Помощь в написании студенческих работ
Антистрессовый сервис

Искусственные ДНК-содержащие супрамолекулярные комплексы

ДиссертацияПомощь в написанииУзнать стоимостьмоей работы

Необходимость применения специальных транспортных систем для доставки чужеродного генетического материала в клетки-мишени остается существенным препятствием на пути развития генотерапии. Наибольшая избирательность в отношении целевых клеток показана для белковых переносчиков чужеродного генетического материала, использующих естественные механизмы клеточного обмена. В настоящее время, несмотря… Читать ещё >

Искусственные ДНК-содержащие супрамолекулярные комплексы (реферат, курсовая, диплом, контрольная)

Содержание

  • СПИСОК СОКРАЩЕНИЙ
  • 1. Супрамолекулярные конструкции для направленного транспорта в клетки-мишени фрагментов полинуклеотидов (ЛИТЕРАТУРНЫЙ ОБЗОР)
    • 1. 1. Почему нужны невирусные системы доставки
    • 1. 2. Интернализация олигонуклеотидов
    • 1. 3. Что подразумевается под направленным транспортом чужеродной ДНК
    • 1. 4. Физические методы доставки ДНК
    • 1. 5. Химические методы доставки ДНК
    • 1. 6. Биохимические методы доставки ДНК
      • 1. 6. 1. Поиск специфических лигандов
      • 1. 6. 2. Низкомолекулярные органические лиганды
      • 1. 6. 3. Асиалогликопротеины
      • 1. 6. 4. Белковые и пептидные лиганды
        • 1. 6. 4. 1. Пептиды
        • 1. 6. 4. 2. Природные и рекомбинантные белки
        • 1. 6. 4. 3. ДНК-связывающие домены
        • 1. 6. 4. 4. Эндосомолитические домены
        • 1. 6. 4. 5. Ядерный импорт
    • 1. 7. Основные принципы архитектуры нуклеопротеиновых транспортных комплексов
  • 2. Искусственные ДНК-содержащие супрамолекулярные комплексы (ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ)
    • 2. 1. ДНК-компонента комплексов
      • 2. 1. 1. Олигонуклеотиды, несущие тиофосфорильные модификации заданной локализации
      • 2. 1. 2. Конформационные исследования олигонуклеотидов
      • 2. 1. 3. Флуоресцентномеченные олигонуклеотиды
        • 2. 1. 3. 1. Некоторые особенности хроматографического поведения модифицированных олигонуклеотидов
        • 2. 1. 3. 2. Трансформация гексахлорфлуоренилового остатка в составе олигонуклеотидов в условиях аммонолиза
    • 2. 2. Нуклеопротеиновые комплексы для доставки чужеродной ДНК в клетки-мишени
      • 2. 2. 1. Ковалентные нуклеопротеиновые конъюгаты
        • 2. 2. 1. 1. Ковалентные конъюгаты ЭФРч с антисмысловыми олигонуклеотидами
        • 2. 2. 1. 1. 1. Получение белка рЭФРч
        • 2. 2. 1. 1. 2. Синтез ЭФРч-олигонуклеотидных конъюгатов
  • Сравнение митогенной активности белка ЭФР, рекомбинантного ЭФРч и конъюгатов ЭФР-AACGTTGAGGGGCAT и ЭФР
  • AATCCTCCCCCAGTTCACCC
  • Влияние конъюгата ЭФР- AACGTTGAGGGGCAT на подавление экспрессии гена-мишени С-тус
    • 2. 2. 1. 2. Синтез конъюгатов АФП-олигомер
    • 2. 2. 2. Белковые векторы-переносчики ДНК
      • 2. 2. 2. 1. Получение белковых векторов химической конденсацией доменов
      • 2. 2. 2. 1. 1. Синтез конъюгата АФП-полилизин
  • Получение комплекса АФП-полилизин-олигонуклеотид
  • Исследование уровня эндоцитоза олигонуклеотидов опухолевыми клетками в составе конъюгата с АФП и комплекса с полипептидом
  • АФП-полилизин
  • Анализ распределения конъюгата АФП с флуоресцентномеченным антисмысловым олигонуклеотидом в опухолевых клетках с помощью флуоресцентной микроскопии
  • Сравнение уровня эндоцитоза конъюгата АФП-FASl и комплекса АФП-полилизин-FAS
    • 2. 2. 2. 2. Рекомбинантные белковые векторы-переносчики полинуклеотидов
      • 2. 2. 2. 2. 1. Рекомбинантный белок дифтерийный токсин-стрептавидин
  • Основные требования к структуре белковых векторов
    • 2. 2. 2. 2. 2. Структура белкового рекомбинантного переносчика ДНК,
  • PGEk
    • 2. 2. 2. 2. 3. Получение белка PGEk
      • 2. 2. 2. 2. 4. Структурная организация и свойства супрамолекулярных PGEk
  • ДНК и PGEkR-ДНК комплексов
  • PGEk-опосредованная доставка чужеродной ДНК в целевые клетки
  • Влияние PGEk на доставку олигонуклеотидов
  • Увеличение активности антисмысловых олигонуклеотидов в присутствии PGEk
  • Сравнение митогенной активности белков ЭФРч, PGEk и комплексов
  • PGEk с олигонуклеотидами
  • Исследование интернализации олигонуклеотидов ТМО и TMS в составе комплексов с PGEk с помощью проточной цитометрии и флуоресцентной микроскопии
  • Внутриклеточная локализация олигонуклеотидов
  • Исследование цитотоксичности комплексов PGEk с ТМО и TMS in vitroQ2 Влияние вектора PGEk на доставку репортерной плазмиды pEGFP N1 в опухолевые клетки
  • Структурная организация комплексов PGEk с олигонуклеотиами
  • Изучение динамики молекул PGEk в комплексе с олигонуклеотидами разной структуры
  • Изучение комплексов PGEk-ДНК с помощью собственной УФфлуоресценции белка
  • Изотермы адсорбции молекул PGEk на олигонуклеотидах ТМО и TMS 112 Изучение структуры биологически активных комплексов PGEk-ДНК
  • Влияние молекул PGEk на вторичную структуру олигонуклеотидов
  • Получение и свойства белка-вектора PGEkR
    • 2. 3. Искусственные ДНК-ассоциаты с живыми клетками
    • 2. 3. 1. Выбор структуры амфифильных производных олигонуклеотидов
    • 2. 3. 2. Синтез олигонуклеотидных производных жирных кислот
    • 2. 3. 3. Фиксация жирнокислотных производных олигонуклеотидов на поверхности живых клеток
    • 2. 3. 4. Гибридизационные свойства ДНК-модифицированных клеток
  • 2. 4. Супрамолекулярные комплексы наночастиц никеля с олигонуклеотидами и белками
    • 2. 4. 1. ДНК-ассоциаты наночастиц никеля
    • 2. 4. 2. Ассоциаты наночастиц никеля с белками
    • 2. 4. 3. Взаимодействие Ni-GFP с GFP-связывающими ДНК-аптамерами
  • Agfp 1 и Agfp
  • 3. ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТ
  • 4. ВЫВОДЫ
  • Подобно тому, как существует область молекулярной химии, основанной на ковалентных связях, существует и область супрамолекулярной химии — химии молекулярных ансамблей и межмолекулярных связей" Лауреат Нобелевской премии по химии за 1987 Ж.-М. Лен [1].

    Одно из основополагающих природных свойств полинуклеотидов состоит в их способности ассоциироваться с различными биополимерами и низкомолекулярными соединениями с образованием функциональных супрамолекулярных комплексов. Надмолекулярные ассоциаты полинуклеотидов — естественная форма их существования.

    Супрамолекулярная (надмолекулярная) химия (Supramolecular chemistry) -междисциплинарная область науки, включающая химические, физические и биологические аспекты рассмотрения более сложных, чем молекулы, химических систем, связанных в единое целое посредством межмолекулярных (нековалентных) взаимодействий [1].

    Объекты супрамолекулярной химии — супрамолекулярные ансамбли, строящиеся самопроизвольно из комплементарных, т. е. имеющих геометрическое и химическое соответствие фрагментов, подобно самопроизвольной сборке сложнейших пространственных структур в живой клетке. Одной из фундаментальных проблем современной химии является направленное конструирование таких систем, создание из молекулярных «строительных блоков» высокоупорядоченных супрамолекулярных соединений с заданной структурой и свойствами [1,2].

    Создание искусственных комплексов ДНК и структурно-функциональное исследование таких модельных систем — продуктивный прием, как для изучения естественных природных процессов, так и для создания новых подходов к решению широкого спектра актуальных прикладных задач. В настоящей работе рассмотрены три группы супрамолекулярных ассоциатов ДНК.

    1. Наиболее близкие природным аналогам нуклеопротеиновые транспортные комплексы для направленной доставки чужеродных олиго-/полинуклеотидов в целевые клетки живого организма.

    2. Комплексы, моделирующие свойства живой системы [живая клеткафиксированная на внешней мембране ДНК — комплементарная нуклеотидная последовательность].

