Помощь в написании студенческих работ
Антистрессовый сервис

Трансгидрогеназная активность митохондриального Комплекса I и его нуклеотид-связывающие центры

ДиссертацияПомощь в написанииУзнать стоимостьмоей работы

Свойства нуклеотид-связывающего активного центра (ов) Комплекса I мало изучены. До последнего времени считалось общепринятым, что фермент имеет единственный центр специфичного связывания NADH и/или NAD+, ассоциированный с его 51 кДа флавин-содержащей субъединицей. Однако, ряд данных указывает на существование более чем одного центра связывания нуклеотидов в составе Комплекса I. Такие данные… Читать ещё >

Трансгидрогеназная активность митохондриального Комплекса I и его нуклеотид-связывающие центры (реферат, курсовая, диплом, контрольная)

Содержание

  • СПИСОК СОКРАЩЕНИЙ ОБЗОР ЛИТЕРАТУРЫ
  • 1. Структура протон-транслоцирующих
  • ЛАОНгхинон оксидоредуктаз
    • 1. 1. Субъединицы
  • Субъединичный состав митохондриальных и бактериальных ферментов Субкомплексы
  • Ассоциация субъединиц в процессе сборки
  • Комплекса I Происхождение субъединиц и эволюция
  • Комплекса I МАБН-дегидрогеназы, нетранслоцирующие протоны
    • 1. 2. Редокс компоненты
  • Железо-серные центры Хиноны
  • 2. Каталитические свойства митохондриальной
  • NADH:yбиxинoн оксидоредуктазы
    • 2. 1. Препараты ЫАБН-дегидрогеназы СМЧ
  • Комплекс I БР
    • 2. 2. Реакции, катализируемые Комплексом I ЫАБН-оксидазная реакция
  • — Дыхательный контроль
  • — Обратимая деактивация Комплекса I Обратный перенос электронов
  • Окисление ЫАБН искусственными акцепторами электронов
  • — Аналоги и гомологи убихинона
  • — Феррицианид и гексаминорутений Генерация супероксид аниона Трансгидрогеназная реакция
  • — Комплекс I
  • — Н^-трансгидрогеназа
    • 2. 3. Транслокация протонов
    • 2. 4. Ингибиторы Комплекса I
  • Ингибиторы центров связывания нуклеотидов и начальных этапов переноса электронов
  • — NAD+, NADH, ADP-рибоза и их производные
  • — Рейн
  • — Тинопалы 42 Ингибиторы восстановления хинонов
  • — Ротенон
  • — Пиерицидин А
  • — Ацетогенины
  • — Антибиотики миксобактерий
  • — Другие ингибиторы
  • 3. Активный центр NADH: y6nximoH оксидоредуктазы
    • 3. 1. Центры связывания нуклеотидов 47 Субъединица 51 кДа 47 Субъединица 39 кДа 48 Субъединицы, метящиеся фотоаффинными аналогами нуклеотидов
    • 3. 2. Участие центров связывания нуклеотидов в реакциях Комплекса I 49 Указания на работу не менее двух центров связывания нуклеотидов 49 Подходы к определению количества субстрат-связывающих мест
  • МЕТОДЫ ИССЛЕДОВАНИЯ
  • 1. Препаративные методы
    • 1. 1. Выделение митохондрий из сердца быка
    • 1. 2. Получение субмитохондриальных частиц (СМЧ)
    • 1. 3. Выделение ЫА1) Н:убихинон оксидоредуктазы из митохондрий
  • Промывание митохондрий
  • Получение препарата S1 (Комплексы I, II и III)
  • Получение препарата R4B (Комплексы I и III)
  • Выделение NADH: y6nxHHOH оксидоредуктазы
    • 1. 4. Фракционирование Комплекса I, выделение трехсубъединичного флавопротеина (FP)
    • 1. 5. Обработка СМЧ трипсином
    • 1. 6. Сопряжение СМЧ олигомицином
    • 1. 7. Получение APADH
  • 2. Аналитические методы
    • 2. 1. Реакции, катализируемые препаратами
  • NADH-дегидрогеназы
  • NADH-оксидазная реакция, дыхательный контроль (ДК)
  • Сукцинат-зависимый обратный перенос электронов
  • DD трансгидрогеназная реакция
    • 2. 2. Определение концентрации APAD+ и NAD+
    • 2. 3. Преинкубация Комплекса I с NADH
    • 2. 4. Экстракция нуклеотидов 63 Экстракция NAD+ и флавинов хлорной кислотой 63 Экстракция флавинов трихлоруксусной кислотой (ТХУ) 63 Щелочная экстракция NADH
    • 2. 5. Регистрация Ар, н+
    • 2. 6. Кинетическое определение механизма бисубстратной реакции
  • Тройной комплекс и двойное замещение 65 Последовательность взаимодействия субстратов с ферментом в реакциях, протекающих с образованием тройного комплекса
  • РЕЗУЛЬТАТЫ
  • 1. NADH:y6HXHHOH оксидоредуктаза и DD трансгидрогеназная активность СМЧ
  • 2. Кинетический механизм DD трансгидрогеназной реакции, катализируемой NADH: y6nxnHOH оксидоредуктазой
    • 2. 1. СМЧ 70 NADH-«APAD+ реакция 70 APADH-«NAD+ реакция
    • 2. 2. Комплекс I
    • 2. 3. FP
    • 2. 4. Содержание связанных нуклеотидов в составе Комплекса I
  • 3. Окисление и восстановление нуклеотидов в реакциях прямого и обратного переноса электронов, катализируемых Комплексом I
  • 4. Влияние обратимых ингибиторов активного центра
  • Комплекса I на DD трансгидрогеназную реакцию
    • 4. 1. ADP-рибоза
    • 4. 2. Рейн
    • 4. 3. NAD+
    • 4. 4. Тинопалы (AMS-GX, 5BM-GX) 95 Влияние тинопалов на спектры поглощения
  • NADHhAPADH 96 Влияние AMS-GX и 5BM-GX на DD реакцию
  • Комплекса I
  • 5. DD трансгидрогеназная реакция 1 и A|uH+
  • ОБСУЖДЕНИЕ
  • ВЫВОДЫ

