попов С. В. и др. Феномен формирования мезенхимальных островков из клеток костного мозга мышей в системе in vitro. И Бюллетень сибирской медицины. — 2004. № 1. — С. 60 — 63.
  28. А.П., Юшков Б. Г., Большаков В. Н. Регуляция гемопоэза при воздействии на организм экстремальных факторов. // Свердловск, 1988. 152 с.
  29. Abedin М., Titut Y., Demer L.L. Mesenchymal stem cells and the artery wall. // Circulation Research. 2004. — 95. — P. 671 — 676.
  30. Ademokun I.A., Champan C., Dunn J. et al. Umbilical cord blood collection and separation for haemapoietic progenitor cell banking.// Bone Marrow Transplantation. 1997. — Vol.19. — 10. — P. 1023 — 1028.
  31. Almici C., Carbo-Stella C., Wagner J.E. et al. Biologic and phenotypic analisis of early hematopoietic progenitor cells in umbilical cord blood. // Leukemia. 1997. -Vol. 11.-P. 2143−2149.
  32. Annabi В., Lee Y.T., Turcotte S. et al. Hypoxia promotes murine bone-marrow-derived stromal cell migration and tube formation. // Stem Cells. 2003. — 21. — P. 337 -347.
  33. Aoyama K., Oritani K., Yokota Т., et al. Stromal cell CD9 regulates differentiation of hematopoietic stem/progenitor cells. // Blood. 1999. — Vol. 93. -№ 8.-P. 2586−2594.
  34. Appasamy P.M. Biological and clinical implications of interleukin-7 and lymphopoiesis. // Cytokines, Cellular and Molecular Therapy. 1999. — 5. — P. 25−39.
  35. Arcese W., Aversa F., Bandini G. et al. Clinical use of allogeneic hematopoietic stem cells from sources other than bone marrow.// Haematologica. 1998. — Vol. 83. -№ 2.-P. 159−182.
  36. Arkin S., Naprstek В., Guarini L. et al. Expression of intercellular adhesion molecule-1 (CD54) on hematopoietic progenitors. // Blood. 1991. — Vol. 77. — P. 948 -953.
  37. Armitage S., Fehily D., Dickenson A. et al. Cord blood banking: volume reduction of cord blood units using a semi-automated closed system.// Bone Marrow Transplantation. 1999. — Vol. 23. — № 5. — P. 505 — 509.
  38. Baggiolini M., Clark-Lewis I. Interleukin-8, a chemotactic and inflammatory cytokine. // FEBS Letters. 1992. — 307. — P. 97 — 101.
  39. Baksh D., Davies J.E., Zandstra P.W. Adult human bone marrow derivedmesenchymal progenitor cells are capable of adhesionindependent survival and expansion. // Experimental Hematology. 2003. — Vol. 31. P. 723 — 732.
  40. Barry F.P., Murphy M.J. Mesenchymal stem cells: clinical applications and biological characterization. // The International Journal of Biochemistry and Cell Biology. 2004. — Vol. 36. — P. 568 — 584.
  41. Baxter M.A., Wynn R.F., Jowitt S.N. et al. Study of telomere length reveals rapid aging of human marrow stromal cells following in vitro expansion. // Stem Cells. 2004. — Vol. 22. — P. 675 — 682.
  42. Вeitner-Johnson D., Millhorn D.E. Hypoxia induces phosphorylation of the cyclic AMP response element-binding protein by a novel signaling mechanism. // Journal of Biological Chemistry. 1998. — 273. — 19 834 — 19 839.
  43. Berardi A.C., Meffre E., Pflumio F. et al. Individual CD34+ CD38 low CD 19 CD 10- progenitor cells from human cord blood generate В lymphocytes and granulocytes.// Blood. 1997. — Vol. 89. — № 10. — P. 3554 — 3564.
  44. Bertolini F., Battaglia M., De Iulio C. et al. Placental blood collection: Effects on Newborns. // Blood. 1995. — Vol. 85. — P. 3361 — 3362.
  45. Bianco P., Riminucci M., Gronthos S. et al. Bone marrow stromal cells: nature, biology and potential applications. // Stem Cells. 2001. — Vol. 19. — P. 180 — 192.
  46. Bieback K., Kern S., Kluter H., Eichler H. Critical parametres for the isolation of mesenchymal stem cells from umbilical cord blood. // Stem Cells. 2004. — Vol. 22. -P. 625 — 634.
  47. Blanpain C., Lowry W.E., Geoghegan A. et al. Self-renewal, multipotency, and the existence of two cell populations within an epithelial stem cell niche. // Cell. 2004. -Vol. 118.-P. 835−648.
  48. Blazsek I., Liu X.H., Anjo A. et al. The hematon, a morphogenetic functional complex in mammalian bone marrow, involves erythroblastic islands and granulocytic cobblestones. // Experimental hematology. 1995 — Vol. 23. — № 4. — P. 309 — 319.
  49. Bosnakovski D., Mizuno M., Kim G. et al. Isolation and multilineage differentiation of bovine bone marrow mesenchymal stem cells. // Cell and Tissue Research. 2005. — Vol. 319. — № 2. — P. 243 — 253.
  50. Bosch P., Pratt S.L., Stice S.L. Isolation, characterization, gene modification, and nuclear reprogramming of porcine mesenchymal stem cells. // Biology of Reproduction. 2006. — Vol. 74. — P. 46 — 57.
  51. Briere J.J., Favier J., Benit P. et al. Mitochondrial succinate is instrumental for HIF-1 alpha nuclear translocation in SDHA-mutant fibroblasts under normoxic conditions. // Human Molecular Genetics. 2005. — Vol. 14. — № 21. — P. 3263 — 3269.
  52. Brooke G., Tong H., Levesque J.P. et al. Molecular trafficking mechanisms of multipotent mesenchymal stem cells derived from human bone marrow and placenta. // Stem Cells and Development. 2008. — Vol. 17. — P. 929 — 940.
  53. Brown R., Xu F.S., Dusing S.K. et al. Serum-free conditions for cells capable of producing long-term survival in lethally irradiated mice. // Stem Cells. 1997. — Vol. 15.-P. 237−245.
  54. Broxmeyer H.E., Gordon G.W., Hangoc G. et al. Human umbilical cord blood as a potential source of transplantable hematopoietic stem/progenitor cells. // Proceedings of the National Academy of Sciences of the USA. 1989. — Vol.86. — P. 3828−3832.
  55. Bruick R.K. Oxygen sensing in the hypoxic response pathway: regulation of the hypoxia-inducible transcription factor. // Genes and Development. 2003. — Vol. 17. -№ 21.-P. 2614−2623.
  56. Buhring H.J., Battula V.L., Treml S. et al. Novel markers for the prospectiveisolation of human MSC. // Annals of the New York Academy of Sciences. 2007. -Vol. 1106.-P. 262−271.
  57. Burton G.J., Jaunaiux E. Maternal vascularisation of the human placenta: does the embryo develop in a hypoxic environment? // Gynecologie, Obstetrique and Fertilite. 2001. — 7 — 8. — P. 503 — 508.
  58. Cabrita G.J., Ferreira B.S., da Silva C.L. et al. Hematopoietic stem cells: from the bone to the bioreactor. // Trends in Biotechnology. 2003. — Vol. 21. — P. 233 -240.
  59. Cai J., Weiss M.L., Rao M.S. In search of «sternness». // Experimental Hematology. 2004. — Vol. 32. — P. 585 — 598.
  60. J., Emerson S.G. 11−1 alpha and TNF alpha act synergistically to stimulate producion of mieloid colony-stimulating factors by cultured human bone marrow stromal cells. // Journal of Cellular Physiology. 1994. — Vol. 159. — № 2. — P. 221 -228.