    3. Искусственные ассоциаты ДНК и нуклеопротеиновые ансамбли на основе наночастиц металла (никеля).

    Необходимость применения специальных транспортных систем для доставки чужеродного генетического материала в клетки-мишени остается существенным препятствием на пути развития генотерапии. Наибольшая избирательность в отношении целевых клеток показана для белковых переносчиков чужеродного генетического материала, использующих естественные механизмы клеточного обмена. В настоящее время, несмотря на обнадеживающие лабораторные результаты, известные белковые векторы в силу различных причин не удовлетворяют требованиям клинического применения. Поэтому особенно актуальна разработка новых подходов к созданию белков-транспортеров ДНК, способных к самопроизвольной сборке с различными терапевтически значимыми молекулами олигои полинуклеотидов с образованием стабильных в биологических жидкостях функциональных надмолекулярных комплексов. Для этой цели необходимо изучение закономерностей образования и структурно-функциональных свойств таких нуклеопротеиновых ассоциатов.

    Полученные результаты могут стать основой для разработки новых универсальных и технологически доступных неиммуногенных белковых векторов, необходимых при создании лекарственных средств для генотерапии заболеваний различной этиологии.

    Многие адгезивные манипуляции с живыми клетками основаны на бинарных лиганд-рецепторных взаимодействиях. Для направленной иммобилизации клеток на твердом носителе недавно было предложено снабдить поверхность клеток фрагментами ДНК. Для этого проводили ковалентную конденсацию активированных олигонуклеотидов с олигосахаридами клеточной мембраны, модифицированными азидо-группами [3], что и придавало клеткам искусственное сродство к комплементарным последовательностям ДНК. Реализация этой привлекательной и перспективной идеи осложнена и ограничена необходимостью использования небезопасных абиогенных интермедиатов и длительностью (трое суток) процедуры ДНК-модификации клеток. Создание нового способа быстрой, эффективной и безопасной для жизнеспособности клеток ассоциации ДНК с плазматической мембраной чрезвычайно актуально для развития новых подходов в инженерии тканей, получения искусственных межклеточных ассоциатов, разработки новых биосенсорных систем.

    Одно из направлений в нанотехнологии состоит в получении новых материалов с использованием фрагментов ДНК, ковалентно связанных с наноразмерным носителем, например, частицами золота [4]. В сравнении с ранее описанными платформами наночастицы никеля обладают рядом привлекательных свойств, обусловленных их электропроводными и магнитными характеристиками, а также уникальной способностью удерживать гистидинилированные белки [5, 6]. Поэтому создание на их основе функциональных биополимерных структур биосенсоров и диагностических систем представляет значительный интерес. Однако, закономерности процессов сборки ассоциатов наночастиц никеля с олигонуклеотидами и белками до сих пор не изучены. Непосредственная же металлизация ДНК путем восстановления катионов никеля приводит к изменению конформации и потере природных свойств полинуклеотида [7, 5]. Особенно важно в этой связи изучить условия образования комплексов и подтвердить целостность и функциональность молекул в их составе.

    В настоящей работе большое внимание уделено исследованию, разработке и оптимизации методов синтеза фрагментов ДНК, в том числе содержащих модификации сахаро-фосфатного остова и различные заместители, способов получения рекомбинантных белков, а также подходов к формированию и анализу структуры комплексов полинуклеотидов.

    Цель настоящей работы состоит в конструировании искусственных ДНК-содержащих супрамолекулярных комплексов, изучении на этих моделях закономерностей их сборки и структурно-функциональных свойств и применении найденных подходов для решения важных прикладных медико-биологических и нанобиотехнологических задач, таких как: конструирование новых белков-векторов, самоассоциирующихся с олигонуклеотидами и их аналогами, а также с плазмидной ДНК для избирательной доставки чужеродного генетического материала в целевые клеткисоздание нового способа быстрой, эффективной и безопасной для жизнеспособности клеток фиксации ДНК на внешней мембране клетки для расширения возможностей адгезивных манипуляций с живыми клеткамиполучение функциональных ассоциатов олигонуклеотидов, белков и нуклеопротеиновых комплексов на основе наночастиц никеляразработка и оптимизация методов получения ДНК и белковых компонентов комплексов, а также способов формирования и анализа структурной организации супрамолекулярных ассоциатов полинуклеотидов.

    4. ВЫВОДЫ.

    1. Сформулирован новый подход к созданию транспортных белков для доставки чужеродной ДНК в клетки-мишени, в соответствии с которым получен ряд новых полипептидов, в том числе белок PGEk, состоящий из адресующего ЭФРч домена и олигокатионной ДНК-связывающей последовательности, мотива сигнала ядерной локализации.

    2. Синтезированы новые белок-белковые и ДНК-белковые конъюгаты с применением природных и рекомбинантных белков, способные избирательно интернализоваться целевыми клетками по рецептор-опосредованному механизму и обеспечивать доставку нуклеиновой компоненты к внутриклеточным мишеням. Для конструирования такого рода транспортных систем получен ряд рекомбинантных белков, в том числе эпидермальный фактор роста человека, а также слитый белок стрептавидин-дифтерийный токсин для транспорта биотинилированных объектов.

    3. Изучены механизмы образования и структурно-функциональные свойства комплексов PGEk и его гомолога PGEkR с фрагментами ДНК, предложены гипотетические механизмы транслокации нуклеопротеиновых ассоциатов и их взаимодействий с внутриклеточными мишенями. Найденные подходы и закономерности имеют системный характер и являются важными для конструирования новых переносчиков ДНК, селективных к различным типам клеток.

    4. Для создания супрамолекулярных ассоциатов ДНК с живыми клетками предложен новый способ фиксации олигонуклеотидов на внешней поверхности клеток, использующий синтетические жирнокислотные производные олигонуклеотидов. Показано, что при внесении таких конъюгатов в культуральную среду ДНК эффективно удерживается на внешней мембране клеток, не изменяя их жизнеспособности и сохраняя свои гибридизационные свойства. Получены комплексы клетка-олигомер-комплементарный олигонуклеотид. Найденный метод ДНК-маркирования клеток перспективен для создания биосенсоров, разработки новых подходов в инженерии тканей, получения искусственных межклеточных ассоциатов.

    5. В работе продемонстрирована принципиальная возможность и перспективность использования наночастиц никеля для формирования многофункциональных биополимерных структур, а также их преимущества в сравнении с другими наноразмерными основами. Найдены условия получения комплексов ДНК-Ni, протеин-Ni и нуклеопротеин-Ni, в составе которых молекулы биополимеров не деградированы и могут частично или полностью сохранять функциональные свойства. Полученные результаты вносят вклад в создание новых биополимер-никелевых наноструктур.

    6. Для создания различных ДНК-содержащих комплексов и их многофакторного структурно-функционального анализа разработаны и оптимизированы способы получения олигонуклеотидов и контроля их качества, в том числе метод параллельной сборки локально тиофосфорилированных олигомероврассмотрены особенности синтеза и очистки олигомеров, несущих флуоресцентные метки, а также проведены конформационные исследования ДНК. С их применением разработан ряд диагностикумов патогенов, получены новые штаммы-продуценты белков (атриального натрийуретического фактора, кальцитонина, гормона роста, эпидермального фактора роста, цитохромов и др.), трансгенные вирусы (на основе Х-вируса картофеля) и растения (арабидопсис, табак и картофель). Разработанные методы и технологические приемы внедрены в производство диагностических наборов для определения широкого круга наследственных и различных инфекционных заболеваний, используются в производстве отечественных синтезаторов.