NADH:y6nxHHOH оксидоредуктаза (Комплекс I, NADH-дегидрогеназа, КФ 1.6.5.3) — чрезвычайно сложный компонент дыхательной цепи митохондрий. Фермент катализирует окисление NADH убихиноном, сопряженное с векторным переносом 4 протонов из матрикса митохондрий в межмембранное пространство. Комплекс I построен не менее чем из 41 субъединиц (общая молекулярная масса — порядка 1 ООО ООО Да) и содержит FMN, 5−7 железосерных кластеров и связанный убихинон.

Свойства нуклеотид-связывающего активного центра (ов) Комплекса I мало изучены. До последнего времени считалось общепринятым, что фермент имеет единственный центр специфичного связывания NADH и/или NAD+, ассоциированный с его 51 кДа флавин-содержащей субъединицей. Однако, ряд данных указывает на существование более чем одного центра связывания нуклеотидов в составе Комплекса I. Такие данные кратко суммированы ниже:

1) Fe-S кластеры фермента по-разному восстанавливаются при добавлении NADH или NADPH;

2) кинетика генерации супероксид-радикала характеризуется двумя значениями Кт как для NADH, так и для NADPH;

3) в зависимости от концентрации, NAD+ влияет как конкурентный или неконкурентный ингибитор по отношению к NADH;

4) фотоаффинные аналоги субстратов включаются в несколько субъединиц фермента;

5) сродство фермента к NAD+ и NADH в реакциях окисления NADH и А|Ын±зависимого восстановления NAD+ убихиноном существенно различается;

6) ADP-рибоза конкурирует с NADH в прямой реакции и не влияет на обратный перенос электронов. 8.