  61. Calvi L.M., Adams G.B., Weibrecht K.W. et al. Osteoblastic cells regulate the haematopoietic stem cell niche. // Nature. 2003. — 425. — P. 841 — 846.
  62. Campard D., Vasse M., Rose-John S. et al. Multilevel regulation of IL-6R by IL-6-sIL-6R fusion protein according to the primitiveness of peripheral blood-derived CD133+cells.//Stem Cells.-2006.-24.-P. 1302- 1314.
  63. Cangul H. Hypoxia upregulates the expression of the NDRG1 gene leading to its overexpression in various human cancers. // BMC Genetics. 2004. — P. — 5 — 27.
  64. Caplan A.I. Mesenchymal stem cells. // Journal of Orthopaedic Research. -1991. Vol. 9. -№ 5. — P. 641 — 650.
  65. Cerny J., Quesenberry P.J. Chromatin remodeling and stem cell theory of relativity. // Journal of Cellular Physiology. 2004. — Vol. 201. — P. 1 — 16.
  66. Chandel N.S., Trzyna W.C., McClintock D.S. et al. Role of oxidants in NF-kB activation and TNF-a gene transcription induced by hypoxia and endotoxin. // Journal of Immunology. 2000. — 165. — P. 1013 — 1021.
  67. Chaudhary L. R, Hofmeister A.M., Hruska K.A. Differential growth factor control of bone formation through osteoprogenitor differentiation.// Bone. 2004. -Vol. 34.-№ 3. — P. 402−411.
  68. Chen Т., Burke K.A., Zhan Y. et al. IL-12 facilitates both the recovery of endogenous hematopoiesis and the engraftment of stem cells after ionizing radiation. // Experimental Hematology. 2007. — 35. — P. 203 -13.
  69. Chen J.L., Hunt P., McElvain M. et al. Osteoblast precursor cells are found in CD34+ cells from human bone marrow.// Stem Cells. 1997. — Vol. 15. — P. 368 — 377.
  70. Chunmeng S., Tiamin C. Effects of plastic-adherent dermal multipotent cells on peripheral blood leukocytes and CFU-GM in rats. // Transplantation Proceedings. -2004.-Vol. 36,-№ 5.-P. 1578−1581.
  71. Cipolleschi M., Dello Sbarba P., Olivotto M. The role of hypoxia in the mainetance of hematopoietic stem cells. // Blood. 1993. — Vol. 82. — P. 2031 — 2037.
  72. Cipolleschi M., D’Ippolito G., Bernabei P.A. et al. Severe hypoxia enhances the formation of erythroid bursts from human cord blood cells and the maintenance of BFU-E in vitro. И Experimental Hematology. 1997. — Vol. 25. — P. 1187 — 1194.
  73. Civin C.I., Strauss L.C., Brovall C., et al. Antigenic analysis of hematopoiesis. III. A hematopoietic progenitor cell surface antigen defined by a monoclonal antibody raised against KG-la cells. // Journal of Immunology. 1984. — 133. — P. 157 — 165.
  74. Clausen J., Stockschlader M., Fehse N et al. Blood-derived macrophage layers in the presence of hydrocortisone support myeloid progenitors in long-term cultures of CD34+ cord blood and bone marrow cells. // Annals of Hematology. 2000. — 79. — P. 59−65.
  75. Cogle C.R., Guthrie S.M., Sanders R.C. et al. An overview of stem cell research and regulatory issues. // Mayo Clinic Proceedings. 2003. — Vol. 78. — № 8. -P.993 -1003.
  76. Collins P., Papoutsakis E.T., Miller W.M. Ex vivo culture systems for hematopoietic cells. // Current Opinion in Biotechnology. 1996. — Vol. 7. — P. 223 -230.
  77. Comerford K.M., Leonard M.O., Karhausen J. et al. Small ubiquitin-related modifier-1 modification mediates resolution of CREB-dependent responses to hypoxia. // Proceedings of the National Academy of Sciences of the USA. 2003. — 100. — P. 986 -991.
  78. Conget P.A., Minguell J.J. Phenotypical and functional properties of human bone marrow mesenchymal progenitor cells. // Journal of Cellular Physiology. 1999. — Vol. 181.-№ 1.-P. 67−73.
  79. Cui Q., Wang G.J., Balian G. Pluripotential marrow cells produce adipocytes when transplanted into steroid-treated mice. // Connective Tissue Research. 2000. -Vol. 41.-№ 1.-P. 45−56.
  80. Delorme В., Charbord P. Culture and characterization of human bone marrow mesenchymal stem cells. // Methods in Molecular Medicine. 2007. — Vol. 140. — P. 67 -81.
  81. Denker A.E., Nicoll S.B., Tuan R.S. Induction and characterization of chondrogenesis in multipotentional mesenchymal cells: Abstr. 5th. Int. Conf. Mol. Biol. And. Pathol. Matrix, Philadelphia, 1994. // Matrix Biology. 1994. — Vol. 14. — № 5. — P. 373.
  82. Denning-Kendall P., Donaldson C., Nicol A. et al. Optimal processing of human umbilical cord blood for clinical banking.// Experimental Hematology. 1996. — Vol. 24. -12.-P. 1394−1401.
  83. Dexter T.M., Allen T.D., Lajtha L.G. Conditions controlling the proliferation of haematopoietic stem cells in vivo. II Journal of Cellular Physiology. 1977. — Vol. 91. -P. 335−344.
  84. DiGiusto D.L., Lee R., Moon J et al. Hematopoietic potential of cryopreserved and ex vivo manipulated umbilical cord blood progenitor cells evaluated in vitro and in vivo // Blood. 1996. — Vol. 87. — № 4. — P. 1261 — 1271.
  85. Discher D.J., Bishopric N.H., Wu X. et al. Hypoxia regulates beta-enolase and pyruvate kinase-M promoters by modulating Spl/Sp3 binding to a conserved GC element. // The Journal of Biological Chemistry. 1998. — 273. — P. 26 087 — 26 093.
  86. Dominici M., Le Blanc K., Mueller I. et al. Minimal criteria for difining multipotent mesenchymal stromal cells. The International society for cellular therapy position statement // Cytotherapy. 2006. — Vol. 8. — № 4. — P. 315 — 317.
  87. Douay L. Experimental culture conditions are critical for ex vivo expansion of hematopoietic cells. // Journal of Hematotherapy and Stem Cell Research. 2001. — Vol. 10.-P. 341 -346.
  88. Dvorakova J., Hruba A., Velebny V. et al. Isolation and characterization of mesenchymal stem cell population entrapped in bone marrow collection sets. // Cell Biology International 2008. — Vol. 32. — P. 1116 — 1125.
  89. Edling C.E., Hallberg B. c-Kit a hematopoietic cell essential receptor tyrosine kinase. // Int. Journal of Biochemistry and Cell Biology. — 2007. — 39. — P. 1995 — 1998.
  90. Erices A., Conget P., Minguell J.J. Mesenchymal progenitor cells in human umbilical cord blood. // British Journal of Haematology. 2000 — Vol. 109. — P. 235 -242.
  91. Euskirchen G., Royce Т.Е., Bertone P. et al. CREB binds to multiple loci on human chromosome 22. // Molecular and Cellular Biology. 2004. — 24. — P. 3804 -3814.
  92. Fehrer C., Brunauer R., Laschober G. et al. Reduced oxygen tension attenuates differentiation capacity of human mesenchymal stem cells and prolongs their lifespan. // Aging Cell. 2007. — 6. — P. 745 — 757.
