Помощь в написании студенческих работ
Антистрессовый сервис

Сравнительная топография экспрессии гена c-fos в мозге мышей линий C57BL/6 и 129Sv при обучении в задаче условно-рефлекторного замирания

ДиссертацияПомощь в написанииУзнать стоимостьмоей работы

Обучение в модели условно-рефлекторного замирания приводит к изменениям поведения у мышей обеих исследованных линий — C57BL/6 и 129Sv. Это выражается в высоком уровне замирания обученных животных при их повторном помещении в обстановку, где они ранее получали электрокожное раздражение, а также при предъявлении им условного звукового сигнала в новой обстановке.2. Линии мышей C57BL/6 и 129Sv… Читать ещё >

Сравнительная топография экспрессии гена c-fos в мозге мышей линий C57BL/6 и 129Sv при обучении в задаче условно-рефлекторного замирания (реферат, курсовая, диплом, контрольная)

Содержание

  • 1. 1. АКТУАЛЬНОСТЬ ИССЛЕДОВАНИЯ
  • 1. 2. ЦЕЛЬ И ЗАДАЧИ ИССЛЕДОВАНИЯ
  • 2. ОБЗОР ЛИТЕРАТУРЫ
    • 2. 1. РАЗЛИЧИЯ В ПОВЕДЕНИИ МЫШЕЙ ИНБРЕДНЫХ ЛИНИЙ Sv и C57BL/
    • 2. 2. c-Fos КАК МОЛЕКУЛЯРНЫЙ МАРКЕР ДЛЯ ФУНКЦИОНАЛЬНОГО КАРТИРОВАНИЯ АКТИВНОСТИ МОЗГА ПРИ ОБУЧЕНИИ
    • 2. 3. ФОРМИРОВАНИЕ ДОЛГОВРЕМЕННОЙ ПАМЯТИ В МОДЕЛИ УСЛОВНО-РЕФЛЕКТОРНОГО ЗАМИРАНИЯ
    • 2. 4. ОБОСНОВАНИЕ ВЫБОРА СТРУКТУР МОЗГА И ИХ ХАРАКТЕРИСТИКА
      • 2. 4. 1. ГиппокАМП
      • 2. 4. 2. МЕДИАЛЬНАЯ ЛИМБИЧЕСКАЯ (ЦИНГУ ЛЯРНАЯ) КОРА
      • 2. 4. 3. МОТОРНАЯ КОРА
  • 3. МЕТОДИКА
    • 3. 1. ЭКСПЕРИМЕНТАЛЬНЫЕ ЖИВОТНЫЕ И УСЛОВИЯ СОДЕРЖАНИЯ
    • 3. 2. ПРОЦЕДУРА ОБУЧЕНИЯ И ТЕСТИРОВАНИЯ З.З.ИММУНОГИСТОХИМИЧЕСКОЕ ВЫЯВЛЕНИЕ НЕЙРОНОВ, экспРЕСсирующих C-Fos
    • 3. 4. КОЛИЧЕСТВЕННЫЙ АНАЛИЗ ЭКСПРЕССИИ C-FOS
    • 3. 5. СТАТИСТИЧЕСКИЙ АНАЛИЗ ДАННЫХ
  • 4. РЕЗУЛЬТАТЫ
    • 4. 1. ПОВЕДЕНИЕ МЫШЕЙ ВО ВРЕМЯ СЕАНСА ОБУЧЕНИЯ
    • 4. 2. ПОВЕДЕНИЕ МЫШЕЙ В ТЕСТЕ НА ОБСТАНОВОЧНЫЕ СИГНАЛЫ
    • 4. 3. ПОВЕДЕНИЕ МЫШЕЙ В ТЕСТЕ НА ЗВУКОВОЙ СИГНАЛ
    • 4. 4. ТОПОГРАФИЯ ЭКСПРЕССИИ C-FOS В МОТОРНОЙ КОРЕ
    • 4. 5. ТОПОГРАФИЯ ЭКСПРЕССИИ C-FOS В МЕДИАЛЬНОЙ ЛИМБИЧЕСКОЙ КОРЕ
    • 4. 6. ТОПОГРАФИЯ ЭКСПРЕССИИ C-FOS В ГИППОКАМПЕ
  • 5. ОБСУЖДЕНИЕ
    • 5. 1. РАЗЛИЧИЯ ПОВЕДЕНИЯ МЫШЕЙ ЛИНИЙ C57BL/6 и 129SV ПРИ О Б У Ч Е Н И И И ТЕСТИРОВАНИИ в
  • МОДЕЛИ УСЛОВНО-РЕФЛЕКТОРНОГО ЗАМИРАНИЯ
    • 5. 2. РАЗЛИЧИЕ ПОВЕДЕНИЯ МЫШЕЙ ГРУПП ОБУЧЕНИЯ И АКТИВНОГО КОНТРОЛЯ
    • 5. 3. СВЯЗЬ ЭКСПРЕССИИ C-FOS С ОБУЧЕНИЕМ И ПОВЕДЕНИЕМ
  • 6. ВЫВОДЫ
  • 1.1 Актуальность исследования Известно, что животные разных инбредных линий имеют различные способности к обучению, и поведение их в одних же задачах различается (Vadasz et al., 1992; Crawley, 1997; Montkowski et al, 1997; Contet et al., 2001; Brooks et al., 2004). Подтверждением тому, что генетические факторы играют в этих различиях большую роль, служат классические работы по селекции на способность и неспособность к определенным видам научения (Searle, 1949; Bignami, 1965). Однако нервный субстрат подобных генетических различий изучен недостаточно. Существуют указания на то, что генетические различия проявляются, в частности, в том, что при решении одних и тех же задач у разных животных оказывается задействованным разное количество нейронов в одних и тех же структурах мозга (Ward et al., 1998). Исходя из этого, можно ожидать, что мыши инбредных линий, демонстрирующие значительные различия в обучении, например линий C57BL/6 и 129Sv, (Montkowski et al., 1997 Contet et al., 2001aContet et al., 2001b), будут различаться составом и числом нейронов, вовлекаемых в разных структурах мозга в процессы обучения. Экспериментальная проверка этого предположения требует регистрации активности большого числа нейронов у генетически различных животных в одной и той же задаче обучения. Такую возможность предоставляет метод картирования активности нервных клеток по экспрессии в них индуцируемых транскрипционных факторов. Этот