    Показать весь текст

    Список литературы

    1. А.Ф. Супрамолекулярная химия. Часть 1. Молекулярное распознавание. // Соросовский образовательный журнал. 1997. Т. № 9. С. 32−39.
    2. Chandra R.A., Douglas E.S., Mathies R.A., Bertozzi C.R., Francis M.B. Programmable cell adhesion encoded by DNA hybridization. // Angew Chem Int Ed Engl. 2006. V. 45. № 6. P. 896−901.
    3. Crocker J.C. Nanomaterials: golden handshake. //Nature. 2008. V. 451. № 7178. P. 528−529.
    4. Becerril H.A., Ludtke P., Willardson B.M., Woolley A.T. DNA-templated nickel nanostructures and protein assemblies. // Langmuir. 2006. V. 22. № 24. P. 1 014 010 144.
    5. Becerril Н.А., Stoltenberg R.M., Wheeler D.R., Davis R.C., Harb J.N., Woolley A.T. DNA-templated three-branched nanostructures for nanoelectronic devices. // J Am Chem Soc. 2005. V. 127. № 9. P. 2828−2829.
    6. Curiel D.T., Agarwal S., Wagner E., Cotten M. Adenovirus enhancement of transferrin-polylysine-mediated gene delivery. // Proc Natl Acad Sci U S A. 1991. V. 88. № 19. P. 8850−8854.
    7. Hart I.R. Tissue specific promoters in targeting systemically delivered gene therapy. // Semin Oncol. 1996. V. 23. № 1. P. 154−158.
    8. Mann M.J., Morishita R., Gibbons G.H., von der Leyen H.E., Dzau V.J. DNA transfer into vascular smooth muscle using fusigenic Sendai virus (HVJ)-liposomes.
    9. Mol Cell Biochem. 1997. V. 172. № 1−2. P. 3−12.
    10. Navarro J., Oudrhiri N., Fabrega S., Lehn P. Gene delivery systems: Bridging the gap between recombinant viruses and artificial vectors. // Adv Drug Deliv Rev. 1998. V. 30. № 1−3. P. 5−11.
    11. Diebold S.S., Lehrmann H., Kursa M., Wagner E., Cotten M., Zenke M. Efficient gene delivery into human dendritic cells by adenovirus polyethylenimine and mannose polyethylenimine transfection. // Hum Gene Ther. 1999. V. 10. № 5. P. 775 786.
    12. Palu G., Bonaguro R., Marcello A. In pursuit of new developments for gene therapy of human diseases. // J Biotechnol. 1999. V. 68. № 1. P. 1−13.
    13. Takakura Y., Nishikawa M., Yamashita F., Hashida M. Development of gene drug delivery systems based on pharmacokinetic studies. // Eur J Pharm Sci. 2001. V. 13. № 1. P. 71−76.
    14. Nicklin S.A., White S.J., Watkins S.J., Hawkins R.E., Baker A.H. Selectivetargeting of gene transfer to vascular endothelial cells by use of peptides isolated by phage display. // Circulation. 2000. V. 102. № 2. P. 231−237.
    15. Gottschalk U., Chan S. Somatic gene therapy. Present situation and future perspective. // Arzneimittelforschung. 1998. V. 48. № 11. P. 1111−1120.
    16. Han S., Mahato R.I., Sung Y.K., Kim S.W. Development of biomaterials for gene therapy. // Mol Ther. 2000. V. 2. № 4. P. 302−317.
    17. Rusconi S., Ceppi M. Vectors for Gene Delivery. // Gene therapy of Rheumatoid Arthritis. 2000. V. P. 1−23.
    18. DeMayo F.J., Tsai S.Y. Targeted gene regulation and gene ablation. // Trends Endocrinol Metab. 2001. V. 12. № 8. P. 348−353.
    19. Nichol C., Kim E.E. Molecular imaging and gene therapy. // J Nucl Med. 2001. V. 42. № 9. P. 1368−1374.
    20. Duchler M., Pengg M., Schuller S., Pfneisl F., Bugingo C., Brem G., Wagner E., Schellander K., Muller M. Somatic gene transfer into the lactating ovine mammary gland. // J Gene Med. 2002. V. 4. № 3. P. 282−291.
    21. Kircheis R., Wightman L., Kursa M., Ostermann E., Wagner E. Tumor-targeted gene delivery: an attractive strategy to use highly active effector molecules in cancer treatment. // Gene Ther. 2002. V. 9. № 11. P. 731−735.
    22. Wells D.J., Ferrer A., Wells K.E. Immunological hurdles in the path to gene therapy for Duchenne muscular dystrophy. // Expert Rev Mol Med. 2002. V. 2002. P. 1−23.
    23. Uherek C., Wels W. DNA-carrier proteins for targeted gene delivery. // Adv Drug Deliv Rev. 2000. V. 44. № 2−3. P. 153−166.
    24. Kircheis R., Blessing Т., Brunner S., Wightman L., Wagner E. Tumor targeting with surface-shielded ligand—polycation DNA complexes. // J Control Release. 2001. V. 72. № 1−3. P. 165−170.
    25. Pouton C.W., Seymour L.W. Key issues in non-viral gene delivery. // Adv Drug Deliv Rev. 2001. V. 46. № 1−3. P. 187−203.
    26. Parker A.L., Newman C., Briggs S., Seymour L., Sheridan P.J. Nonviral gene delivery: techniques and implications for molecular medicine. // Expert Rev Mol Med. 2003. V. 2003. P. 1−15.
    27. Luo D., Han E., Belcheva N., Saltzman W.M. A self-assembled, modular DNA delivery system mediated by silica nanoparticles. // J Control Release. 2004. V. 95. № 2. P. 333−341.
    28. Gao X., Kim K.S., Liu D. Nonviral gene delivery: what we know and what is next. // Aaps J. 2007. V. 9. № 1. P. E92−104.
    29. Huang R.Q., Qu Y.H., Ke W.L., Zhu J.H., Pei Y.Y., Jiang C. Efficient gene delivery targeted to the brain using a transferrin-conjugated polyethyleneglycol-modified polyamidoamine dendrimer. // Faseb J. 2007. V. 21. № 4. P. 1117−1125.
    30. Li D., Yu H., Huang H., Shen F., Wu X., Li J., Wang J., Cao X., Wang Q., Tang G. FGF Receptor-mediated Gene Delivery using Ligands Coupled to Polyethylenimine. // J Biomater Appl. 2007. V. P.
    31. Liu F., Conwell C.C., Yuan X., Shollenberger L.M., Huang L. Novel nonviral vectors target cellular signaling pathways: regulated gene expression and reduced toxicity. // J Pharmacol Exp Ther. 2007. V. 321. № 2. P. 777−783.
    32. Yakubov L.A., Deeva E.A., Zarytova V.F., Ivanova E.M., Ryte A.S., Yurchenko L.V., Vlassov V.V. Mechanism of oligonucleotide uptake by cells: involvement of specific receptors? // Proc Natl Acad Sci USA. 1989. V. 86. № 17. P. 6454−6458.
    33. Karpova G.G., Knorre D.G., Ryte A.S., Stephanovich L.E. Selective alkylation of poly (A) tracts of RNA inside the cell with the derivative of ethyl ester of oligothymidilate bearing 2-chloroethylamino group. // FEBS Lett. 1980. V. 122. № 1. P. 21−24.
    34. Д.Г., Власов В. В. Клеточные мембраны как барьер при биологических применениях антисмысловых олигонуклеотидов, их производных и аналогов. // Биоорг химия. 1992. Т. 18. № 10−11. С. 1330−1340.
    35. Nielsen P.E., Egholm M., Berg R.H., Buchardt O. Sequence-selective recognition of DNA by strand displacement with a thymine-substituted polyamide. // Science. 1991. V. 254. № 5037. P. 1497−1500.
    36. Dean D.A. Peptide nucleic acids: versatile tools for gene therapy strategies. // Adv Drug Deliv Rev. 2000. V. 44. № 2−3. P. 81−95.
    37. Dias N., Stein C.A. Antisense oligonucleotides: basic concepts and mechanisms. // Mol Cancer Ther. 2002. V. 1. № 5. P. 347−355.
    38. Herbert B.S., Pongracz K., Shay J.W., Gryaznov S.M. Oligonucleotide N3'~>P5' phosphoramidates as efficient telomerase inhibitors. // Oncogene. 2002. V. 21. № 4. P. 638−642.
    39. П.П., Брыксин A.B., Рыкова Е. Ю., Амирханов Н. В., Власов В. В. Исследование фармокинетики и стабильности в крови in vivo фосфодиэфирных и модифицированных производных олигонуклеотидов. // Вопросы медицинской химии. 1999. Т. 45. № 3. С. 170−177.
    40. Dean F.B., Nelson J.R., Giesler T.L., Lasken R.S. Rapid amplification of plasmid and phage DNA using Phi 29 DNA polymerase and multiply-primed rolling circle amplification. II Genome Res. 2001. V. 11. № 6. P. 1095−1099.
    41. Di Giusto D., King G.C. Single base extension (SBE) with proofreading polymerases and phosphorothioate primers: improved fidelity in single-substrate assays. //Nucleic Acids Res. 2003. V. 31. № 3. P. e7.
    42. Smirnov I., Shafer R.H. Effect of loop sequence and size on DNA aptamer stability. // Biochemistry. 2000. V. 39. № 6. P. 1462−1468.