  93. Feldser D., Agani F., Iyer N.V. et al. Reciprocal positive regulation of hypoxia-inducible factor 1 alpha and insulin-like growth factor 2. // Cancer Research. 1999. -59.-P. 3915−3918.
  94. Fink Т., Abildtrup L., Fogd K. et al. Induction of adipocyte-like phenotype in human mesenchymal stem cells by hypoxia. // Stem Cells. 2004. — 22. — P. 1346 -1355.
  95. Fischbach G. D., Fischbach R. L. Stem cells: science, policy, and ethics. // The Journal of Clinical Investigation. 2004. — Vol. 114. — № 10. — P. 1364 — 1370.
  96. Fortunel N., Hatzfeld A., Hatzfeld J.A. Transforming growth factor-B: pleiotropic role in the regulation of hematopoiesis. // Blood. 2000. — Vol. 96. — № 6. -P. 2022−2036.
  97. Freund D., Bauer N., Boxberger S. et al. Polarization of human hematopoietic progenitors during contact with multipotent mesenchymal stromal cells: effects on proliferation and clonogenicity. // Stem Cells Dev. 2006. — Vol.15. — 6. — P. 815 -829.
  98. Friedenstein A.J., Gorskaja J.F., Kulagina N.N. Fibroblast precursors in normal and irradiated mouse hematopoietic organs. // Experimental Hematology. 1976. — Vol. 4.-№ 5.-P. 267−274.
  99. Friedenstein A.J., Ivanov-Smolenski A.A., Chajlakjan R.K. et al. Origin of bone marrow stromal mechanocytes in radiochimeras and heterotopic transplants. // Experimental Hematology. 1978. — Vol. 6. — № 5. — P. 440 — 444.
  100. Friedenstein A.J., Chailakhyan R.K., Gerasimov U.V. Bone marrow osteogenic stem cells: in vitro cultivation and transplantation in diffusion chambers. // Cell and Tissue Kinetics. 1987. — Vol. 20. — № 3. — P. 263 — 272.
  101. Gangji V., Hauzeur J.P. Treatment of osteonecrosis of the femoral head with implantation of autologous bone-marrow cells. Surgical technique. // The Journal of Bone and Joint Surgery. American Volume. 2005. — Vol.87. — № 1. — P. 106 — 112.
  102. Galinanes M., Loubani M., Davies J. et al. Safety and efficacy of transplantation of autologous bone marrow into scarred myocardium for the enhancement of cardiac function in man. // Circulation. 2002.
  103. Gartner S., Kaplan H.S. Long-term culture of human bone marrow cells. // Proceedings of the National Academy of Sciences of the USA. 1980. — Vol. 77. — P. 4756−4759.
  104. Gillette J.M., Larochelle A., Dunbar C.E. et al. Intercellular transfer to signalling endosomes regulates an ex vivo bone marrow niche. // Nature Cell Biology. -2009.-11.-P. 303−311.
  105. Gimble J.M., Wanker F., Wang C.S. et al. Regulation of bone marrow stromal cell differentiation by cytokines whose receptors share the gpl30 protein. // Journal of Cellular Biochemistry. 1994.-Vol. 543.-№ 1.-P. 122- 133.
  106. Gimble J.M., Morgan C., Kelly K. et al. Bone morphogenetic proteins inhibit adipocyte differentiation by bone marrow stromal cells. // Journal of Cellular Biochemistry. 1995 — Vol. 58. — № 3. — P. 393 — 402.
  107. Goodwin R.G., Lupton S., Schmierer A. et al. Human interleukin 7: molecular cloning and growth factor activity on human and murine B-lineage cells. // Proceedings of the National Academy of Sciences of the USA.- 1989. 86. — P. 302 — 306.
  108. Goodwin H.S., Bicknese A.R., Chien S.N. et al. Multilineage differentiation activity by cells isolated from umbilical cord blood: expression of bone, fat, and neural markers. // Biology Blood Marrow Transplant. 2001. — Vol. 7. — P. 581 — 588.
  109. Gratama J., Sutherland D.R., Keeney M. et al. Flow cytometric enumeration and immunophenotyping of hematopoietic stem and progenitor cells. // Journal of Biological Regulators and Homeostatic Agents. 2001. — Vol. 15. — P. 14 — 22.
  110. Grayson W.L., Zhao F., Izadpanah R. et al. Effects of hypoxia on human mesenchymal stem cell expansion and plasticity in 3D constructs. // Journal of Cellular Physiology. 2006. — 207. — P. 331 — 339.
  111. Greijer A.E., van der Wall E. The role of hypoxia inducible factor 1 (HIF-1) in hypoxia induced apoptosis. // Journal of Clinical Pathology. 2004. — 57. — P. 1009 -1014.
  112. Gronthos S., Graves S.E., Ohta S. et al. The STRO-l+ fraction of adult human bone marrow contains the osteogenic precursors. // Blood. 1994. — Vol. 84. — № 12. -P. 4164−4173.
  113. Gronthos S., Zannettino A.C., Hay S.J. et al. Molecular and cellular characterisation of highly purified stromal stem cells derived from human bone marrow. // Journal of Cell Science. 2003. — Vol. 116. — P. 1827 — 1835.
  114. Hamilton J.A., Anderson G.P. GM-CSF Biology. // Growth factors. 2004. -22.-P. 225−231.
  115. Hardy C.L., Minguell J.J. Cellular interactions in hemopoietic progenitor cell homing: a review. // Scanning Microscopy. 1993. — 7. — P. 333 — 341.
  116. Hermann A., Gastl R., Liebau S. et al. Efficient generation of neural stem celllike from adult human bone marrow stromal cells. // Journal of Cell Science. 2004. -117.-P. 4411−4422.
  117. Hernigou P., Beaujean F. Treatment of osteonecrosis with autologous bone marrow grafting. II Clinical Orthopaedics and Related Research. 2002. — Vol. 405. — P. 14−23.
  118. Highfill J., Haley S.D., Kompala D.S. Large-scale production of murine bone marrow cells in an airlift packed bed bioreactor. // Biotechnology and Bioengineering. -1996.-Vol. 50.-P. 514−520.
  119. Hitchon C., Wong K., Ma G. et al. Hypoxia-induced production of stromal cell-derived factor 1 (CXCL12) and vascular endothelial growth factor by synovial fibroblasts. // Arthritis and Rheumatism. 2002. — 46. — 10. — P. 2587 — 2597.
  120. Hoffmann A., Gloe Т., Pohl U. Hypoxia-induced upregulation of eNOS gene expression is redox-sensitive: a comparison between hypoxia and inhibitors of cell metabolism. // Journal of Cellular Physiology. 2001. — 188. — P. 33 — 44.
  121. Hollander A.P., Corke K.P., Freemont A. J., Lewis C.E. Expression of hypoxia-inducible factor la by macrophages in the rheumatoid synovium. // Arthritis and Rheumatism. 2001. — 44. — 7. — P. 1540 — 1544.
  122. Horwitz, Blanc, Dominici et al. Clarification of the nomenclature for MSC: The International Society for Cellular Therapy position statement. // Cytotherapy. 2005. -Vol. 7.-P. 393−395.
  123. Hu Y., Liao L., Wang Q. et al. Isolation and identification of mesenchymal stem cells from human fetal pancreas. // The Journal of Laboratory and Clinical Medicine. 2003. — Vol. 141. — № 5. — P. 342 — 349.
  124. Hu C.J., Wang L.Y., Chodosh L.A. et al. Differential roles of hypoxia-inducible factor la (HIF-la) and HIF-2a in hypoxic gene regulation. // Molecular and Cellular Biology. 2003. — Vol. 23. — № 24. — P. 9361 — 9374.