метод служит информативным приемом выявления нейрональных субстратов обучения и формирования памяти (Анохин, 1989; Dragunow, 1996; Анохин, 1997; Herdegen, Leah, 1998; Tischmeyer, Grimm, 1999; Kaczmarek L., 2002; Guzowski, 2001). В его основе лежит то, что белковые продукты ранних генов, синтезированные в ответ на действующие на нейрон при обучении экстраклеточные сигналы, запускают транскрипцию поздних генов-мишеней, приводящую к долговременным пластическим изменениям связей нейронов и формированию долговременной памяти (Анохин, 1997; Kaczmarek L., 2002; Guzowski, 2001).Для сравнительного анализа нейронального обеспечения обучения у генетически различных животных требуется задача, в которой транскрипционную активность нейронов можно было бы оценить после однократного сеанса обучения, дающего выраженные и долговременные изменения поведения. Этим условиям удовлетворяет модель выработки у мышей и крыс условного рефлекса замирания (Bolles, Collier, 1976; Fanselow, 1980). В англоязычной литературе она получила название «cued and contextual fear conditioning» (Fanselow, 1980). Эта модель основана на способности животных ассоциировать электрокожное раздражение с обстановкой экспериментальной камеры, в которой они его получили, и звуковым сигналом, предшествовавшим удару током. В результате такого однократного обучения животные замирают при следующем помещении в данную обстановку или же при предъявлении звукового условного сигнала в иной обстановке (Fanselow, 1980; Radulovic, 1998; Sanders et al., 2003).В настоящей работе экспрессия транскрипционного фактора c-Fos при выработке условнорефлекторного замирания у мышей линий C57BL/6 и 129Sv исследовалась в трех областях мозга: гиппокампе, медиальной лимбической и моторной коре. Гиппокамп и медиальная лимбическая кора были выбраны как структуры мозга, принимающие непосредственное участие в обеспечении условно-рефлекторного замирания. Повреждение этих структур приводит к нарушению данного навыка (Kim et al., 1992; Young et al., 1994; Frysztak, Neafsey, 1994; Morgan, Le Doux, 1995; Maren et al., 1997; Anagnostaras et al, 1999; Kjelstrup et al., 2002; Sanders et al., 2003). Участие гиппокампа, в частности, было показано при обучении в модели «контекстуальное замирание», где обстановка экспериментальной камеры, в которой животные Получили удар тока, является условным сигналом (Kim & Fanselow, 1992; Frankland et al, 1998).Кроме того, медиальную лимбическую кору традиционно относят к структурам, регулирующим эмоциональное поведение и необходимых для обучения (MacLean, 1949; Vogt, 1992; Duncan et ah, 1996; Joel et al., 1997).Известно, что эта область коры головного мозга обладает выраженной нейрогенетической (Bayer, 1990), морфологической (Zeng, 1991) и функциональной (Nauta, 1972; Vogt et al, 1992; Баклаваджян с соавт., 2000) гетерогенностью, однако роль ее различных отделов в процессах обучения остается предметом обсуждения (Divac et al., 1984; Frysztak, Neafsey, 1994; Vogt, 1992; Morgan, LeDoux, 1995). Поэтому в настоящей работе представлялось важным изучить вовлечение нейронов разных участков этой структуры в выработку изучаемого поведения. Поскольку формирование пассивно-оборонительного поведения включает в себя изменения и в двигательной активности животных, можно ожидать, что при данном обучении могут происходить пластические изменения и в нейронах моторной коры. Пластичность моторной коры взрослых животных при обучении была недавно показана в серии экспериментов с изучением эффектов ингибиторов синтеза белка (Luft et al., 2004). Данная область коры организована соматотопически, и существование карты моторных представительств различных частей тела мыши в этой области (Проничев, 2000) потребовало анализа экспрессии c-Fos на всем ростро-каудальном протяжении этой структуры.