Таким образом, мы полагаем, что количество центров связывания нуклеотидов остается неизвестным. Способность Комплекса I катализировать трансгидрогеназную реакцию предоставляет одну из возможностей для изучения нуклеотид-связывающих свойств фермента. Кинетическое исследование этой бисубстратной реакции может служить, хотя и косвенным, но достаточно надежным инструментом для этой цели.

В настоящей работе в качестве инструмента исследования свойств активного центра (ов) Комплекса I была использована NADH—>АРАБ+ (3-ацетилпиридин аденин динуклеотид) трансгидрогеназная реакция, катализируемая тремя препаратами ЫАОН: дегидрогеназы: субмитохондриальными частицами (СМЧ), изолированным Комплексом I и его трехсубъединичным фрагментом БР. Полученные результаты позволяют считать, что фермент содержит не менее трех функционально значимых центров связывания субстратов-нуклеотидов.

ОБЗОР ЛИТЕРАТУРЫ.

выводы.

1. Показано, что митохондриальная NADH.-убихинон оксидоредуктаза катализирует две NADH-«APAD+ (DD) трансгидрогеназные реакции, отличающиеся по скоростям, кинетическому механизму, сродству к субстратам и чувствительности к Ацн+.

2. Установлено, что реакция 1 протекает по упорядоченному механизму с образованием тройного комплекса, с участием двух нуклеотид-связывающих центров. Оба центра входят в состав трехсубъединичного флавопротеина (FP). NADH является первым субстратом. Для реакции характерно двойное субстратное ингибирование при концентрациях субстратов, на порядок привышающих Кт. Реакция ингибируется при энергизации мембраны.

3. В DD реакции 1 восстановленный нуклеотид связывается в том же центре, что и в NADH-оксидазной реакции. Центр связывания окисленного нуклеотида в реакции 1 идентичен субстрат-связывающему центру в реакции обратного переноса электронов.

4. Реакция 2 протекает по механизму двойного замещения («пинг-понг») и, в сравнении с реакцией 1, характеризуется на порядок более высокой скоростью и на порядок более низким сродством к окисленому нуклеотиду. Реакция не чувствительна к Ацн+.

5. В обеих реакциях NAD+ конкурирует с APAD+ и не конкурирует с NADH.

6. ADP-рибоза и реин по разному ингибируют две реакции, катализируемые нативным ферментом.

7. Заключено, что в реакции 2 функционирует отдельный нуклеотид-связывающий центр (ы), отличный от двух субстрат связывающих центров участвующих в реакции 1. Таким образом, в составе.