  125. Hu C.J., Iyer S., Sataur A. et al. Differential regulation of the transcriptional activities of hypoxia-inducible factor 1 alpha (HIF-1 alpha) and HIF-2alpha in stem cells. // Molecular and Cell Biology. 2006. — Vol. 26. — № 9. — P. 3514 — 3526.
  126. Hung S.C., Chen N.J., Hsieh S.L. et al. Isolation and characterization of size-sieved stem cells from human bone marrow. // Stem Cells. 2002 — Vol. 20. — P. 249 -258.
  127. D’Ippolito G., Diabira S., Howard G.A. et al. Low oxygen tension inhibits osteogenic differentiation and enhances sternness of human MIAMI cells. // Bone. -2006.-39.-P. 513 -522.
  128. Ishikawa Y., Ito T. Kinetics of hemopoietic stem cells in a hypoxic culture. // European Journal of Haematology. 1988 — Vol. 40. — P. 126 — 129.
  129. Isoyama K., Yamada K., Hirota Y. et al. Study of the collection and separation of umbilical cord blood for use in hematopoietic progenitor cell transplantation. // International Journal of Hematology. 1996. — Vol. 63. — № 2. — P. 95 — 102.
  130. Ivanovic Z., Belloc F., Faucher J.L. et al. Hypoxia maintains and interleukin-3 reduces the pre-colony-forming cell potential of dividing CD34(+) murine bone marrow cells. // Experimental Hematology. 2002. — 30. — P. 67 — 73.
  131. Janderova L., McNeil M., Murrell A.N. et al. Human mesenchymal stem cells as an in vitro model for human adipogenesis. // Obesity Research. 2003. — № 1 — P. 65 -73.
  132. Jiang B.H., Rue E., Wang G.L. et al. Dimerization, DNA binding, and transactivation properties of hypoxia-inducible factor 1. // The Journal of Biological Chemistry. 1996. — 30. — P. 17 771 — 17 778.
  133. Jiang Y., Jahagirdar B.N., Reinhardt R.L. et al. Pluripotency of mesenchymal stem cells derived from adult marrow. // Nature. 2002. — Vol. 4. — P. 41 — 49.
  134. Johnstone В., Hering T.M., Caplan A.I., et al. In vitro chondrogenesis of bone marrow-derived mesenchymal progenitor cells. // Experimental Cell Research. 1998. -Vol. 238. — № 1. — P. 265 — 272.
  135. Kadereit S., Deeds L.S., Haynesworth S.E. et al. Expansion of LTC-ICs and maintenance of p21 and BCL-2 expression in cord blood CD34(+)/CD38(-) early progenitors cultured over human MSCs as a feeder layer. // Stem Cells. 2002 — Vol. 20.-P. 573−582.
  136. Kadiyala S., Young R.G., Thiede M.A. et al. Culture expanded canine mesenchymal stem cells possess osteochondrogenic potential in vivo and in vitro. // Cell Transplantation. 1997. — Vol. 6. — № 2. — P. 125 — 134.
  137. Kadowaki A., Tsukazaki Т., Hirata K. et al. Isolation and characterization of a mesenchymal cell line that differentiates into osteoblasts in response to BMP-2 from calvariae of GFP transgenic mice. // Bone. 2004. Vol. 34. — № 6. — P. 993 — 1003.
  138. Kaelin W.G. How oxygen makes its presence felt. // Genes & development. -2002.-16.-P. 1441 -1445.
  139. Kanai M., Hirayama F., Yamaguchi M. et al. Stromal cell-dependent ex vivo expansion of human cord blood and augmentation of transplantable stem cell activity. // Bone Marrow Transplantation. 2000. — Vol. 26. — № 8. — P. 837 — 844.
  140. Kernan N.A., Bartsch G., Ash R.C. et al. Analysis of 462 transplantations from unrelated donors facilitated by the national marrow donor program// The New England Journal of Medicine. 1993. — Vol.328. — P. 593 — 602.
  141. Kishimoto Т., Akira S., Narazaki M. et al. Interleukin-6 .family of cytokines and gpl30. // Blood. 1995. — 86. — P. 1243 — 1254.
  142. Klees R.F., Salasznyk R.M., Kingsley K. et al. Laminin-5 induces osteogenic gene expression in human mesenchymal stem cells through an ERK-dependent pathway. // Molecular Biology of the Cell. 2005. — Vol. 16. — № 2. — P. 881 — 890.
  143. Kogler G., Sensken S., Airey J.A. et al. A new human somatic stem cell from placental cord blood with intrinsic pluripotent differentiation potential. // The Journal of Experimental Medicine. 2004. — Vol. 200. — P. 123 — 135.
  144. Kolf C. M, Cho E., Tuan R.S. Mesenchymal stromal cells. Biology of adult mesenchymal stem cells: regulation of niche, self-renewal and differentiation. // Arthritis Research and Therapy. 2007. — Vol. 9. — № 204. — P. 1 — 10.
  145. Koller M.R., BenderJ.G., Papoutsakis E.T. et al. Effects of synergistic cytokine combinations, low oxygen, and irradiated stroma on the expansion of human cord blood progenitors. // Blood. 1992. — 15. — 403 — 411.
  146. Koller M., Emerson S.G., Palsson B.O. Large-scale expansion of human stem and progenitor cells from bone marrow mononuclear cells in continuous perfusion cultures. // Blood. 1993. — Vol. 82. — № 2. — P. 378 — 384.
  147. Krangel M.S. Secretion of HLA-A and -B antigens via an alternative RNA splicing pathway. // The Journal of Experimental Medicine. 1986. — Vol. 163. — P. 1173- 1190.
  148. Kraus D., Fackler M., Civin C. et al. CD 34: structure, biology and clinical utility // Blood. 1996. — Vol. 87. — P. 1 — 15.
  149. Krystal G., Lanm V., Dragowska W. et al. Transforming growth factor beta 1 is an inducer of erythroid differentiation. // Journal of Experimental Medicine. 1994. -Vol. 180.-P. 851 -860.
  150. Kusadasi N., Koevoet J.L., van Soest P.L. et al. Stromal support augments extended long-term ex vivo expansion of hemopoietic progenitor cells. // Leukemia. -2001.- 15.-P. 1347- 1358.
  151. Kuznetsov S.A., Mankani M.H., Gronthos S. et al. Circulating skeletal stem cells.//Journal Cell Biology.-2001.-Vol. 153.-№ 5.-P. 1133- 1140.
  152. La Ferla К., Reimann С., Jelkmann W. et al. Inhibition of erythropoietin gene expression signaling involves the transcription factors GATA-2 and NF-kappaB. // FASEB Journal. 2002. — 16. — P. 1811 — 1813.
  153. Larrick J.W. Native interleukin 1 inhibitors. // Immunology Today. 1989 -Vol. 10.-№ 2.-P. 61−6.
  154. Lee M., Bikram M., Oh S. et al. Spl-dependent regulation of the RTP801 promoter and its application to hypoxia-inducible VEGF plasmid for ischemic disease. // Pharmaceutical Research. 2004. — 21. — P. 736 — 741.
  155. Lee H.S., Huang G.T., Chiang H., et al. Multipotential mesenchymal stem cells from femoral bone marrow near the site of osteonecrosis. // Stem Cells. 2003. — Vol. 21.-P. 190−199.
  156. Lee O.K., Kuo Т.К., Chen W.M. et al. Isolation of multipotent mesenchymal stem cells from umbilical cord blood. // Blood. 2004. — Vol. 103 — № 5. — P. 1669 -1675.