    43. Meyers L.A., Lee J.F., Cowperthwaite M., Ellington A.D. The robustness of naturally and artificially selected nucleic acid secondary structures. // J Mol Evol. 2004. V. 58. № 6. P. 681−691.
    44. E.E., Будкер В. Г., Зарытова В. Ф., Иванова Е. М., Лохов С.Г.,
    45. Е.В., Теплова Н. М. Взаимодействие модифицированного холестерином полинуклеотида с фосфатидилхолиновыми липосомами. // Биолмембраны. 1988. Т. 5. № 7. с. 735−741.
    46. Zarytova V.F., Ivanova Е.М., Chasovskikh M.N. Synthesis of steroid-containing oligonucleotides and their alkylating derivatives. // Bioorg Khim. 1990. V. 16. № 5. P. 610−616.
    47. Manunta M., Nichols B.J., Tan P.H., Sagoo P., Harper J., George A.J. Gene delivery by dendrimers operates via different pathways in different cells, but is enhanced by the presence of caveolin. // J Immunol Methods. 2006. V. 314. № 1−2. P. 134−146.
    48. Mishra R.K., Moreau C., Ramazeilles C., Moreau S., Bonnet J., Toulme J.J. Improved leishmanicidal effect of phosphorotioate antisense oligonucleotides by LDL-mediated delivery. // Biochim Biophys Acta. 1995. V. 1264. № 2. P. 229−237.
    49. Richardson P.D., Kren B.T., Steer C.J. Gene repair in the new age of gene therapy. // Hepatology. 2002. V. 35. № 3. P. 512−518.
    50. Dykxhoorn D.M., Novina C.D., Sharp P.A. Killing the messenger: short RNAs that silence gene expression. //Nat Rev Mol Cell Biol. 2003. V. 4. № 6. P. 457−467.
    51. Simeoni F., Morris M.C., Heitz F., Divita G. Insight into the mechanism of the peptide-based gene delivery system MPG: implications for delivery of siRNA into mammalian cells. //Nucleic Acids Res. 2003. V. 31. № 11. P. 2717−2724.
    52. Heggestad A.D., Notterpek L., Fletcher B.S. Transposon-based RNAi delivery system for generating knockdown cell lines. // Biochem Biophys Res Commun. 2004. V. 316. № 3. P. 643−650.
    53. Huang F., Khvorova A., Marshall W., Sorkin A. Analysis of clathrin-mediated endocytosis of epidermal growth factor receptor by RNA interference. // J Biol Chem. 2004. V. 279. № 16. P. 16 657−16 661.
    54. Sakamoto K.M. Knocking down human disease: potential uses of RNA interference in research and gene therapy. // Pediatr Res. 2004. V. 55. № 6. P. 912 913.
    55. Liu Z., Winters M., Holodniy M., Dai H. siRNA delivery into human T cells and primary cells with carbon-nanotube transporters. // Angew Chem Int Ed Engl. 2007. V. 46. № 12. P. 2023−2027.
    56. Rakhmilevich A.L., Janssen K., Turner J., Culp J., Yang N.S. Cytokine gene therapy of cancer using gene gun technology: superior antitumor activity of interleukin-12. // Hum Gene Ther. 1997. V. 8. № 11. P. 1303−1311.
    57. Wolff J.A. Naked DNA transport and expression in mammalian cells. // Neuromuscul Disord. 1997. V. 7. № 5. P. 314−318.
    58. Beardsley T. Working under pressure. // Sci Am. 2000. V. 282. № 3. P. 34.
    59. Wells J.M., Li L.H., Sen A., Jahreis G.P., Hui S.W. Electroporation-enhanced gene delivery in mammary tumors. // Gene Ther. 2000. V. 7. № 7. P. 541−547.
    60. Sundararajan R. Nanoelectroporation: a first look. // Methods Mol Biol. 2008. V. 423. P. 109−128.
    61. Tyagi R.K., Sharma P.K., Vyas S.P., Mehta A. Various carrier systems-mediated genetic vaccination strategies against malaria. // Expert Rev Vaccines. 2008. V. 7. № 4. P. 499−520.
    62. Li W., Szoka F.C., Jr. Lipid-based nanoparticles for nucleic acid delivery. // Pharm Res. 2007. V. 24. № 3. P. 438−449.
    63. Zhang Z., Sha X., Shen A., Wang Y., Sun Z., Gu Z., Fang X. Polycation nanostructured lipid carrier, a novel nonviral vector constructed with triolein for efficient gene delivery. // Biochem Biophys Res Commun. 2008. V. 370. № 3. P. 478 482.
    64. Radler J.O., Koltover I., Jamieson A., Salditt Т., Safinya C.R. Structure and1. terfacial Aspects of Self-Assembled Cationic Lipid-DNA Gene Carrier Complexes. // Langmuir. 1998. V. № 14. P. 4272−4283.
    65. Ma H., Diamond S.L. Nonviral gene therapy and its delivery systems. // Curr Pharm Biotechnol. 2001. V. 2. № 1. P. 1−17.
    66. Abbasi M., Uludag H., Incani V., Hsu C.Y., Jeffery A. Further investigation of lipid-substituted poly (L-Lysine) polymers for transfection of human skin fibroblasts. // Biomacromolecules. 2008. V. 9. № 6. P. 1618−1630.
    67. Templeton N.S., Lasic D.D., Frederik P.M., Strey H.H., Roberts D.D., Pavlakis G.N. Novel DNA: liposome complexes for increased systemic delivery and gene expression. //Nature Biotechnol. 1997. V. 15. № 3. P. 647−652.
    68. Богданенко E. B, Свиридов Ю. В., Московцев A.A., Жданов Р. И. Невирусный перенос генов in vivo в генной терапии. // Вопр Мед Химии. 2000. Т. 46. № 3. С. 57−79.
    69. Г. Г., Жданов Р. И. Адресная доставка функциональных генов в генотерапии с помощью углевод-содержащих векторов. // Вопр Мед Химии. 2000. Т. 46. № 3. С. 80−93.
    70. Newell-Price J., King P., Clark A. The CpG Island Promoter of the Human Proopiomelanocortin Gene Is Methylated in Nonexpressing Normal Tissue and Tumors and Represses Expression // Molecular Endocrinology. 2001. V. 15. № 2. P. 338−348.
    71. Fielding A.K., Chapel-Fernandes S., Chadwick M.P., Bullough F.J., Cosset F.L., Russell S J. A hyperfusogenic gibbon ape leukemia envelope glycoprotein: targeting of a cytotoxic gene by ligand display. // Hum Gene Ther. 2000. V. 11. № 6. P. 817 826.
    72. Csaszar A., Abel T. Receptor polymorphisms and diseases. // Eur J Pharmacol. 2001. V. 414. № 1. P. 9−22.
    73. Reiss M. TGF-beta and cancer. // Microbes Infect. 1999. V. 1. № 15. P. 13 271 347.
    74. Nakagawa K., Ishizaki T. Therapeutic relevance of pharmacogenetic factors in cardiovascular medicine. // Pharmacol Ther. 2000. V. 86. № 1. P. 1−28.
    75. Li Z., Zhao R., Wu X., Sun Y., Yao M., Li J., Xu Y., Gu J. Identification and characterization of a novel peptide ligand of epidermal growth factor receptor for targeted delivery of therapeutics. // Faseb J. 2005. V. 19. № 14. P. 1978−1985.
    76. Booth P.J., Templer R.H., Meijberg W., Allen S.J., Curran A.R., Lorch M. In vitro studies of membrane protein folding. // Crit Rev Biochem Mol Biol. 2001. V. 36. № 6. P. 501−603.
    77. Chen C.H., Chernis G.A., Hoang V.Q., Landgraf R. Inhibition of heregulin signaling by an aptamer that preferentially binds to the oligomeric form of human epidermal growth factor receptor-3. // Proc Natl Acad Sci USA. 2003. V. 100. № 16. P. 9226−9231.
    78. Rajendran M., Ellington A.D. In vitro selection of molecular beacons. //Nucleic
    79. Acids Res. 2003. V. 31. № 19. P. 5700−5713.
    80. Lee J.F., Hesselberth J.R., Meyers L.A., Ellington A.D. Aptamer database. // Nucleic Acids Res. 2004. V. 32. P. D95−100.
    81. Hofland H.E., Masson C., Iginla S., Osetinsky I., Reddy J.A., Leamon C.P., Scherman D., Bessodes M., Wils P. Folate-targeted gene transfer in vivo. // Mol Ther. 2002. V. 5. № 6. P. 739−744.
    82. Wagner E., Cotten M., Foisner R., Birnstiel M.L. Transferrin-polycation-DNA complexes: the effect of poly cations on the structure of the complex and DNA delivery to cells. // Proc Natl Acad Sci U S A. 1991. V. 88. № 10. P. 4255−4259.
    83. Mahato R.I., Takemura S., Akamatsu K., Nishikawa M., Takakura Y., Hashida M. Physicochemical and disposition characteristics of antisense oligonucleotides complexed with glycosylated poly (L-lysine). // Biochem Pharmacol. 1997. V. 53. № 6. P. 887−895.