    1. Обучение в модели условно-рефлекторного замирания приводит к изменениям поведения у мышей обеих исследованных линий — C57BL/6 и 129Sv. Это выражается в высоком уровне замирания обученных животных при их повторном помещении в обстановку, где они ранее получали электрокожное раздражение, а также при предъявлении им условного звукового сигнала в новой обстановке.2. Линии мышей C57BL/6 и 129Sv не отличаются между собой по показателю времени замирания в тестах на обстановочные сигналы и на звуковой условный сигнал. Однако в ходе обучения, после нанесения электрокожного раздражения, замирание у мышей линии C57BL/6 более выражено, чем у 129Sv. Кроме того, у линии 129Sv наблюдается более стойкое сохранение замирания в обстановочном тесте. У C57BL/6 в ходе этого теста наблюдалась отчетливая тенденция к снижению длительности замирания и достоверное увеличение двигательной активности. Это свидетельствует о том, что процессы модификации пассивно оборонительного поведения в исследуемой задаче находятся под влиянием генетических факторов и протекают у мышей линии 129Sv медленнее, чем у мышей линии C57BL/6.3. Животные обеих линий из группы активного контроля также изменяют свое поведение при повторном попадании в экспериментальную обстановку. Снижение у них исследовательской активности во время повторного сеанса свидетельствует о существовании у них памяти об обстановке, приобретенной в первом сеансе.4. Во всех исследованных структурах мозга, кроме области СА1 гиппокампа, у мышей из групп об)^ения и активного контроля обнаружены участки с более высокой, чем у пассивного контроля экспрессией транскрипционного фактора c-Fos. Эта активация структур мозга, общая у групп обучения и активного контроля, может быть связана с формированием памяти об обстановке, сходной у обеих групп.5. При обучении, по сравнению с активным контролем, общее для обеих линий увеличение экспрессии c-Fos наблюдается лишь в двух регионах — в представительстве задних лап моторной коры и в ретросплениальной гранулярной коре. Эти области коры головного мозга могут быть вовлечены в общие для животных обеих линий аспекты формирования памяти об опасности среды и модификации пассивно-оборонительного поведения,.

    6. Выявлена область достоверно более высокой экспрессии c-Fos во вторичной моторной коре мышей из группы обучения линии 129Sv по сравнению с мышами линии С57В1/6. У мышей 129Sv линии наблюдается также тенденция к более высокой, чем у C57BL/6 экспрессии c-Fos в ретросплениальной агранулярной коре, ростральной части поля САЗ гиппокампа и в каудальней части зубчатой фасции. Эти структуры мозга могут быть специфически вовлечены в процессы, имеющие отношение к динамике формирования и угашения поведения замирания, различающиеся между двумя инбредными линиями мышей.

    Показать весь текст

    Список литературы

    1. П.К. (1973). Принципиальные вопросы общей теории функциональных систем. Принципы системной организации функций. Москва, 5−61.
    2. К.В. (1996). Обучение и память в молекулярно-генетической перспективе. Двенадцатые сеченовские чтения. Москва, «Диалог», МГУ, 23.
    3. К.В. (1997). Молекулярные сценарии консолидации долговременной памяти. Журнал Высшей Нервной Деятельности им. И. П. Павлова, 47(2), 261−279.
    4. К.В. (2003). Молекулярная генетика памяти: когнитивная регуляция экспрессии генов в мозге при обучении. В сб. «Успехи функциональнй нейрохимии», 2-е изд., под ред. А. Дамбиновой и А. В. Арутюняна. Санкт-Питербург, Изд-во -Питерб. ун-та, 516с.
    5. К.В., Судаков К. В., (1993). Системная организация поведения: новизна, как ведущий фактор экспрессии ранних генов в мозге при обучении. Успехи Физиологических наук, 24, 53−70.
    6. К.В., Судаков К. В., Рябинин А. Э. (2000). Экспрессия гена с- fos в мозге у мышей в динамике выработки навыков оборонительного поведения. Журнал высшей нервной деятельности им. И. П. Павлова, 50 (1), 88−94.
    7. О.Г., Нерсесян Л. Б., Аветисян Е. А. и др. (2000). Нейрональная организация лимбико-(цингуло-)висцеральной рефлекторной дуги. Успехи Физиологических наук, 31(4), 11−23.
    8. А.С. (1970). Функции двигательного анализатора. Ленинград, ЛГУ, 224с.
    9. , О.С. (1975). Гиппокамп и память. Москва, 333с.
    10. А.Б., Ленков Д. Н. (1982). Организация моторного представительства в неокортексе белой крысы: данные макро- и микростимуляции. Журнал Высшей Нервной Деятельности им. И. П. Павлова, 32{), 122−130.
    11. М.О., Быховская Г. Х., Урановский Я. (1929). Сравнительная цитоархитектоника коры большого мозга грызунов. В сб. «Высшая нервная деятельность», Изд-во Коммунистической академии, Москва, 1, 13−38.
    12. Д. (1981). Поведение животных: Сравнительные аспекты. Москва, Мир. 480с.
    13. Конорски Ю.М.Д. (1970). Интегративная деятельность мозга. Москва, «Мир», 412с.