  157. Lennon D.P., Edmison J.M., Caplan A.I. Cultivation of rat marrow-derived mesenchymal stem cells in reduced oxygen tension: effects on in vitro and in vivo osteochondrogenesis. // Journal of Cellular Physiology. 2001. — Vol. 187. — № 3. — P. 345−355.
  158. Leon E.R., Iwasaki K., Komaki M. et al. Osteogenic effect of interleukin-11 and synergism with ascorbic acid in human periodontal ligament cells. // Journal of Periodontal Research. 2007. — 42. — P. 527 — 35.
  159. Lin J.R., Guo K.Y., Li J.Q., Yan D.A. In vitro culture of human bone marrow mesenchymal stem cell clones and induced differentiation into neuron-like cells. // Di Yi Jun Yi Da Xue Xue Bao. 2003. — Vol. 23. — № 3. — P. 251 — 253, 264.
  160. Lodolce J.P., Burkett P.R., Koka R.M. et al. Regulation of lymphoid homeostasis by interleukin-15. // Cytokyne Growth Factor Rev. 2002. — 13. — P. 429 -439.
  161. Lopez-Lazaro M. HIF-1: hypoxia-inducible factor or dysoxia-inducible factor? // FASEB Journal. 2006. — 20. — P. 828 — 832.
  162. Maeda S., Nobukuni Т., Shimo-Onoda K. et al. Sortilin is upregulated during osteoblastic differentiation of mesenchymal stem cells and promotes extracellular matrix mineralization. // Journal of Cellular Physiology. 2002. — Vol. 193. — P. 73 — 79.
  163. Majumdar M.K., Thiede M.A., Mosca J.D.et al. Phenotypic and functional comparison of cultures of marrow-derived mesenchymal stem cells (MSCs) and stromal cells. // Journal of Cellular Physiology. 1998. — Vol. 176. -№ 1. — P. 57 — 66.
  164. Majumdar M.K., Keane-Moore M., Buyander D. et al. Characterization and functionality of cell surface molecules on human mesenchymal stem cells. // Journal of Biomedical Science. 2003. — Vol. 10 — № 2. — P. 228 — 241.
  165. Martin D.R., Cox N.R., Hathcock T.L., Niemeyer G.P., Baker H.J. Isolation and characterization of multipotential mesenchymal stem cells from feline bone marrow. // Experimental Hematology. 2002. — Vol. 30. — P. 879 — 886.
  166. Martin-Rendon E., Hale S.J., Ryan D. et al. Transcriptional profiling of human cord blood CD133+ and cultured bone marrow mesenchymal stem cells in response to hypoxia. // Stem Cells. 2007. — Vol. 25. — P. 1003 — 1012.
  167. Mayani H. Composition and function of hemopoietic microenvironment in human myeloid leukemia. // Leukemia. 1996. — Vol. 10. — № 6. — P. 1041 — 1047.
  168. McNiece I., Harrington J., Turney J. et al. Ex vivo expansion of cord blood mononuclear cells on mesenchymal stem cells. // Cytotherapy. 2004. — Vol. 6. — P. 311 -317.
  169. Metcalf D. The granulocyte-macrophage colony stimulating factors. // Cell. -1985.-43.-P. 5−6.
  170. Miki N., Ikuta M., Matsui T. Hypoxia-induced activation of the retinoic acid receptor-related orphan receptor a4 gene by an interaction between hypoxia-inducible factor-1 and Spl. // The Journal of Biological Chemistry. 2004. — 279. — P. 15 025 -15 031.
  171. Millhorn D.E., Raymond R., Conforti L. et al. Regulation of gene expression for tyrosine hydroxylase in oxygen sensitive cells by hypoxia. // Kidney International. -1997.-51.-P. 527−535.
  172. Minet E., Michel G., Mottet D. et al. c-JUN gene induction and AP-1 activity is regulated by a JNK-dependent pathway in hypoxic HepG2 cells. // Experimental Cell Research.-2001.-265.-P. 114−124.
  173. Minguell J.J., Conget P., Erices A. Biology and clinical utilization of mesenchymal progenitor cells. // Brazilian Journal of Medical and Biological Research. -2000.-Vol. 33.-P. 881 -887.
  174. Minguell J.J., Eriees A., Conget P. Mesenchymal Stem Cells. // Experimental Biology and Medicine. 2001. — Vol. 226. — № 6. — P. 507 — 520.
  175. Montgomery R.K., Shivdasani R.A. Promininl (CD133) as an intestinal stem cell marker: promise and nuance. // Gastroenterology. 2009. — Vol. 136. — P. 2051 -2054.
  176. Moore M.A.S., Williams N., Metcalf D. In vitro colony formation by normal and leukemic human hemopoietic cells: Interaction between colony-forming and colony-stimulating cells. // Journal of the National Cancer Inst. 50. — P. 59 — 61.
  177. Moore K.A., Lemischka I.R. Stem Cells and Their Niches. // Science. 2006. -P. 1880- 1885.
  178. Mostafa S.S., Miller W.M., Papoutsakis E.T. Oxygen tension influences the differentiation, maturation and apoptosis of human megakaryocytes. // British Journal of Haematology. 2000. — Vol. 111. — P. 879 — 889.
  179. Muguruma Y., Yahata Т., Miyatake H. et al. Reconstitution of the functional human hematopoietic microenvironment derived from human mesenchymal stem cells in the murine bone marrow compartment. // Blood. 2006. — Vol. 107. — P. 1878 -1887.
  180. Muraglia A., Cancedda R., Quarto R. Clonal mesenchymal progenitors from human bone marrow differentiate in vitro according to a hierarchical model. // Journal of Cell Science. 2000. — Vol. 113. — Pt. 7. — P. 1161 — 1166.
  181. Naldini A., Carraro F., Silvestri S., et al. Hypoxia affects cytokine production and proliferation responses by human peripheral mononuclear cells. // Journal of Cellular Physiology. 1997. — Vol. 173. — P. 335 — 342.
  182. Nathan S., Das De S., Thambyah A. et al. Cell-based therapy in the repair of osteochondral defects: a novel use for adipose tissue. // Tissue Engineering. 2003. -Vol. 9.-№ 4.-P. 733−744.
  183. Naveiras О., Nardi V., Wenzel P.L. et al. Bone-marrow adipocytes as negative regulators of the haematopoietic microenvironment. // Nature. — 2009. — 460. — P. 259 — 63.
  184. Noll Т., Jelinek N., Schmid S. et al. Cultivation of hematopoietic stem and progenitor cells: biochemical engineering aspects. // Advances in Biochemical Engineering. 2002. — Vol. 74. — P. 111 — 128.
  185. Noth U., Osyczka A.M., Tuli R. et al. Multilineage mesenchymal differentiation potential of human trabecular bone-derived cells. // Journal of Orthopaedic Research. 2002. — Vol. 20. — № 5. — P. 1060 — 1069.
  186. Novak A., Hsu S.C., Leung-Hagesteijn C. et al. Cell adhesion and the integrin-linked kinase regulate the LEF-1 and beta-catenin signaling pathways. // Proceedings of the National Academy of Sciences of the USA. 1998. — Vol. 95. — P.4374 — 4379.
  187. Owen M.E., Cave J., Joyner C.J. Clonal analysis in vitro of osteogenic differentiation of marrow CFU-F. // Journal of Cell Science. 1987. — Vol. 87. — Pt. 5. -P. 731 -738.
  188. Owen M. Marrow stromal stem cells. // Journal of Cell Science. 1988. — Supl. 10.-P. 63−76.
  189. Pandit J., Bohm A., Jancarik J. et al. Three-dimensional structure of dimeric human recombinant macrophage colony-stimulating factor. // Science. 1992. — 258. -P. 1358- 1362.