    84. Choi Y.H., Liu F., Choi J.S., Kim S.W., Park J.S. Characterization of a targeted gene carrier, lactose-polyethylene glycol-grafted poly-L-lysine and its complex with plasmid DNA. // Hum Gene Ther. 1999. V. 10. № 16. P. 2657−2665.
    85. Puis R., Minchin R. Gene transfer and expression of a non-viral polycation-based vector in CD4+ cells. // Gene Ther. 1999. V. 6. № 10. P. 1774−1778.
    86. Reddy J.A., Dean D., Kennedy M.D., Low P. S. Optimization of folate-conjugated liposomal vectors for folate receptor-mediated gene therapy. // J Pharm Sci. 1999. V. 88. № 11. P. 1112−1118.
    87. Nishikawa M., Takemura S., Yamashita F., Takakura Y., Meijer D.K., Hashida M., Swart P.J. Pharmacokinetics and in vivo gene transfer of plasmid DNA complexed with mannosylated poly (L-lysine) in mice. // J Drug Target. 2000. V. 8. № 1. P. 29−38.
    88. Kim S.H., Jeong J.H., Мок H., Lee S.H., Kim S.W., Park T.G. Folate Receptor Targeted Delivery of Polyelectrolyte Complex Micelles Prepared from ODN-PEG-Folate Conjugate and Cationic Lipids. // Biotechnol Prog. 2007. V. 23. № 1. P. 232 237.
    89. Benns J.M., Kim S.W. Tailoring new gene delivery designs for specific targets. // J Drug Target. 2000. V. 8. № 1. P. 1−12.
    90. Wu C.H., Sapozhnikov E., Wu G.Y. Evaluation of multicomponent non-viral vectors for liver directed gene delivery. // J Drug Target. 2002. V. 10. № 2. P. 105 111.
    91. Gharwan H., Wightman L., Kircheis R., Wagner E., Zatloukal K. Nonviral gene transfer into fetal mouse livers (a comparison between the cationic polymer PEI and naked DNA). // Gene Ther. 2003. V. 10. № 9. P. 810−817.
    92. Basu S., Wickstrom E. Synthesis and characterization of a peptide nucleic acid conjugated to a D-peptide analog of insulin-like growth factor 1 for increased cellular uptake. // Bioconjug Chem. 1997. V. 8. № 4. P. 481−488.
    93. Rajur S.B., Roth C.M., Morgan J.R., Yarmush M.L. Covalent protein-oligonucleotide conjugates for efficient delivery of antisense molecules. // Bioconjug Chem. 1997. V. 8. № 6. P. 935−940.
    94. Mahat R.I., Monera O.D., Smith L.C., Rolland A. Peptide-based gene delivery. // Curr Opin Mol Ther. 1999. V. 1. № 2. P. 226−243.
    95. Д.А., Арзуманов A.A., Коршун B.A., Гейт М. Д. Пептид-олигонуклеотидные конъюгаты как антисмысловые агенты нового поколения. // Молекулярная биология. 2000. Т. 34. № 6. С. 998−1006.
    96. Manoharan М. Oligonucleotide conjugates as potential antisense drugs with improved uptake, biodistribution, targeted delivery, and mechanism of action. // Antisense Nucleic Acid Drug Dev. 2002. V. 12. № 2. P. 103−128.
    97. E.M., Романова E.A., Орецкая T.C. Современные методы синтеза олигонуклеотидопептидов. // Успехи химии. 2002. Т. 71. № 3. С. 273−301.
    98. Д.В., Зацепин Т. С., Тимченко М. А., Кубарева Е. А., Орецкая Т. С. Ковалентное присоединение фактора транскрипции NF-kB к ДНК-лиганду, содержащему 2'-альдегидную группу. // Молекулярная биология. 2002. Т. 36. № 5. С. 877−879.
    99. Martin М.Е., Rice K.G. Peptide-guided gene delivery. // Aaps J. 2007. V. 9. № 1. P. 18−29.
    100. Tang M.X., Szoka F.C. The influence of polymer structure on the interactions of cationic polymers with DNA and morphology of the resulting complexes. // Gene Ther. 1997. V. 4. № 8. P. 823−832.
    101. Wadhwa M.S., Collard W.T., Adami R.C., McKenzie D.L., Rice K.G. Peptide-mediated gene delivery: influence of peptide structure on gene expression. // Bioconjug Chem. 1997. V. 8. № 1. P. 81−88.
    102. McKenzie D.L., Kwok K.Y., Rice K.G. A potent new class of reductively activated peptide gene delivery agents. // J Biol Chem. 2000. V. 275. № 14. P. 99 709 977.
    103. El-Aneed A. An overview of current delivery systems in cancer gene therapy. // J Control Release. 2004. V. 94. № 1. P. 1−14.
    104. Tiera M.J., Winnik F.O., Fernandes J.C. Synthetic and natural polycations for gene therapy: state of the art and new perspectives. // Curr Gene Ther. 2006. V. 6. № 1. P. 59−71.
    105. Gottschalk S., Sparrow J.T., Hauer J., Mims M.P., Leland F.E., Woo S.L., Smith L.C. A novel DNA-peptide complex for efficient gene transfer and expression in mammalian cells. // Gene Ther. 1996. V. 3. № 5. P. 448−457.
    106. Plank C., Tang M.X., Wolfe A.R., Szoka F.C., Jr. Branched cationic peptides for gene delivery: role of type and number of cationic residues in formation and in vitro activity of DNA polyplexes. // Hum Gene Ther. 1999. V. 10. № 2. P. 319−332.
    107. Adami R.C., Collard W.T., Gupta S.A., Kwok K.Y., Bonadio J., Rice K.G. Stability of peptide-condensed plasmid DNA formulations. // J Pharm Sci. 1998. V. 87. № 6. P. 678−683.
    108. McKenzie D.L., Collard W.T., Rice K.G. Comparative gene transfer efficiency of low molecular weight polylysine DNA-condensing peptides. // J Pept Res. 1999. V. 54. № 4. P. 311−318.
    109. McKenzie D.L., Smiley E., Kwok K.Y., Rice K.G. Low molecular weight disulfide cross-linking peptides as nonviral gene delivery carriers. // Bioconjug Chem. 2000. V. 11. № 6. P. 901−909.
    110. Midoux P., Kichler A., Boutin V., Maurizot J.C., Monsigny M. Membrane permeabilization and efficient gene transfer by a peptide containing several histidines. // Bioconjug Chem. 1998. V. 9. № 2. P. 260−267.
    111. Pichon C., Goncalves C., Midoux P. Histidine-rich peptides and polymers for nucleic acids delivery. // Adv Drug Deliv Rev. 2001. V. 53. № 1. P. 75−94.
    112. Midoux P., LeCam E., Coulaud D., Delain E., Pichon C. Histidine containing peptides and polypeptides as nucleic acid vectors. // Somat Cell Mol Genet. 2002. V. 27. № 1−6. P. 27−47.
    113. Plank C., Oberhauser В., Mechtler K., Koch C., Wagner E. The influence of endosome-disruptive peptides on gene transfer using synthetic virus-like gene transfer systems. // J Biol Chem. 1994. V. 269. № 17. P. 12 918−12 924.
    114. Ogris M., Carlisle R.C., Bettinger Т., Seymour L.W. Melittin enables efficient vesicular escape and enhanced nuclear access of nonviral gene delivery vectors. // J Biol Chem. 2001. V. 276. № 50. P. 47 550−47 555.
    115. Boeckle S., Wagner E., Ogris M. C- versus N-terminally linked melittin-polyethylenimine conjugates: the site of linkage strongly influences activity of DNA polyplexes. // J Gene Med. 2005. V. 7. № 10. P. 1335−1347.
    116. Boeckle S., Fahrmeir J., Roedl W., Ogris M., Wagner E. Melittin analogs with high lytic activity at endosomal pH enhance transfection with purified targeted PEI polyplexes. // J Control Release. 2006. V. 112. № 2. P. 240−248.
    117. Chen C.P., Kim J: S., Steenblock E., Liu D., Rice K.G. Gene transfer with poly-melittin peptides. // Bioconjug Chem. 2006. V. 17. № 4. P. 1057−1062.
    118. Ruben S., Perkins A., Purcell R., Joung K., Sia R., Burghoff R" Haseltine W.A., Rosen C.A. Structural and functional characterization of human immunodeficiency virus tat protein. // J Virol. 1989. V. 63. № 1. P. 1−8.
    119. Fawell S., Seery J., Daikh Y., Moore C., Chen L.L., Pepinsky В., Barsoum J. Tat-mediated delivery of heterologous proteins into cells. J J Proc Natl Acad Sci U S A. 1994. V. 91. № 2. P. 664−668.
    120. Vives E., Brodin P., Lebleu B. A truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus. // J Biol Chem. 1997. V. 272. № 25. P. 16 010−16 017.
    121. Rudolph C., Plank C., Lausier J., Schillinger U., Muller R.H., Rosenecker J. Oligomers of the arginine-rich motif of the HIV-1 TAT protein are capable of transferring plasmid DNA into cells. // J Biol Chem. 2003. V. 278. № 13. P. 1 141 111 418.