Показать весь текст

Список литературы

  1. Albracht, S.P.J., Intermediate relationships of the large and the small two nuclear-encoded subunits of mitochondrial NADH: ubiquinone oxidoreductase. (1993) Biochim. Biophys. Acta, 1144, 221−224.
  2. Albracht, S.P.J., and Bakker, P.T.A. Evidence for two independent pathways of electron transfer in mitochondrial NADH: Q oxidoreductase. II. Kinetics of reoxidation of the reduced enzyme. (1986) Biochim. Biophys. Acta, 850, 423−428.
  3. Albracht, S.P.J., Dooijewaard, G., Leeuwerik, F.J., and van Swol, B. EPR signals of NADH: Q oxidoreductase. Shape and intensity. (1977) Biochim. Biophys. Acta, 459,300−317.
  4. Albracht, S.P.J., Mariette, A., and de Jong, Ph. Bovine-heart NADH: ubiquinone oxidoreductase is a monomer with 8 Fe-S clusters and 2 FMN groups. (1997) Biochim. Biophys. Acta, 1318, 92−106.
  5. Anderson, W.M., Wood, J.M., and Anderson, A.C. Inhibition of mitochondrial and Paracoccus denitrificans NADH-ubiquinone reductase by oxacarbocyanine dyes. A structure-activity study. (1993)Biochem. Pharmacol., 45, 2115−2122.
  6. Avraam, R., and Kotlyar, A.B. Kinetics of NADH oxidation and NAD+ reduction by mitochondrial Complex I. (1991) Biokhimia, 56, 1676−1687.
  7. Avraam, R., and Kotlyar, A.B. Inhibition of NADH dehydrogenase by low concentrations of NAD4″. (1991) Biokhimia, 56, 2253−2260.
  8. Bakker, P.T.A., and Albracht, S. P J. Evidence for two independent pathways of electron transfer in mitochondrial NADH: Q oxidoreductase. I. Pre-steady-state kinetics with NADPH. (1986) Biochim. Biophys. Acta, 850, 413−422.
  9. Bashford, C.L., Chance, B., and Prince R.C. Oxonol dyes as monitors of membrane potential their behavior in photosynthetic bacteria. (1979) Biochim. Biophys. Acta, 545, 46−57.
  10. Baugh, R.F., and King, T.E. Purification, properties and reconstitutive activity of a DPNH dehydrogenase. (1972) Biochem. Biophys. Res. Commun., 49, 1165−1173.
  11. Belogrudov, G., and Hatefi, Y. Catalytic sector of complex I (NADH:ubiquinone oxidoreductase): subunit stoichiometry and substrate-induced conformation changes. (1994) Biochemistry, 33, 4571−4576.
  12. Bironaite, D.A., Cenas, N.K., and Kulys, J J. The rotenone-insensitive reduction of quinones and nitrocompounds by mitochondrial NADH: ubiquinone reductase. (1991) Biochim. Biophys. Acta, 1060, 203−209.
  13. Boekema, E.J., van Heel, M.G., and van Bruggen, E.F.J. Three-dimensional structure of bovine NADH: ubiquinone oxidoreductase of the mitochondrial respiratory chain. (1984) Biochim. Biophys. Acta, 787, 19−26.
  14. Boveris, A., Oshino, R., Erecinska, M., and Chance, Br. Reduction of mitochondrial components by duroquinone. (1971) Biochim. Biophys. Acta, 245, 116.
  15. Bragg, P.D., and Hou, C. Effect of truncation and mutation of the carboxyl-terminal region of the? subunit on membrane assembly and activity of the pyridine nucleotide transhydrogenase of Escherichia coli. (1998) Biochim. Biophys. Acta, 1365,464−472.
  16. Brandt, U. Proton-translocation by membrane-bound NADHrubiquinone-oxidoreductase (Complex I) through redox-gated ligand conduction. (1997) Biochim. Biophys. Acta, 1318, 79−91.
  17. Buchanan, S.K., and Walker, J.E. Large-scale chromatographic purification of F. F0-ATP-ase and Complex I from bovine heart mitochondria. (1996) Biochem. J., 318, 343−349.
  18. Burbaev, D.Sh., Moroz, I.A., Kotlyar, A.B., Sled, V.D., and Vinogradov, A.D. Ubisemiquinone in the NADH-ybiquinone rductase region of the mitochondrial respiratory chain. (1989) FEBSLett., 254, 47−51.