  190. Palsson B.O., Paek S-H., Schwartz R.M. et al. Expansion of human bone marrow progenitor cells in a high cell density continuous perfusion system. // Bio/Technology. 1993. — Vol. 11. — P. 368 — 372.
  191. Parcells B.M. Ikeda A.K., Simms-Waldrip T. et al. FMS-Like tyrosine kinase 3 in normal hematopoiesis and acute myeloid leukemia. // Stem Cells. 2006. — Vol. 24. -5.-P. 1174−1184.
  192. Paul S.R., Bennett F., Calvetti J.A. et al. Molecular cloning of a cDNA encoding interleukin 11, a stromal cell-derived lymphopoietic and hematopoietic cytokine. // Proceedings of the National Academy of Sciences of the USA.- 1990. -87.-P. 7512−7516.
  193. Pettengell R., Luft Т., Henschler R. et al. Direct comparison by limiting dilution analysis of long-term culture initiating cells in human bone marrow, umbilical cord blood, and blood stem cells.// Blood. — 1994. — Vol. 84. — P. 3652 — 3659.
  194. Piacibello W., Sanavio F., Garetto L. et al. Extensive amplification and self-renewal of human primitive hematopoietic stem cells from cord blood.// Blood. 1997. -Vol. 89. — № 8. — P.2644 — 2653.
  195. Pittenger M.F., Mackay A.M., Beck S.C. et al. Multilineage potential of adult human mesenchymal stem cells. // Science. 1999. — Vol. 284. — P. 143 — 147.
  196. Pittenger M.F., Martin B.J. Mesenchymal stem cells and their potential as cardiac therapeutics. // Circulation Research. 2004. — Vol. 95. — P. 9 — 20.
  197. Poliard A., Nifuji A., Lamblin D. et al. Controlled conversion of an immortalized mesodermal progenitor cell towards osteogenic, chondrogenic, or adipogenic pathways. // The Journal of Cell Biology. 1995. — Vol. 130. — № 6. — P. 1461 — 1472.
  198. Ponta H., Sherman L., Herrlich P.A. CD44: from adhesion moleculaes to signaling regulators. // Nature reviews. Molecular cell biology. 2003. — 4. — P. 33 — 45.
  199. Preston D.J., Alison M.R., Forbes S.J. et al. The new stem cell biology: something for everyone. // Molecular Pathology. 2003. Vol. 56. — P. 86 — 96.
  200. Prockop DJ. Marrow stromal cells as stem cells for nonhematopoietic tissues. // Science. 1997. — Vol. 276. — P. 71 — 74.
  201. Prockop D.J., Sekiya I., Colter D.C. Isolation and characterization of rapidly self-renewing stem cells from cultures of human marrow stromal cells. // Cytotherapy. — 2001.-Vol.3.-P. 393−396.
  202. Prockop D.J. Further proof of the plasticity of adult stem cells and their role in tissue repair. // The Journal of Cell Biology. 2003. — Vol.160. — № 6. P. 807 — 809.
  203. Prockop D.J., Gregory C.A., Spees L. One strategy for cell and gene therapy: harnessing the power of adult stem cells to repair tissues. // Proceedings of the National Academy of Sciences of the USA.-2003.-Vol. 100.-P. 11 917−11 923.
  204. Provot S., Zinyk D., Gunes Y. et al. HIF-la regulates differentiation of limb bud mesenchyme and joint development. // Journal of Cell Biology. 2007. — 177. — P. 451 -464.
  205. Pugh C.W., Ratcliffe P.J. Regulation of angiogenesis by hypoxia: role of the HIF system. // Nature Medicine. 2003. — Vol. 9. — № 6. — P. 677 — 684.
  206. Raff M. Adult stem cell plasticity: fact or artifact? // Annual Review of Cell and Developmental Biology. 2003. — Vol. 19. — P. 1 — 22.
  207. Ren H., Cao Y., Zhao Q. et al. Proliferation and differentiation of bone marrow stromal cells under hypoxic conditions. // Biochemical and Biophysical Research Communications. 2006. — 347. — P. 12 — 21.
  208. Reyes M., Verfaillie C.M. Characterization of multipotent adult progenitor cells, a subpopulation of mesenchymal stem cells. // Annals of the New York Academy of Sciences. 2001. — Vol. 938. — P. 231 — 235.
  209. Rhodes N.P., Srivastava J.K. Smith R.F. et al. Heterogeneity in proliferative potential of ovine mesenchymal stem cell colonies. // Journal of Materials Science. Materials in Medicine. 2004. — Vol. 15. -№ 4. — P. 397 — 402.
  210. Rich I.N., Kubanek B. The effect of reduced oxygen tension on colony formation of erythropoietic cells in vitro. // British Journal of Haematology 1982. -52.-P. 579−588.
  211. Rochefort G.Y., Delorme В., Lopez A. et al. Multipotential mesenchymal stem cells are mobilized into peripheral blood by hypoxia. // Stem Cells. 2006. — 24. — P. 2202−2208.
  212. Rodesch F., Simon P., Donner C. et al. Oxygen measurements in endometrial and trophoblastic tissues during early pregnancy. // Obstetrics and Gynecology. — 1992. -2.-P. 283−285.
  213. Romanov Y.A., Svintsitskaya V.A., Smirnov V.N. Searching for alternative sources of postnatal human mesenchymal stem cells: candidate MSC-like cells from umbilical cord. // Stem Cells. 2003. — Vol. 21. — P. 105 — 110.
  214. Roufosse C. A., Direkze N. C., Otto W. R. et al. Circulating mesenchymal stem cells. // Int. J. Biochem. Cell Biol. 2004. — Vol. 36. — P. 585 — 597.
  215. Rothlein R., Dustin M.L., Marlin S.D., Springer T.A. A human intercellular adhesion molecule (ICAM-1) distinct from LFA-1. // Journal of Immunology. 1986. -Vol. 137.-P. 1270- 1274.
  216. Rubinstein P., Taylor P.E., Searadavou A. et al. Unrelated placental blood for bone marrow reconstitution: Organization of the placental blood program.// Blood Cells. 1994. — Vol.20. — № 2. — P. 587 — 600.
  217. Salasznyk R.M., Williams W.A., Boskey A. et al. Adhesion to vitronectin and collagen I promotes osteogenic differentiation of human mesenchymal stem cells. // Journal of Biomedicine and Biotechnology. 2004. — № 1. — P: 24 — 34.
  218. Salim A., Nacamuli R.P., Morgan E.F. et al. Transient changes in oxygen tension inhibit osteogenic differentiation and Runx2 expression in osteoblasts. // The Journal of Biological Chemistry. 2004. — 279. — P. 40 007 — 40 016.
  219. Salnikow K., Kluz Т., Costa M. et al. The regulation of hypoxic genes by calcium involves c-Jun/AP-1, which cooperates with hypoxia-inducible factor-1 in response to hypoxia. // Molecular and Cellular Biology. 2002. — 22. — P. 1734 — 1741.
  220. Sanchez-Ramos J., Song S., Cardozo-Pelaez F. et al. Adult bone marrow stromal cells differentiate into neural cells in vitro. // Experimental Neurology. — 2000. -Vol. 164. № 2. P. 247 — 256.
  221. Sandstrom C.E., Bender J.G., Papoutsakis E.T. et al. Effects of CD34+ cell selection and perfusion on ex vivo expansion of peripheral blood mononuclear cells. // Blood. 1995. — Vol. 86. — № 3. — P. 958 — 970.
  222. Sardonini C. A, Wu Y.J. Expansion and differentiation of human hematopoietic cells from staticcultures through small-scale bioreactors. // Biotechnology Progress. -1993.-Vol. 9.-P. 131−137.