    122. Vives E. Cellular uptake correction of utake. of the Tat peptide: an endocytosis mechanism following ionic interactions. // J Mol Recognit. 2003. V. 16. № 5. P. 265 271.
    123. Brooks H., Lebleu В., Vives E. Tat peptide-mediated cellular delivery: back to basics. // Adv Drug Deliv Rev. 2005. V. 57. № 4. P. 559−577.
    124. Derossi D., Chassaing G., Prochiantz A. Trojan peptides: the penetratin system for intracellular delivery. // Trends Cell Biol. 1998. V. 8. № 2. P. 84−87.
    125. Deshayes S., Morris M.C., Divita G., Heitz F. Cell-penetrating peptides: tools for intracellular delivery of therapeutics. // Cell Mol Life Sci. 2005. V. 62. № 16. P. 1839−1849.
    126. Pooga M., Hallbrink M., Zorko M., Langel U. Cell penetration by transportan. // Faseb J. 1998. V. 12. № 1. P. 67−77.
    127. Pooga M., Kut C., Kihlmark M., Hallbrink M., Fernaeus S., Raid R., Land Т., Hallberg E., Bartfai Т., Langel U. Cellular translocation of proteins by transportan. // Faseb J. 2001. V. 15. № 8. P. 1451−1453.
    128. Parente R.A., Nir S., Szoka F.C., Jr. Mechanism of leakage of phospholipidvesicle contents induced by the peptide GALA, // Biochemistry. 1990. V. 29. № 37. P. 8720−8728.
    129. Wyman T.B., Nicol F., Zelphati O., Scaria P.V., Plank C., Szoka F.C., Jr. Design, synthesis, and characterization of a cationic peptide that binds to nucleic acids and permeabilizes bilayers. // Biochemistry. 1997. V. 36. № 10. P. 3008−3017.
    130. Rittner K., Benavente A., Bompard-Sorlet A., Heitz F., Divita G., Brasseur R., Jacobs E. New basic membrane-destabilizing peptides for plasmid-based gene delivery in vitro and in vivo. // Mol Ther. 2002. V. 5. № 2. P. 104−114.
    131. Kim J., Chen C.P., Rice K.G. The proteasome metabolizes peptide-mediated nonviral gene delivery systems. // Gene Ther. 2005. V. 12. № 21. P. 1581−1590.
    132. Gharakhanian E., Takahashi J., Kasamatsu H. The carboxyl 35 amino acids of SV40 Vp3 are essential for its nuclear accumulation. // Virology. 1987. V. 157. № 2. P. 440−448.
    133. Lyons R.H., Ferguson B.Q., Rosenberg M. Pentapeptide nuclear localization signal in adenovirus El a. // Mol Cell Biol. 1987. V. 7. № 7. P. 2451−2456,
    134. Dang C.V., Lee W.M. Identification of the human C-myc protein nuclear translocation signal. // Mol Cell Biol. 1988. V. 8. № 10. P. 4048−4054.
    135. Robbins J., Dilworth S.M., Laskey R.A., Dingwall C. Two interdependent basic domains in nucleoplasmin nuclear targeting sequence: identification of a class of bipartite nuclear targeting sequence. // Cell. 1991. V. 64. № 3. P. 615−623.
    136. Kleinschmidt J.A., Seiter A. Identification of domains involved in nuclear uptake and histone binding of protein N1 of Xenopus laevis. // Embo J. 1988. V. 7. № 6. P. 1605−1614.
    137. Kiefer P., Acland P., Pappin D., Peters G., Dickson C. Competition between nuclear localization and secretory signals determines the subcellular fate of a single CUG-initiated form of FGF3. //Embo J. 1994. V. 13. № 17. P. 4126−4136.
    138. Subramanian A., Ranganathan P., Diamond S.L. Nuclear targeting peptide scaffolds for lipofection of nondividing mammalian cells. // Nat Biotechnol. 1999. V. 17. № 9. P. 873−877.
    139. Collins L., Fabre J.W. A synthetic peptide vector system for optimal gene delivery to corneal endothelium. // J Gene Med. 2004. V. 6. № 2. P. 185−194.
    140. Schneider H., Harbottle R.P., Yokosaki Y., Kunde J., Sheppard D., Coutelle C. A novel peptide, PLAEIDGIELTY, for the targeting of alpha9betal-integrins. // FEBS Lett. 1998. V. 429. № 3. P. 269−273.
    141. McKay Т., Reynolds P., Jezzard S., Curiel D., Coutelle C. Secretin-mediated gene delivery, a specific targeting mechanism with potential for treatment of biliary and pancreatic disease in cystic fibrosis. // Mol Ther. 2002. V. 5. № 4. P. 447−454.
    142. Liu X, Tian P.K., Ju D.W., Zhang M.H., Yao M., Cao X.T., Gu J.R. Systemic genetic transfer of p21WAF-l and GM-CSF utilizing of a novel oligopeptide-based EGF receptor targeting polyplex. // Cancer Gene Ther. 2003. V. 10. № 7. P. 529−539.
    143. Zeng J., Too H.P., Ma Y., Luo E.S., Wang S. A synthetic peptide containing loop 4 of nerve growth factor for targeted gene delivery. // J Gene Med. 2004. V. 6. № 11. p. 1247−1256.
    144. White S.J., Nicklin S.A., Sawamura Т., Baker A.H. Identification of peptides that target the endothelial cell-specific LOX-1 receptor. // Hypertension. 2001. V. 37. № 2 Part 2. P. 449−455.
    145. Cotten M., Langle-Rouault F., Kirlappos H., Wagner E., Mechtler K., Zenke M., Beug H., Birnstiel M.L. Transferrin-polycation-mediated introduction of DNA into human leukemic cells: stimulation by agents that affect the survival of transfected
    146. DNA or modulate transferrin receptor levels. // Proc Natl Acad Sci USA. 1990. V. 87. № 11. P. 4033−4037.
    147. Cristiano R.J., Roth J.A. Epidermal growth factor mediated DNA delivery into lung cancer cells via the epidermal growth factor receptor. // Cancer Gene Ther. 1996. V. 3.№ 1.P.4−10.
    148. Ivanova M. M, Rosenkranz A.A., Smirnova O.A., Nikitin V.A., Sobolev A.S., Landa V., Naroditsky B.S., Ernst L.K. Receptor-mediated transport of foreign DNA into preimplantation mammalian embryos. // Mol Reprod Dev. 1999. V. 54. № 2. P. 112−120.
    149. Sobolev A.S., Jans D.A., Rosenkranz A.A. Targeted intracellular delivery of photosensitizers. // Prog Biophys Mol Biol. 2000. V. 73. № 1. P. 51−90.
    150. Chan C.K., Jans D.A. Enhancement of MSH receptor- and GAL4-mediated gene transfer by switching the nuclear import pathway. // Gene Ther. 2001. V. 8. № 2. P. 166−171.
    151. Li D., Yu H, Huang H., Shen F., Wu X., Li J., Wang J., Cao X., Wang Q, Tang G. FGF Receptor-mediated Gene Delivery using Ligands Coupled to Polyethylenimine. // J Biomater Appl. 2007. V. 22. № 2. P. 163−180.
    152. Wu G.Y., Wilson J.M., Shalaby F., Grossman M., Shafritz D. A, Wu C.H. Receptor-mediated gene delivery in vivo. Partial correction of genetic analbuminemia inNagase rats. // J Biol Chem. 1991. V. 266. № 22. P. 14 338−14 342.
    153. Гороховец H. B, Дигтярь A.B., Луценко E. B, Луценко C. B, Макаров В. А, Посыпанова Г. А, Северин Е. С., Северин С. Е., Фельдман Н.Б.
    154. Противоопухолевый пептидный препарат на основе фрагмента альфа-фетопротеина, его конъюгат, фармацевтическая композиция и способ лечения гормонзависимых опухолей. // Патент RU 2 285 537 С1. 2006.
    155. М.Б., Москалева Е. Ю., Посыпанова Г. А. Изучение экспрессии рецептора AFP в опухолевых и нормальных тканях человека с помощью иммуногистохимического метода // Иммунология. 2005. Т. 26. № 2. С. 122−125.
    156. Hsia J.C., Er S.S., Тап С. Т., Estes Т., Ruoslahti E. alpha-fetoprotein binding specificity for arachidonate, bilirubin, docosahexaenoate, and palmitate. A spin label study. // J Biol Chem. 1980. V. 255. № 9. P. 4224−4227.
    157. Mizejewski G.J. alpha-fetoprotein as a biologic response modifier: relevance to domain and subdomain structure. // Proc Soc Exp Biol Med. 1997. V. 215. № 4. P. 333−362.
    158. Liao C.W., Hseu Т.Н., Hwang J. A target-specific chimeric toxin composed of epidermal growth factor and Pseudomonas exotoxin A with a deletion in its toxin-binding domain. //Appl Microbiol Biotechnol. 1995. V. 43. № 3. P. 498−507.
    159. Wels W., Moritz D., Schmidt M., Jeschke M., Hynes N.E., Groner B. Biotechnological and gene therapeutic strategies in cancer treatment. // Gene. 1995. V. 159. № 1. P. 73−80.