    14. Д.Н., Моченков Б. П. (1984). Моторное представительство лицевой мускулатуры в неокортексе кролика. Журнал Высшей Нервной Деятельности им. И. П. Павлова, 34(1), 81−88.
    15. Дж.Г., Мартин Ф. Р., Валлас Б.Дж., Фукс П. А. (2003). От нейрона к мозгу. Москва, УРСС, 672с.
    16. , М. Л. (1983). Экспериментальная нейропсихология эмоций: Автореферат диссертации доктора биологических наук. Москва, 38с.
    17. И.В. (2000). Морфофункциональная организация центральных систем управления лицевой мускулатурой у взрослых и развивающихся мышей. Диссертация на соискание ученой степени доктора биологических наук. 287с
    18. В.М. (1962). Цитоархитектоника новой коры мозга в отряде грызунов (крыса белая). Арх. АГЭ, 52 (XLII), 2, 31−44.
    19. П.В. (1987). Мотивированный люзг. Москва, «Наука», 238 с .
    20. П.В. (1976). Стереотаксическая неврология. Л., 246с.
    21. Р.А. (1986). Структурно-функциональная организация сенсомоторной коры. Москва, Наука. 240с
    22. В.Б. (1978). Нейрофизиологическое изучение системных механизмов поведения. Москва, Наука. 240с.
    23. В.Б. (1995). Введение в объективную психофизиологию. Нейрональные основы психики. Москва, Ин-т психологии РАН. 162.
    24. W.R., Walter D.E., Hendrix Е. (1961). Computer techniques in correlation and spectral analyses of cerebral slow waves during discriminative behavior. Experimental Neurology, 3, 501−524.
    25. Ambrogi Lorenzini C, Baldi E., Bucherelli C, Tassoni G, (1996). Role of dorsal hippocampus in acquisition and retrieval of rat’s passive avoidance response: a tetrodotozin functional inactivation study. Brain Research, 730, 32−39.
    26. Ambrogi Lorenzini C, Baldi E., Bucherelli C, Tassoni G. (1997): Role of ventral hippocampus in acquisition, consolidation and retrieval of rat’s passive avoidance response memory trace. Brain Research, 768(1−2), .242−248.
    27. Ammassari-Teule M., Hoffman H-J., Rossi-Arnaud C. (1993). Learning in inbred mice: strain soecific abilities across three radial maze problems. Behaviour Genetic, 23, 405−412.
    28. Anagnostaras SG, Maren S, Fanselow MS. (1999) Temporally graded retrograde amnesia of contextual fear after hippocampal damage in rats: within-subjects examination. JNeurosci. 19(3), 1106−1114.
    29. A.V., Mobraaten L.E., Sharp J.J., Davisson M.T. (2001). Transgenic and knockout databases: behavioral profiles of mouse mutants. Physiology and Behavior, 73(5), 675−89.
    30. Arnsten A.F.T., Cai J.X., Murphy B.L., Goldman-Rakic P.C. (1994). Dopamine Dl receptor mechanisms in the cognitive performance of yong adult and aged monkQ-ys. Neuropharmacology, 116, 143−151.
    31. Badiani A., Gates M. M., Day H. E. W., Watson S. J., Akil H., and Robinson T. E. (1998). Amphetamine-Induced Behavior, Dopamine Release, and c-fos mRNA Expression: Modulation by Environmental Novelty. The Journal ofNeuroscience, 18(24), 10 579−10 593.
    32. Baeg EH, Kim YB, Jang J, Юш HT, Mook-Jung I, Jung MW. (2001). Fast spiking and regular spiking neural correlates of fear conditioning in the medial prefrontal cortex of the rat. Cerebral Cortex, 11, (5), 441−51.
    33. S. A., Wehner J. M. (2003). Inbred mouse strain differences in the establishment of long-term fear memory. Behavioural Brain Research, 140, 97−106.
    34. Bannerman D.M., Grubb M., DeaconR.M., Feldon J., RowlingJ.N. (2003). Ventral hippocampal lessions affect anxiety but not spatial learning. Behavior Brain Research, 17, 139(1−2), 197−213.
    35. Bast Т., Zhang Wei-Ning, and Feldon J. (2003). Dorsal Hippocampus and Classical Fear Conditioning to Tone and Context in Rats: Effects of Local NMDAReceptor Blockade and Stimulation. Hippocampus, 13, 657−675.
    36. Bayer S. A, (1990). Neurogenetic patterns in the medial limbic cortex of the rat related to anatomical connections with the thalamus and striatum. Exptrimental Neuroljgy, 107(26), 132−42.
    37. G. (1965). Selection for high rates and low rates of conditioning in the rat. Animal Behaviour, 13, 221−227.
    38. R.C., Collier A.C. (1976). The effect of predictive cues on freezing in rats. Animal learning and behavior, 4, 6−8.
    39. Bouton ME, Bolles RC. (1979). Role of conditioned contextual stimuli in reinstatement of extinguished fear. Eximentalp Psychoogy and Animal Behaviour Process, 5(4), 368−378.