  223. Sato Y., Araki H., Kato J. et al. Human mesenchymal stem cells xenografted directly to rat liver are differentiated into human hepatocytes without fusion. // Blood. -2005.-Vol. 106.-№ 2.-P. 756−763.
  224. Schecrcoun N., Delloe C. Bone like nodules formed by human bone marrow stromal cells: comparative study and characterization. // Bone. 2003. — Vol. 32. — № 3. -P. 252−260.
  225. Scherer K., Schunke M., Sellckau R. et al. The influence of oxygen and hydrostatic pressure on articular chondrocytes and adherent bone marrow cells in vitro. // Biorheology. 2004. — 41. — P. 323 — 333.
  226. Schmedtje J.F. Jr., Ji Y.S., Liu W.L. et al. Hypoxia induces cyclooxygenase-2 via the NF-кВ p65 transcription factor in human vascular endothelial cells. // Journal of Biological Chemistry. 1997. — 272. — P. 601 — 608.
  227. Shmelkov S.V., St. Clair R., Lyden D. et al. AC133/CD133/Prominin-l. // The International Journal of Biochemistry & Cell Biology. 2005. — Vol. 37. — P. 15 — 19.
  228. Schumacker P.T. Hypoxia, anoxia, and O2 sensing: the search continues. // American Journal of Physiology. Lung Cellular and Molecular Physiology. 2002. -Vol. 283. — P. L 918 — L921.
  229. Semenza G.L. HIF-1 and human disease: one highly involved factor. // Genes and Development.-2000.-Vol. 14.-P. 1983- 1991.
  230. Semenza G.L. HIF-1, O2 and 3 PHDs. How animal cells signal hypoxia to the nucleus.//Cell.-2001.-Vol. 107.-№ 1.-P. 1 -3.
  231. Semenza G.L. Involvement of hypoxia-inducible factor 1 in pulmonary pathophysiology. // Chest. 2005. — 6 — P. 592S — 594S.
  232. Sekiya I., Larson B.L., Smith J.R., et al. Expansion of human adult stem cells from bone marrow stroma: conditions that maximize the yields of early progenitors and evaluate their quality. // Stem Cells. 2002. — Vol. 20. — № 6. — P. 530 — 541.
  233. Seko Y., Tobe K., Ueki К et al. Hypoxia and hypoxia/reoxygenation activate Raf-1, mitogen-activated protein kinase, mitogen-activated proteinkinase and S6 kinase in cultured rat cardiac myocytes. // Circulation Research. 1996. — Vol. 78. — P. 82 — 90.
  234. Siczkowski M., Andrew Т., Amos S. et al. Hialuronic acid regulates the function and distribution of sulfated glycosaminoglycans in bone marrow stromal cultures. //Experimental Hematology. 1993. — Vol. 21. -№ 1. — P. 126 — 130.
  235. Silver I., Ericinska M. Oxygen and ion concentrations in normoxic and hypoxic brain cells. // Advances in Experimental Medicine and Biology. 1998. — 454. — P. 7 -16.
  236. Spradling A., Drummond-Barbosa D., Kai T. Stem Cells find their niche. // Nature. 2001. — Vol. 414. — P. 98 — 104.
  237. Srinivas V., Leshchinsky I., Sang N. et al. Oxygen sensing and HIF-1 activation does not require an active mitochondrial respiratory chain electron-transfer pathway. // Journal of Biological Chemistry. 2001. — Vol. 276. — № 25. — P. 21 995 -21 998.
  238. Stanley E.R., Berg K.L., Einstein D.B. et al. The biology and action of colony stimulating factor-1. // Stem Cells. 1994. — 12. — Suppl. 1. — P. 15 — 24.
  239. Stamm C., Westphal В., Kleine H-D. et al. Autologous bone-marrow stem-cell transplantation for myocardial regeneration. // The Lancet. — 2003. Vol. 361. — P. 45 -46.
  240. Strauer B.E., Brehm M., Zeus T. et al. Repair of infarcted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans. // Circulation. -2002. Vol. 106. — P. 1913 — 1918.
  241. Stroka D.M., Burkhardt Т., Desbaillets I. HIF-1 is expressed in normoxic tissue and displays an organ-specific regulation under systemic hypoxia. // The FASEB Journal. 2001. — 15. — P. 2445 — 2453.
  242. Taipale J., Keski-Oja J. Growth factors in the extracellular matrix. // The FASEB Journal. 1997. — 11. — 1. — P. 51 — 59.
  243. Takahashi K., Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. // Cell. 2006. — Vol. 126. -P. 663 — 676.
  244. Takahashi K., Tanabe K., Ohnuki M. et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. // Cell. 2007. — Vol. 131. — P. 861 -872.
  245. Taylor C.T. Mitochondria and cellular oxygen sensing in the HIF pathway. // The Biochemical Journal. 2008. — 409. — P. 19 — 26.
  246. Traineau R., Dal Cortivo L. Cord blood banks- unrelated transplants. // Transfus. Clin. Biol. 1998. — Vol. 5. -№.1. — P. 56−63.
  247. Traynor A., Burt R.K. Haemotopoietie stem cells transplantation for active systemic lupus erythematosus. // Rheumatology (Oxford). 1999. — Vol. 38. — № 8. — P. 767 — 772.
  248. Trentin J.J. Determination of bone marrow stem cell differentiation by stromal hemopoietic inductive microenvironments (HIM). // American Journal of Pathology. -1971. Vol. 65. — № 3. — P. 621 -. 628.
  249. Tropel P., Noel D., Platet N. et al. Isolation and characterisation of mesenchymal stem cells from adult mouse bone marrow. // Experimental Cell Research. 2004. Vol. 295. — № 2. — P. 395 — 406.
  250. Tuan R.S., Boland G., Tuli R. Adult mesenchymal stem cells and cell-based tissue engineering. // Arthritis Research and Therapy. 2003. Vol. 5. — № 1. — P. 32 -45.
  251. De Ugarte D.A., Alfonso Z., Zuk P. A. et al. Differential expression of stem cell mobilization-associated molecules on multi-lineage cells from adipose tissue and bone marrow. // Immunology letters. 2003. — Vol. 89. — № 2−3. — P. 267 — 270.
  252. Valenick L.V., Hsia H.C., Schwarzbauer J.E. Fibronectin fragmentation promotes alpha4betal integrin-mediated contraction of a fibrin-fibronectin provisional matrix. // Experimental cell research. 2005. — Vol. 309. — P. 48 — 55.
  253. Vaux E.C., Metzen E., Yeates K.M. et al. Regulation of hypoxia-inducible factor is preserved in the absence of a functioning mitochondrial respiratory chain. // Blood. 2001. — Vol. 98. — № 2. — P. 296 — 302.
  254. Verfaillie C.M. Direct contact between human primitive hematopoietic progenitors and bone marrow stroma is not required for long-term in vitro hematopoiesis. // Blood. 1992. — 79. — P. 2821 — 2826.
  255. Verfaillie C.M. Soluble factor (s) produced by human bone marrow stroma increase cytokine-induced proliferation and maturation of primitive hematopoietic progenitors while preventing their terminal differentiation. // Blood. 1993. — 82. -2045−2053.
  256. Villarruel S.M., Boehm C.A., Pennington M. et al. The effect of oxygen tension on the in vitro assay of human osteoblastic connective tissue progenitor cells. // Journal of Orthopaedic Research. 2008. — Vol. 26. — P. 1390 — 1397.
  257. Vogel W., Griinebach F., Messam C.A., et al. Heterogeneity among human bone marrow-derived mesenchymal stem cells and neural progenitor cells. // Haematologica. 2003. — Vol. 88. — № 2. — P. 126 — 133.