    160. Sosnowski B.A., Gonzalez A.M., Chandler L.A., Buechler Y.J., Pierce G.F., Baird A. Targeting DNA to cells with basic fibroblast growth factor (FGF2). // J Biol Chem. 1996. V. 271. № 52. P. 33 647−33 653.
    161. Bridges A.J. The rationale and strategy used to develop a series of highly potent, irreversible, inhibitors of the epidermal growth factor receptor family of tyrosine kinases. // Curr Med Chem. 1999. V. 6. № 9. P. 825−843.
    162. Komuves L.G., Feren A., Jones A.L., Fodor E. Expression of epidermal growth factor and its receptor in cirrhotic liver disease. // J Histochem Cytochem. 2000. V. 48. № 6. P. 821−830.
    163. Schmidt M., Vakalopoulou E., Schneider D.W., Wels W. Construction and functional characterization of scFv (14El)-ETA a novel, highly potent antibody-toxin specific for the EGF receptor. // Br J Cancer. 1997. V. 75. № 11. P. 1575−1584.
    164. Fominaya J., Uherek C., Wels W. A chimeric fusion protein containing transforming growth factor-alpha mediates gene transfer via binding- to the EGF receptor. // Gene Ther. 1998. V. 5. № 4. P. 521−530.
    165. Chan C.K., Senden Т., Jans D.A. Supramolecular structure and nuclear targeting efficiency determine the enhancement of transfection by modified polylysines. // Gene Ther. 2000. V. 7. № 19. P. 1690−1697.
    166. Magin-Lachmann C., Kotzamanis G., D’Aiuto L., Cooke H., Huxley C., Wagner E. In vitro and in vivo delivery of intact ВАС DNA comparison of different methods. // J Gene Med. 2004. V. 6. № 2. P. 195−209.
    167. Wagner E., Kircheis R., Walker G.F. Targeted nucleic acid delivery into tumors: new avenues for cancer therapy. // Biomed Pharmacother. 2004. V. 58. № 3. P. 152 161.
    168. Hatefi A., Megeed Z., Ghandehari H. Recombinant polymer-protein fusion: a promising approach towards efficient and targeted gene delivery. // J Gene Med. 2006. V. 8. № 4. P. 468−476.
    169. Paul R.W., Weisser K.E., Loomis A., Sloane D.L., LaFoe D., Atkinson E.M., Overell R.W. Gene transfer using a novel fusion protein, GAL4/invasin. // Hum Gene Ther. 1997. V. 8. № 10. P. 1253−1262.
    170. Cristiano R.J. Targeted, non-viral gene delivery for cancer gene therapy. // Front Biosci. 1998. V. 3. P. D1161−1170.
    171. Morris M.C., Vidal P., Chaloin L., Heitz F., Divita G. A new peptide vector for efficient delivery of oligonucleotides into mammalian cells. // Nucleic Acids Res. 1997. V. 25. № 14. P. 2730−2736.
    172. Morris M.C., Chaloin L., Mery J., Heitz F., Divita G. A novel potent strategy for gene delivery using a single peptide vector as a carrier. // Nucleic Acids Res. 1999. V. 27. № 17. P. 3510−3517.
    173. Cartier R., Reszka R. Utilization of synthetic peptides containing nuclear localization signals for nonviral gene transfer systems. // Gene Ther. 2002. V. 9. № 3. P. 157−167.
    174. Erbacher P., Zou S., Bettinger Т., Steffan A.M., Remy J.S. Chitosan-based vector/DNA complexes for gene delivery: biophysical characteristics and transfection ability. // Pharm Res. 1998. V. 15. № 9. P. 1332−1339.
    175. Lou Y.L., Peng Y.S., Chen B.H., Wang L.F., Leong K.W. Polyethylene imine)-g-chitosan using EX-810 as a spacer for nonviral gene delivery vectors. // J Biomed Mater Res A. 2008. V. P.
    176. Veithen A., Raze D., Locht C. Intracellular trafficking and membrane translocation of pertussis toxin into host cells. // Int J Med Microbiol. 2000. V. 290. № 4−5. P. 409−413.
    177. Fominaya J., Wels W. Target cell-specific DNA transfer mediated by a chimeric multidomain protein. Novel non-viral gene delivery system. // J Biol Chem. 1996. V. 271. № 18. P. 10 560−10 568.
    178. Uherek C., Fominaya J., Wels W. A modular DNA carrier protein based on the structure of diphtheria toxin mediates target cell-specific gene delivery. // J Biol Chem. 1998. V. 273. № 15. P. 8835−8841.
    179. Bremner K.H., Seymour L.W., Pouton C.W. Harnessing nuclear localization pathways for transgene delivery. // Curr Opin Mol Ther. 2001. V. 3. № 2. P. 170−177.
    180. Lechardeur D., Lukacs G.L. Intracellular barriers to non-viral gene transfer. // Curr Gene Ther. 2002. V. 2. № 2. P. 183−194.
    181. Young J.L., Benoit J.N., Dean D.A. Effect of a DNA nuclear targeting sequence on gene transfer and expression of plasmids in the intact vasculature. // Gene Ther. 2003. V. 10. № 17. P. 1465−1470.
    182. Lechardeur D., Verkman A.S., Lukacs G.L. Intracellular routing of plasmid DNA during non-viral gene transfer. // Adv Drug Deliv Rev. 2005. V. 57. № 5. P. 755−767.
    183. Pouton C.W., Wagstaff K.M., Roth D.M., Moseley G.W., Jans D.A. Targeted delivery to the nucleus. // Adv Drug Deliv Rev. 2007. V. 59. № 8. P. 698−717.
    184. Allen T.D., Cronshaw J.M., Bagley S., Kiseleva E., Goldberg M.W. The nuclear pore complex: mediator of translocation between nucleus and cytoplasm. // J Cell Sci. 2000. V. 113 (Pt 10). P. 1651−1659.
    185. Kiseleva E., Goldberg M.W., Cronshaw J., Allen T.D. The nuclear pore complex: structure, function, and dynamics. // Crit Rev Eukaryot Gene Expr. 2000. V. 10. № 1. P. 101−112.
    186. Chan C.K., Jans D.A. Using nuclear targeting signals to enhance non-viral gene transfer. // Immunol Cell Biol. 2002. V. 80. № 2. P. 119−130.
    187. Escriou V., Carriere M., Scherman D., Wils P. NLS bioconjugates for targeting therapeutic genes to the nucleus. // Adv Drug Deliv Rev. 2003. V. 55. № 2. P. 295 306.
    188. Nair R., Carter P., Rost B. NLSdb: database of nuclear localization signals. // Nucleic Acids Res. 2003. V. 31. № 1. P. 397−399.
    189. Collas P., Alestrom P. Nuclear localization signals: a driving force for nuclear transport of plasmid DNA in zebrafish. // Biochem Cell Biol. 1997. V. 75. № 5. P. -633−640.
    190. Bottger M., Zaitsev S.V., Otto A., Haberland A., Vorob’ev V.I. Acid nuclear extracts as mediators of gene transfer and expression. // Biochim Biophys Acta. 1998. V. 1395. № 1. P. 78−87.
    191. Wagstaff K.M., Glover D.J., Tremethick D.J., Jans D.A. Histone-mediated transduction as an efficient means for gene delivery. // Mol Ther. 2007. V. 15. № 4. P. 721−731.
    192. Wagstaff K.M., Fan J.Y., De Jesus M.A., Tremethick D.J., Jans D.A. Efficient gene delivery using reconstituted chromatin enhanced for nuclear targeting. // Faseb J. 2008. V. 22. № 7. P. 2232−2242.
    193. Simonsson T. G-quadruplex DNA structures—variations on a theme. // Biol Chem. 2001. V. 382. № 4. P. 621−628.
    194. Schaffitzel C., Berger I., Postberg J., Hanes J., Lipps H.J., Pluckthun A. In vitro generated antibodies specific for telomeric guanine-quadruplex DNA react with Stylonychia lemnae macronuclei. // Proc Natl Acad Sci USA. 2001. V. 98. № 15. P.8572−8577.
    195. Paeschke К, Simonsson T, Postberg J, Rhodes D., Lipps H.J. Telomere end-binding proteins control the formation of G-quadruplex DNA structures in vivo. // Nat Struct Mol Biol. 2005. V. 12. № 10. P. 847−854.
    196. Usdin K. NGG-triplet repeats form similar intrastrand structures: implications for the triplet expansion diseases. // Nucleic Acids Res. 1998. V. 26. № 17. P. 40 784 085.
    197. Simonsson T. The human TINF2 gene organisation and chromosomal localization. // Biochimie. 2001. V. 83. № 5. P. 433−435.
    198. Wright W. E, Tesmer V.M., Huffman K. E, Levene S.D., Shay J.W. Normal human chromosomes have long G-rich telomeric overhangs at one end. // Genes Dev. 1997. V. 11. № 21. P. 2801−2809.