    40. S.P., Pask Т., Jones L., Dunnett S.B. (2004). Behavioural profiles of inbred mouse strains used as transgenic backgrounds. I: motor tests. Genes Brain Behaviour, 3(4), 206−15,
    41. Bunsey M.D. and Eichenbaum H., (1996). Conservation of hippocampal memory function in rats and humans. Nature, 379, 255−257.
    42. Burn V. H., Otnaess M.K., Molden S., Steffenach H.-A., Witter M.P. et al. (2002). Place cells and place recognition maintained by direct entorhinal-hippocampal circuitry. Science, 296, 2243−2246.
    43. Calamandrei, G. and Keverne, E.B. (1994). Differential expression of Fos protein in the brain of female mice dependent on pup sensory cues and maternal QxpQriQnce. Behavioral Neuroscience, 108, 113−120.
    44. C.S., Braver T.S., Barch D.M., Botvinick M.M., Noll D., Cohen J.D. (1998). Anterior cingulate cortex, error detection, and the online monitoring of performance. Science, 280, 747−749.
    45. Castro-Alamancos M.A., Borrell J., Garcia Segura L.M. (1992). Performance in an escape task induces Fos-like immunoreactivity in a specific area of the motor cortex of the rat. Neuroscience, 49- 157−162.
    46. A.C. (1977). Preference for shock signal as function of the temporal accurancy of signals. Learning and memor, S, 159−170.
    47. Contet C, Rawlins J.N., Bannerman D.M. (2001a). Faster is not surer — a comparison of C57B1/6J and 129S2/Sv mouse strain in watermaze. Behavior Brain Research. 125, 261−267.
    48. M. (1992). The Role of the Amygdala in Conditioned Fear. In: «Tte amygdala: Neurobiological Aspects of Emotion, Memory, and Mental Dysfunction «, Aggleton JP, ed. New York, Wiley-Liss,.255−306.
    49. Deacon R.M., Bannerman D.M., Kirby B.P., Croucher A., Rawlins J.N.P. (2002). Effects cytotoxic hippocampal lesion in mice on a cognitive test battery. Behavioural Brain Research, 133, 57−68.,
    50. Deacon R.M., Croucher A., Rawlins J.N.P. (2002). Hippocampal cytotoxic lesion effects on species-typical behaviours in mice. Behavior Brain Research, 132, 203−213.
    51. T.W., Eichenbaum H.E., Rosenberg P., Eckman K.W. (1983). Afferent connections of the peririnal cortex in the rat. Journal Comparative Neurology, 220, 168−190.
    52. I., Morgenson R.J., Blanchard D.C., Blanchard D.C. (1984). Mesial cortical lesions and fear behavior in the wild rat. Physiological Psychology, 12, 271−274.
    53. Dockstader C.L., van der Kooy D. (2001). Mouse strain differences in opiate reward learning are explained in anxiety, not reward or learning. Journal ofNeurosciences, 21(22), 9077−9081.
    54. J.P., Wise S.P. (1982). The motor cortex of the rat: cytoarchitectonture and microstimulation mapping. Journal of Comparative Neurology, 212(1), 76−88.
    55. M. (1996). A role for immediate-early transcription factors in learning and memory. Behavioral Genetic^ 26(3), 293−299.
    56. Duncan GE, Knapp DJ, Breese GR (1996). Neuroanatomical characterization of Fos induction in rat behavioral models of anxiety. Brain Research, lU, 19−191.
    57. M.S. (1980). Pavlovian Journal of Biological Sciences, 15, 177- 182.
    58. M.S. (1994). Neural organization of the defensive behavior system responsible for fear. Psychon. Bull. Rev, 1, 429−438.
    59. Fanselow M.S., BoUes R.C. (1979). Naloxon and shock-eliciting freezing in the rat. Journal Comparative Physiological Psyhology, 93, 736−744.
    60. Flint J., Corley R., DeFries L.C., Fulker D.W., Gray J.A., Miller S., Collins A.C. (1995). A simple genetic basis for a complex psychological trait in laboratory mice. Science, 269, 1432−1435.
    61. Frankland P.W., Cestari V., Filipkowwski R.K., McDonald R.J., Silva A. (1998). The dorsal hippocampus is essential for context discrimination, but not for contextual conditioning. Behavior Neuroscience, 112, 863−874.
    62. Franklin K. B. J., Paxinos G. (1997^ The Mouse Brain in Steriotaxic Coordinate, Academic Press, San Diego, California, USA,
    63. R., Neafsey E. (1994). The effect of medial frontal cortex lesions on cardiovascular conditioned emotional responses in the rat. Brain Research, 643, 181−188.
    64. J.M. (1998). Distributed memory for both short and long term. Neurobiol. Learning and. Memory, 70, 268−274.
    65. R. (1996). Gene-targeting studies of mammalian behavior: is it the mutation or background genotype? Trends Neuroscience, 19, (5), 177−181.
    66. Goldman-Rakic P. S. (1987). Development of cortical circuitry and cognitive function. Children Development, 58, 601−622.
    67. Goldman-Rakic P. S. (1996). Regional and cellular fraction of working memory. Process National Academy of Sciences of USA, 93, 13 473−13 480.