  19. Burgos, J., and Redfearn, E.R. The inhibition of mitochondrial reduced nicotinamideadenine dinucleotide oxidation by rotenoids. (1965) Biochim. Biophys. Acta, 110, 475−483.
  20. Caterina, M.J., Schumacher, M.A., Tominaga, ML, Rosen, T.A., Levine, J.D., and Julius, D. The capsaicin receptor: a heat-activated ion channel in the pain pathway. (1997) Nature, 389, 816−824.
  21. Cenas, N.K., Bironaite, D.A., and Kulys, J.J. On the mechanism of rotenone-insensitive reduction of quinones by mitochondrial NADH: ubiquinone reductase.
  22. The high affinity binding of NAD+ and NADH to the reduced enzyme form. (1991) FEBS Lett, 284, 192−194.
  23. Chance, B., and Hollunger, G. The interaction of energy and electron transfer reactions in mitochondria. I. General properties and nature of the products of succinate-linked reduction of pyridine nucleotide. (1961) J. Biol. Chem., 236, 15 341 543.
  24. Chance, Br. The interaction of energy and electron transfer reaction in mitochondria. II. General properties of adenosine triphosphate-linked oxidation of cytochrome and reduction of pyridine nucleotide. (1961) J. Biol. Chem., 236, 15 441 554.
  25. Chance, B., and Hollunger, G. The interaction of the energy and electron transfer reactions in mitochondria. III. Substrate requirement for pyridine nucleotide reduction in mitochondria. (1961) J! Biol. Chem., 236, 1555−1561.
  26. Chance, B., and Hollunger, G. The interaction of energy and electron transfer reactions in mitochondria. IV. The pathway of electron transfer. (1961) J. Biol. Chem., 236, 1562−1568.
  27. Chance, B. The interaction of energy and electron transfer reactions in mitochondria. V. The energy transfer pathway. (1961) J. Biol. Chem., 236, 15 691 576.
  28. Chen, S., and Guillory, R.J. Arylazido-?-alanine NAD+, a NAD+ photoaffinity analogue. (1977) J. Biol Chem., 252, 8990−9001.
  29. Chen, S., and Guillory, R.J. Interaction of arylazido-?-alanyl NAD+, a photoaffinity analogue of NAD+, with mitochondrial dihydronicotinamide adenine dinucleotide-ubiquinone reductase. (1979) J. Biol. Chem., 254, 7220−7227.
  30. Chen, S., and Guillory, R.J. Interaction of arylazido-?-alanyl NADP+, a photoaffinity analogue of NAD+, with mitochondrial dihydronicotinamide adenine dinucleotide-ubiquinone reductase. (1980) J! Biol. Chem., 255, 2445−2453.
  31. Chen, S., and Guillory, R.J. Studies on the interaction of arylazido-?-alanyl
  32. NAD+ with the mitochondrial NADH dehydrogenase. (1981) J. Biol. Chem., 256, 8318−8323.
  33. Chen, S., and Guillory, R.J. Identification of the NADH-NAD+ transhydrogenase peptide of the mitochondrial NADH-CoQ reductase (complex I). (1984) J. Biol. Chem., 259, 5124−5131.
  34. Chen, S., and Guillory, R.J. The 4B-3H. NADH-H2O exchange reaction of themitochondrial NADH dehydrogenase. (1985) Biochem. Biophys. Res. Commun., 129, 584−590.
  35. Chomyn, A., Cleeter, M.W.J., Ragan, C.I., Riley, M., Doolittle, R.F., and Attardi, G. URF6, last unidentified reading frame of human mtDNA, codes for an NADH dehydrogenase subunit. (1986) Science, 234, 614−618.
  36. Cremona, T., and Kearney, E.B. Studies on the respiratory chain-linked reduced nicotinamite adenin dinucleotide dehydrogenase. VI. Further purification and properties of the enzyme from beef heart. (1964) J. Biol. Chem., 239, 2328−2334.
  37. Cross, R.L., and Duncan T.M. Subunit rotetion in F. F0 synthases as a means of coupling proton transport through FO to the binding changes in Fi. (1996) J. Bioenerg. Biomembr., 28, 403−408.