    199. Siddiqui-Jain A, Grand C. L, Bearss D.J., Harley L.H. Direct evidence for a G-quadruplex in a promoter region and its targeting with a small molecule to repress cMyc transcription. // Proc Natl Acad Sci USA. 2002. V. 99. P. 11 593−11 598.
    200. Wittung P, Nielsen P. E, Buchardt O, Egholm M, Norden B. DNA-like double helix formed by peptide nucleic acid. // Nature. 1994. V. 368. № 6471. P. 561−563.
    201. И. Пептидно-нуклеиновые кислоты: структура, свойства, применение, стратегии и практика химического синтеза. // Успехи химии. 2002. Т. 71. № 1. С. 81−96.
    202. King D. J, Bassett S. E, Li X, Fennewald S. A, Herzog N. K, Luxon B. A, Shope R, Gorenstein D.G. Combinatorial selection and binding of phosphorothioate aptamers targeting human NF-kappa В RelA (p65) and p50. // Biochemistry. 2002. V. 41. № 30. P. 9696−9706.
    203. Tasset D. M, Kubik M. F, Steiner W. Oligonucleotide inhibitors of human thrombin that bind distinct epitopes. // J Mol Biol. 1997. V. 272. № 5. P. 688−698.
    204. Малахов А. Д, Коршун B. A, Берлин Ю. А. Синтез и флуоресцентныесвойства олигонуклеотидов, содержащих новую флуоресцентную метку п-(2-бензоксазолил)толан // Биоорг. химия. 2001. Т. 27. № 6. С. 462−465.
    205. А.В., Козлова А. Ю., Есипов Д. С., Каюшин А. Л., Коростелева М. Д., Есипов С. Е. Определение молекулярных масс олигонуклеотидов методом MS-MALDI. // Биоорг. химия. 2005. Т. 31. № 2. С. 151−158.
    206. Balagurumoorthy P., Brahmachari S.K., Mohanty D., Bansal M., Sasisekharan V. Hairpin and parallel quartet structures for telomeric sequences. // Nucleic Acids Res. 1992. V. 20. № 15. P. 4061−4067.
    207. Probert W.S., Schrader K.N., Khuong N.Y., Bystrom S.L., Graves M.H. Realtime multiplex PCR assay for detection of Brucella spp., B. abortus, and B. melitensis. // J Clin Microbiol. 2004. V. 42. № 3. P. 1290−1293.
    208. Ram S., Shanker R. Computing TaqMan probes for multiplex PCR detection of E. coli 0157 serotypes in water. // Silico Biol. 2005. V. 5. № 5−6. P. 499−504.
    209. Tsourkas A., Behlke M.A., Bao G. Structure-function relationships of shared-stem and conventional molecular beacons. // Nucleic Acids Res. 2002. V. 30. № 19. P. 4208−4215.
    210. Marras S.A., Tyagi S., Kramer F.R. Real-time assays with molecular beacons and other fluorescent nucleic acid hybridization probes. // Clin Chim Acta. 2006. V. 363. № 1−2. P. 48−60.
    211. Dubey I., Pratviel G., Meunier B. Modification of the thiourea linkage of a fluorescein-oligonucleotide conjugate to a guanidinium motif during ammonia deprotection. // Bioconjug Chem. 1998. V. 9. № 5. P. 627−632.
    212. Dimroth K., Wolf K.H. Aromatic compounds from pyrylium salts. // Newer Methods of Preparative Organic Chemistry, Academic Press, New York,. 1964. V. 3. P. 357.
    213. Katritzky A.R. Conversions of Primary Amino Groups into Other Functionality Mediated by Pyrylium Salts. // Tetrahedron. 1980. V. 36. № 6. P. 679−699.
    214. Potts K.T., Robinson R. Synthetical experiments related to the indole alkaloids. // J Chem Soc. 1955. V. P. 2675 2686.
    215. Hensel H.R. Dialkylamino-Basen von Benzopyranen und Xanthenen. // Justus Liebigs Ann Chem 1958. V. 611. № 1. P. 97−104.
    216. Carpenter G., Cohen S. Epidermal growth factor. // Annu Rev Biochem. 1979. V.48.P. 193−216.
    217. Hommel U., Harvey T.S., Driscoll P.C., Campbell I.D. Human epidermal growth factor. High resolution solution structure and comparison with human transforming growth factor alpha. // J Mol Biol. 1992. V. 227. № 1. P. 271−282.
    218. Kroning R., Jones J.A., Horn D.K., Chuang C.C., Sanga R., Los G., Howell S.B., Christen R.D. Enhancement of drug sensitivity of human malignancies by epidermal growth factor. // Br J Cancer. 1995. V. 72. № 3. P. 615−619.
    219. Gilliland G., Perrin S., Blanchard K., Bunn H.F. Analysis of cytokine mRNA and DNA: detection and quantitation by competitive polymerase chain reaction. // Proc Natl Acad Sci USA. 1990. V. 87. № 7. P. 2725−2729.
    220. Murphy L.D., Herzoo C.E., Rudick J.B., Fojo A.T., Bates S.E. Use of polymerase chain reaction in the quantitation of mdrl gene expression. // Biochemistry. 1990. V. 29. P. 10 351−10 375.
    221. Wagner E., Zenke M., Cotten M., Beug H., Birnstiel M.L. Transferrin-polycation conjugates as carriers for DNA uptake into cells. // Proc Natl Acad Sci U S A. 1990. V. 87. № 9. P. 3410−3414.
    222. Epaulard O., Derouazi M., Margerit C., Marlu R., Filopon D., Polack В., Toussaint B. Optimization of a type III secretion system-based Pseudomonas aeruginosa live vector for antigen delivery. // Clin Vaccine Immunol. 2008. V. 15. № 2. P. 308−313.
    223. Rhie G.E., Jung H.M., Park J., Kim B.S., Mekalanos J.J. Construction of cholera toxin В subunit-producing Vibrio cholerae strains using the Mariner-FRT transposon delivery system. //FEMS Immunol Med Microbiol. 2008. V. 52. № 1. P. 23−28.
    224. Spano S., Ugalde J.E., Galan J.E. Delivery of a Salmonella Typhi exotoxin from a host intracellular compartment. // Cell Host Microbe. 2008. V. 3. № 1. P. 30−38.
    225. Karp M., Lindqvist C., Nissinen R., Wahlbeck S., Akerman K., Oker-Blom C. Identification of biotinylated molecules using a baculovirus-expressed luciferase-streptavidin fusion protein. // Biotechniques. 1996. V. 20. № 3. P. 452−456, 458−459.
    226. Ma X., Zheng W., Wang Т., Wei D., Ma Y. Optimization and high-level expression of a functional GST-tagged rHLT-B in Escherichia coli and GM1 binding ability of purified rHLT-B. // J Microbiol. 2006. V. 44. № 3. P. 293−300.
    227. Veerman A.J., Pieters R. Drug sensitivity assays in leukaemia and lymphoma. // Br J Haematol. 1990. V. 74. № 4. P. 381−384.
    228. Sun D., Thompson В., Cathers B.E., Salazar M., Kerwin S.M., Trent J.O., Jenkins T.C., Neidle S., Hurley L.H. Inhibition of human telomerase by a G-quadruplex-interactive compound. // J Med Chem. 1997. V. 40. № 14. P. 2113−2116.
    229. Berkers J.A., van Bergen en Henegouwen P.M., Boonstra J. Three classes of epidermal growth factor receptors on HeLa cells. // J Biol Chem. 1991. V. 266. № 2. P. 922−927.
    230. Blackburn E.H., Chan S., Chang J., Fulton T.B., Krauskopf A., McEachern M., Prescott J., Roy J., Smith C., Wang H. Molecular manifestations and molecular determinants of telomere capping. // Cold Spring Harb Symp Quant Biol. 2000. V. 65. P. 253−263.
    231. Timofeev A.M., Borovkova T.V., Akhlynina T.V., Nydenova N.M., Grineva N.I. Binding features of BCL2-targeted oligodeoxynucleotides with K562 cells. // Nucleosides Nucleotides Nucleic Acids. 2004. V. 23. № 6−7. P. 943−951.
    232. Yoshina-Ishii С., Boxer S.G. Arrays of mobile tethered vesicles on supported lipid bilayers. // J Am Chem Soc. 2003. V. 125. № 13. P. 3696−3697.
    233. Yoshina-Ishii C., Miller G.P., Kraft M.L., Kool E.T., Boxer S.G. General method for modification of liposomes for encoded assembly on supported bilayers. // J Am Chem Soc. 2005. V. 127. № 5. P. 1356−1357.
    234. Chang-Cheng Y., Chompoosora A., Rotello V.M. The biomacromolecule-nanopartiele interface. //Nanotoday. 2007. V. 2. № 3. P. 34−43.
    235. Stanlis K.K., Mcintosh J.R. Single-strand DNA aptamers as probes for protein localization in cells. // J Histochem Cytochem. 2003. V. 51. № 6. P. 797−808.
    236. В., Беккер X., P. Б. Органикум. Практикум по органической химии. // «Наука». Москва. 1979. Т. 2. С. 353−377.
    237. Vet J., Marras S. // In Oligonucleotide synthesis: Methods and Applications Humana Press, TotowaN J Ed Herdewijn P. 2004. V. 288. P. 273−290.
    Заполнить форму текущей работой