    68. M.E., Shyu A.B., Belasco J.G. (1990). Deadenylation: a mechanism controlling c-fos mRNA decay. Enzyme, 44, 181−192.
    69. G.E., Knapp D.J., Breese G.R. (1996). Neuroanatomical characterization of Fos induction in rat behavioral models of anxiety. Brain Research, 713,79−91.
    70. Gustafson J.W., Felbain-Keramidas Sh.L. (1977). Behavioral and neural approaches to the function of the mystacial vibrissae. Psychological Bulletin, 84(3), 477−488.
    71. R.D., Lindholm E.P. (1974). Organization of motor and somatosensory neocortex in the albino rat. Brain Research, 66(1), 23−38.
    72. Harrell AV, Allan AM. (2003). Improvements in hippocampal-dependent learning and decremental attention in 5-HT (3) receptor overexpressing mice. 1. earning and Memory, 10(5), 410−419.
    73. Т., Leah J. (1998). Inducible and constitutive transcription factors in mammalian neurons sustem: control of gene expression by Jun, Fos and Krox and CREB/ATF proteins. Brain Research Reviews, 28, 370−382.
    74. Hess U. S., Lynch G. and Gall С M. (1995). Regional patterns of c-fos mRNA expression in rat hippocampus following exploration of a novel environment versus performance of a well-learned discrimination. Journal of Neuroscience, 15, 7796−7809.
    75. , R. (1974). The hippocampus and contextual retrieval of information from memory: a theory. Behavior Biology, 12, 421−444.
    76. B.J. & Bunsey M.D. (1998). Differential effects of dorsal and ventral hippocampal lesions. J. Neuroscience, 18 (17), p. 7027−7032
    77. Holmes A, Wrenn CC, Harris AP, Thayer KE, Crawley JN. (2002). Behavioral profiles of inbred strains on novel olfactory, spatial and emotional tests for reference memory in mice. Genes, Brain and Behavior, 1(1), 55−69.
    78. Ito S., Stuphorn v., Brown J. W., Schall J. D. (2003). Performance Monitoring by the Anterior Cingulate Cortex During Saccade Countermanding. 5с/еисе, 302(5642), 120−122.
    79. Jue He, Kiyofumi Yamada, and Toshitaka Nabeshima (2002). A Role of Fos Expression in the CA3 Region of the Hippocampus in Spatial MemoryFormation in Rats. Neuropsychopharmacologe, 26(2), 259−268.
    80. Jung M.V., Weiner S.I., McNaughton B.L. (1994). Comparison of spatial firing characteristics of units in dorsal and ventral hippocampus of the rat. Journal ofNeurosciense, 14, 7347−7356.
    81. Jarrard I.E., Becker, (1977). The effects of selective hippocampal lessions on DRL behavior in rats. Behavior Biology, 21, 393−404.
    82. Kim J.J., Fanselow M.S. (1992). Modality-specific retrograde amnesia of fear. Science, 256, 615−611.
    83. Kimble, ЮтЫе., (1970). Effect of hippocampal lessions on extinction and «hipothesis» behaviour in rat. Physiology And Behavior, 5, 735−738.
    84. K.G., Tuvnes F.A., Steffenach H.A., Murison R., Moser E.I., Moser M.B. (2002). Reduced fear expression after lesions of the ventral hippocampus. Process National Academy of Sciences of USA, 99(16), 10 825−10 830 .
    85. Юе1т J.A., Lussnig E., Schwarz E., Comery T.A., Greenough W.T. (1996). Synaptogenesis and Fos expression in the motor cortex of the adult rat after motor skill learning. Journal of N euros cience, 16, 4529.
    86. W. (1963). Connection of the cerebral cortex. Copyright, USA, Brain Books, 294−300.
    87. R., Dudai Y. (1996). Transient of c-Fos expression in rat amigdala during training is required for encoding conditioned taste aversion memory. Lerning and Memory, 3, 31−41.
    88. R. (1996). Mice, gene targeting and behaviour: more then just genetic background. Trends ofNeuroscience, 19(5), 183−186.
    89. K. M., Abel T. (2001). Different Requirements for Protein Synthesis in Acquisition and Extinction of Spatial Preferences and Context-Evoked Fear. The Journal of Neuroscience, 21(15), 5773−5780.
    90. Le Doux (1992). Emotion and Amygdala. In: «Tte amygdala: Neurobiological Aspects of Emotion, Memory, and Mental Dysfunction», Aggleton JP, ed., New York: Wiley-Liss, 339−351.
    91. Le Doux J.E. (2000). Emotion Circuits in the Brain. Annual Revues of Neurosciences, 23, 155−184.
    92. Le Doux J.E., Cicchetti P., Xagoraris A., Romanski L-M. (1990). The lateral amygdaloid nucleus: Sensory interface of amygdala in fear conditioning. Journal of Neuroscience, 10, 1062−1069.
    93. Li e x. , Waters R.S. (1991). Organization of the mouse motor cortex studied by retrograde tracing and intracortical microstimulation (ICMS) mapping. Canadian Journal Neurologica. Sciences., 18(1), 28−38.
    94. Lipp H.-P. and Wolfer D.P. (1995). New paths towards old dreams: microphrenology. In: Behavioral brain research in naturalistic and semi-nauralistic settings, edited by Alleva et al., 3−36.