  258. Wagner J.E. Umbilical cord transplantation.// Lukemia. 1998. — Vol. 12. -Suppl. l.-P. S30-S32.
  259. Wagner W., Saffrich R., Wirkner U. et al. Hematopoietic progenitor cells and cellular microenvironment: behavioral and molecular changes upon interaction. // Stem Cells.-2005.-Vol. 23.-8.-P. 1180−1191.
  260. Wagner W., Wein F., Seckinger A. et al. Comparative characteristics of mesenchymal stem cells from human bone marrow, adipose tissue, and umbilical cord blood. // Experimental Hematology. 2005. — Vol. 33. — P. 1402 — 1416.
  261. Wagner W., Roderburg C., Wein F., et al. Molecular and secretory profiles of human mesenchymal stromal cells and their abilities to maintain primitive hematopoietic progenitors. // Stem Cells. 2007. — Vol. 25. — P. 2638 — 2647.
  262. Wagner W., Wein F., Roderburg C. et al. Adhesion of human hematopoietic progenitor cells to mesenchymal stromal cells involves CD44. // Cells Tissues Organs. -2008.-Vol. 188.-P. 160−169.
  263. Wang G.L., Semenza G.L. General involvement of hypoxia-inducible factor 1 in transcriptional response to hypoxia. // Proceedings of the National Academy of Sciences of the United States of America. 1993. — 9. — P. 4304 — 4308.
  264. Wang P.P., Wang J.H., Yan Z.P. et al. Expression of hepatocyte-like phenotypes in bone marrow stromal cells after HGF induction. // Biochemical and Biophysical Research Communications. 2004. — Vol. 320. — P. 712 — 716.
  265. Walenda Т., Bork S., Horn P. et al. Co-culture with mesenchymal stromal cells increases proliferation and maintenance of hematopoietic progenitor cells. // Journal of Cellular and Molecular Medicine. 2009. Published Online: 11 may 2009.
  266. Wallace S.R., Oken M.M., Lunetta K.L. et al. Abnormalities of bone marrow mesenchymal cells in multiple myeloma patients. // Cancer. 2001. — Vol. 91. — P. 1219 — 1230.
  267. Warejcka D.J., Harvey R., Taylor B.J. et al. A population of cells isolated from rat heart capable of differentiating into several mesodermal phenotypes. // The Journal of Surgical Research. 1996. — Vol. 62. — № 2. — P. 233 — 242.
  268. Watt S., Contreras M. Stem cell medicine: Umbilical cord blood and its stem cell potential. // Seminars in Fetal and Neonatal medicine. 2005. — Vol. 10. — P. 209 -220.
  269. Wedekind C., Seebeck Т., Bettens F. et al. МНС-dependent mate preferences in humans. // Proceedings Biological Sciences. 1995. — Vol. 260. — P. 245 — 249.
  270. Welte K., Gabrilove J., Bronchud M.H. et al. Filgrastim (r-metHuG-CSF): the first 10 years.//Blood. 1996.-Vol. 88.-P. 1907- 1929.
  271. Wenger R.H., Gassmann M. Oxygen (es) and the hypoxia-inducible factor-1. // Biological Chemistry. 1997. — 7. — P. 609 — 616.
  272. Wenger R.H. Cellular adaptation to hypoxia: Ог-sensing protein hydroxylases, hypoxia-inducible transcription factors, and Ог-regulated gene expression. // The FASEB Journal.-2002.-Vol. 16.-№ 10.-P. 1151−1162.
  273. Wexler S.A., Donaldson C., Denning-Kendall P. et al. Adult bone marrow is a rich source of human mesenchymal 'stem' cells but umbilical cord and mobilized adult blood are not. // British Journal of Haematology. 2003. — Vol. 121. — P. 368 — 374.
  274. Whetton A.D., Graham G.J. Homing and mobilization in the stem cell niche. // Trends Cell Biology. 1999 — Vol. 9. — P. 233 — 238.
  275. Willam C., Schindler R., Frei U., Eckardt K.U. Increases in oxygen tension stimulate expression of ICAM-1 and VCAM-1 on human endothelial cells. // The American journal of physiology. 1999. — 276. — P. H2044 — 2052.
  276. Wislet-Gendebien S., Hans G., Leprince P. et al. Plasticity of cultured mesenchymal stem cells: switch from nestin-positive to excitable neuron-like phenotype. // Stem cells. 2005. — Vol. 23. — P. 392 — 402.
  277. Woodbury D., Schwarz E.J., Prockop D.J. et al. Adult rat and human bone marrow stromal cells differentiate into neurons. // Journal of Neuroscience Research. -2000. Vol. 61. — № 4. — P. 364 — 370.
  278. Woodbury D., Reynolds K., Black I.B. Adult bone marrow stromal stem cells express germline, ectodermal, endodermal, and mesodermal genes prior to neurogenesis. // Journal of Neuroscience Research. 2002. — Vol. 69. — P. 908 — 917.
  279. Wu T.C. The role of vascular cell adhesion molecule-1 in tumor immune evasion. // Cancer Research. 2007. — Vol. 67. — P. 6003 — 6006.
  280. De Wynter E.A., Buck D., Hart C. et al. CD34+AC133+ cells isolated from cord blood are highly enriched in long-term culture-initiating cells, NOD/SCID-repopulating cells and dendritic cell progenitors. // Stem Cells. 1998. — Vol. 16. — P. 387−396.
  281. Xu W., Zhang X., Qian H. et al. Mesenchymal stem cells from adult human bone marrow differentiate into a cardiomyocyte phenotype in vitro. // Experimental Biology and Medicine (Maywood, N.J.) 2004. — Vol. 229. — № 7. — P. 623 — 631.
  282. Yamada M., Suzu S., Tanaka-Douzono M. et al. Effect of cytokines on the proliferation/differentiation of stroma-initiating cells. // Journal of Cellular Physiology. -2000.-Vol. 184.-№ 3.-P. 351 -355.
  283. Yang L., Froio R.M., Sciuto Т.Е. et al. ICAM-1 regulates neutrophil adhesion and transcellular migration of TNF-alpha-activated vascular endothelium under flow. // Blood. 2005. — Vol. 106. — P. 584 — 592.
  284. Yasuda M., Nakano K., Yasumoto K. et al. CD44: functional relevance to inflammation and malignancy. // Histology and Histopathology. 2002. — 17. — P. 945 -950.
  285. Yu J., Vodyanik M.A., Smuga-Otto K. et al. Induced pluripotent stem cell lines derived from human somatic cells. // Science. 2007. — Vol. 318. — P. 1917 — 1920.
  286. Zandstra P.W., Eaves C.J., Piret J.M. Expansion of hematopoietic progenitor cell populations in stirred suspension bioreactors of normal human bone marrow cells. // Bio/Technology. 1994. — Vol. 12.-909−914.
  287. Zola H., Swart В., Banham A. et al. CD molecules 2006-human cell differentiation molecules. // Journal of Immunological Method. — 2007. Vol. 319. — P. 1−5.
  288. Zscharnack M., Poesel C., Galle J. et al. Low oxygen expansion improves subsequent chondrogenesis of ovine bone-marrow-derived mesenchymal stem cells in collagen type I hydrogel. // Cells Tissues Organs. 2009. — 2. — P. 81 — 93.
  289. Zvaifler N.J., Marinova-Mutafchieva L., Adams G., Edwards C.J., Moss J., Burger J.A., Maini R.N. Mesenchymal precursor cells in the blood of normal individuals. // Arthritis Research. 2000. — 6. — P. 477 — 488.
Заполнить форму текущей работой