    95. Lipp H.-P. and Wolfer D.P. (1998). Genetically modified mice and cognition. Current Opinions of Neurobiology, 8(2), 272−280.
    96. A.R., Buitrago M.M., Ringer Т., Dichgans J., Schulz J.B. (2004) Motor skill learning depends on protein synthesis in motor cortex after training. Journal ofNeuroscience, 24(29):6515−20.
    97. S., Fanselow M.S. (1995). Synaptic plastisity in the basolateral amygdala induced by hippocampal formation stimulation in vivo. Journal of Neurosciences, 15, 7548−7564.
    98. McGuinness E., Sivertsen D., Allman J.M. (1980). Organization of the face representation in macaque motor cortex. Journal of Comparative Neurology, 193(3), 591−608.
    99. L.W., Douglas R.J. (1970). Effects of hippocampal lesions on cue utilization in spatial discrimination in rats. Journal of Comparative Physiological Psychology, 1^(2), 254−260
    100. Milanovic S., Radulovic J., Laban O., Stiedl., Henn F., Spiess J. (1998). Production of the Fos protein after contextual fear conditioning of C57Bl/6n mice. Brain Research, 784, 37−47.
    101. Mileusnic R., Anokhin K.V., Rose S.P.R., (1996). Antisense oligodeoxynucleotides to c-fos are amnestic for passive avoidance in the chick. NeuroReport. 7, 1269−1274.
    102. L.L. (1997). Cocain reward and locomotor activity in C57B1/6J and 129/SvJ inbred mice after their Fl cross. Pharmacological Biochemistry and Behavior, 58, 25−30.
    103. Mitz AR, Wise SP. (1987). The somatotopic organization of the supplementary motor area: intracortical microstimulation mapping. Journal of Neuroscience, (4), 1010−1021.
    104. A., Poettig M., Mederer A., Holsboer F. (1997). Behavioral performance in three substrains of mouse strain 129. Brain Research, 762, 12−18.
    105. Morgan M., LeDoux J. (1995). Differential contribution of dorsal and ventral medial prefrontal cortex to the acquisition and extinction of conditioned fear in rats, Behavior Neurosciences, 109, 681.
    106. Moser M.-B. & Moser E.I. (1995). Spatial learning with a minislab in the dorsal hippocampus. Process National Academy of Science of USA, 92, 9697−9701.
    107. Moser M.-B. & Moser E.I. (1998). Distributed Encoding and Retrieval of Spatial Memory in the Hippocampus. Journal of Neuroscience, 18(18), 7535−7542.
    108. Moser EI, Paulsen O. (2001). New excitement in cognitive space: between place cells and spatial memory. Current Opinion of Neurobiology, 11(6), 745−751.
    109. E.A., Gaffan D., Mishkin M. (1993). Neural substrates of visual stimulus-stimulus association in rhesus monkeys. Journal of Neuroscience., 13, 4549−4561.
    110. Nauta W (1972). Neural associations of the frontal cortex. Acta neurobiologiae experimental is, 32, 125−140.
    111. Nguyen P.v., Abel Т., Kandel E. R. and Roussoudan B. (2000). Strain- dependent Differences in LTP and Hippocampus-dependent Memory in Inbred Mice. Learning & Memory, 7, 170−179.
    112. O’Keef J., Nadel L. (1978). The hippocampus as a cognitive map. Oxford, England: Clarendon Press.
    113. , J. W. (1937). A proposed mechanism of emotion. Archives of Neurology and Psychology, 38, 725−43.
    114. R., Baskall L., Wehner J.M. (1993). Behavioral dissociations between C57B1/6 and DBA/2 mice on learning and memory tasks: hippocampal-dysfunction hypotesis. Psychobiology, 21, 11−26.
    115. Preuss TM, Stepniewska I, Kaas JH. (1996). Movement representation in the dorsal and ventral premotor areas of owl monkeys: a microstimulation study. Journal of Comparative Neurology, 371(4), 649−676,
    116. M.R. (1999). Knock-out mouse models used to study neurobiological systems. Critical Revues of Neurobiology, 13(2), 103−49.
    117. L.L., Sakamoto K. (1988). Organization and synaptic relationships of the projection from the primary sensory to the primary motor cortex in the cat. Journal of Comparative Neurology, 271(3), 387−96.
    118. M.I. (1994) Attention: the mechanisms of consciousness. Process National Academy of Science of USA, 91, 7398−7403.
    119. Radulovic J., Kammermeier J, Spiess J. (1998). Generalization of fear responses in C57BL:6N mice subjected to one-trial foreground contextual fear conditioning. Behavioural Brain Research, 95, 179−189.
    120. Rosen J, Fanselow M, Young S, Sitcoske M, Maren S, (1998). Immediate-early gene expression in the amygdala following footshock stress and contextual fear conditioning. Brain Research, 796, 132−142.
    121. M.J., Wiltgen B.J., Fanselow M.S. (2003). The place of the hippocampus in fear conditioning European Journal of Pharmacology, 463, 217−223.
    122. K.J., Welker W., Shambes J.M. (1984). Ruvaluation of motor cortex and sjmatosensor overlap in cerebrol cortex of albino rats. Brain Research, 292, 251−260.
    123. Schimanski LA, Wahlsten D, Nguyen PV. (2002). Selective modification of short-term hippocampal synaptic plasticity and impaired memory extinction in mice with a congenitally reduced hippocampal commissure. Journal of Neuroscience, 22(18), 8277−8286.
    124. W.B., Milner B. (1957). Loss of recent memory after bilateral hippocampal lessions. Journal of Neurological Neurosurgery and Psyhiatry, 20, 11−21.
    125. L.V. (1949). The organization of hereditary maze-brightness and maze-dullness. Genetic Psychology Monographs, 39, 279−325.
    126. Selmanoff MK, Maxson SC, Ginsburg BE. (1976). Chromosomal determinants of intermale aggressive behavior in inbred mice. Behavioral Genetic, 6(1), 53−69.
    127. Siegmund A., Langnaese K, Wotjak C.T. (2005). Differences in extinction of conditioned fear in C57BL/6 substrains are unrelated to expression of alpha-synuclein. Behaviour Brain Research, 157(2), 291−298.
    128. D.J., Durkam D., Woolsey T.A. (1984). Functional organization of mouse and rat SmI barrel cortex following vibrissal damage on different postnatal days. Somatosens. Res, 1(3), 207−245.
    129. Sokolowski J.D., McGuIlough I.D., Salamon J.D. (1994). Effects of dofamine depletions in the medial prefrontal cortex on active avoidance behavior and escape in the rat. Brain Research, 651, 293−299.
    130. Н., Bischof A., Scheich H. (1999). Increase of extracellular dopamine in prefrontal cortex of gerbils during acquisition of the avoidance strategy in the shuttle-box. Neuroscience Letters, 264, 77−80.
    131. Stevens R. and Cowey A. (1973). Effects of dorsal and ventral hippocampal lessions on spontaneous alteration, learned alteration, and probability learning in rats. Brain Research, 52,203−224.
    132. Stiedl O., Radulovic J., Lohmann R., Birkenfel, K., Palve M., Kammermeier J., Sananbenesi F. & Spiess J. (1999). Strain and substrain differences in context- and tone-dependent fear conditioning of inbred mice. Behavioural Brain Research 104, 1−12.
    133. Szabowski A, Maas-Szabowski N, Andrecht S, Kolbus A, Schorpp- Kistner M, Fusenig NE, Angel P (2000). c-Jun and JunB antagonistically control cytokine-regulated mesenchymal-epidermal interaction in skin. Cell, 103, 745−755.
    134. W., Grimm R. (1999). Activation of immediate early genes and memory formation. Cell Molecular Life Science, 55(4), 564−574
    135. D., Brown M.W., Erichsen J., Aggleton P. (2000). Fos imaging reveals differential patterns of hippocampal and parahippocampal subfield activation in rats in response to different spatial memory tests. Journal of Neurosciences, 20 (7), 2711−2718.
    136. Vogt BA, Finch DM, Olson CR. (1992). Functional heterogeneity in cingulate cortex: the anterior executive and posterior evaluative regions. Cerebral Cortex, 2(6), 435−443.
    137. Vosatka R. J, Hermanowski V. A, Metz R, Ziff E.B. (1989). Dynamic interactions of c-fos protein inserum-stimulated 3T3 cells. Journal of Cell Physiology, 38, 493−502.
    138. Waddell J, Dunnett C, Falls WA. (2004). C57BL/6J and DBA/2J mice differ in extinction and renewal of extinguished conditioned fear. Behavioural Brain Research, 154(2), 567−576.
    139. B.C., Nordeen E.J., Nordeen K.W. (1998). Individual variation in neuron number predicts differences in the propensity for avian vocal imitation. Process National Academy of Science of USA, 95(3), 1277−82.
    140. Werlen G., Belin D., Conne В., Roche E., Lew D.P., Prentki M. (1993). Intracellular Ca2+ and the regulation of early response gene expression in HL-60 myeloid leukemia cells. Journal of Biological Chemistry, 268,16 596−16 601.
    141. Withers G.S., GreenoughW. T, (1987). Reach training selectively alters dendritic branching in subpopulations of layer II-III pyramidals in rat motor-somatosensory forelimb cortex. Neuropsychologia, 27, 61−69.
    142. Worley P. F., Bhat R.V., Baraban J.M., Erickson C.A., McNaughton B.L., Barens C.A. (1993). Thresholds for sinaptic activation of transcription factors in hippocampus: correlation with long-term enhancement. Journal of Neurosciences, 13, 4776−4786.
    143. S.L., Bohenek D.L., Fanselow M.S. (1994). NMDA processes mediate anterograde amnesia of contextual fear conditioning induced by hippocampal damage: immunization against amnesia by context preexposure Behaviour Neuroscience, 108(1), 19−29.
    144. Zashley K. S (1941). Talamo-cortical connection of the rat’s brain. Journal of Comparative Neurology, 75(1), 67−121.
    145. D., Stuesse S.L. (1991). Morphological heterogeneity within the cingulate cortex in rat: a horseradish peroxidase transport study. Brain Research, 565(2), 290−299.
    Заполнить форму текущей работой