  38. Darrouzet, E., and Dupuis, A. Genetic evidence for the existence of two quinone related inhibitor binding sites in NADH-CoQ reductase. (1997) Biochim. Biophys. Acta, 1319, 1−4.
  39. Darrouzet, E., Issartel, J.P., Lunardi, J., and Dupuis, A. The 49-kDa subunit of NADH-ubiquinone oxidoreductase (Complexl) is involved in the binding of piericidin and rotenone two quinone-related inhibitors. (1998) FEBS Lett, 431, 3438.
  40. Davis, K.A., and Hatefi, Y. Kinetics of the resolution of Complex I (reduced diphosphopyridine nucleotide-coenzyme Q reductase) of the mitochondrial electron transport system by chaotropic agents. (1969) Biochemistry, 8, 3355−3361.
  41. De Jong, A.M.Ph., Kotlyar, A.B., and Albracht, S.PJ. Energy-induced structural changes in NADH: Q oxidoreductase of the mitochondrial respiratory chain. (1994) Biochim. Biophys. Acta, 1186, 163−171.
  42. De Vault, D. Theory of iron-sulfur center N-2 oxidation and reduction by ATP. (1976) J. Theor. Biol, 62, 115−139.
  43. Degli Esposti, M.D. Inhibitors of NADH-ubiquinone reductase: an overview. (1998) Biochim. Biophys. Acta, 1364, 222−235.
  44. Degli Esposti, M.D., and Chelli, A. The mechanism of proton and electron transport in mitochondrial Complex I. (1994) Biochim. Biophys. Acta, 1187, 116 120.
  45. Degli Esposti, M.D., Chelli, A., Ratta, M., Cortes, D., and Estornell, E. Natural substances (acetogenins) from the family Annonaceae are powerful inhibitors of mitochondrial NADH dehydrogenase (Complex I). (1994) Biochem. J., 301, 161 167.
  46. Degli Esposti, M.D., Crimi, M., and Chelli, A. Natural variation in the potency and sites of mitochondrial quinone-like inhibitors. (1994) Biochem. Soc. Trans., 22, 209−213.
  47. Degli Esposti, M.D., Ngo, A., McMullen, G.L., Chelli, A., Sparla, F., Benelli, B., Patta, M., and Linnane, A.W. The specificity of mitochondrial Complex I for ubiquinones. (1996) Biochem. J., 313, 327−334.
  48. Deng, P. S.K., Hatefi, Y., and Chen, S. N-Arylazido-?-alanyl-NAD+, a new NAD+ photoaffinity analogue. Sinthesis and labeling of mitochondrial NADH dehydrogenase. (1990) Biochemistry, 29, 1094−1098.
  49. Di Virgilio, F. and Azzone, G.F. Activation of site I redox-driven H+ pump by exogenous quinones in intact mitochondria. (1982) J. Biol Chem., 257, 4106−4113.
  50. M., Уэбб Э. (1982) Ферменты, Москва, 3-е изд., т. 1−3.
  51. Djavadi-Ohaniance, L., and Hatefi, Y. Oxidation of NADPH by sybmitochondrial particles from beef heart in complete absence of transhydrogenase activity from NADPH to NAD. (1975) J. Biol Chem., 250, 9397−9403.
  52. Dooijewaard, G., and Slater, E.C. Steady-state kinetics of high molecular weight (type-I) NADH dehydrogenase. (1976) Biochim. Biophys. Acta, 440, 1−15.
  53. Dooijewaard, G., and Slater, E.C. Steady-state kinetics of low molecular weight (type-II) NADH dehydrogenase. (1976) Biochim. Biophys. Acta, 440, 16−35.
  54. Duarte, M., Schulte, U., and Videira, A. Identification of the TYKY homologous subunit of Complex I from Neurospora crassa. (1997) Biochim. Biophys. Acta, 1322,237−241.
  55. Duarte, M., Sousa, R., and Videira, A. Inactivation of genes encoding subunits of the peripheral and membrane arms of Neurospora crassa mitochondrial Complex I and effects on enzyme assembly. (1995) Genetics, 139, 1211−1221.
  56. Dupuis, A., Chavallet, M., Darrouzet, E., Duborjal, H., Lunardi, J., and Issartel, J.P. The Complex I from Rhodobacter capsulatus. (1998) Biochim. Biophys. Acta, 1364,147−165.
  57. Dupuis, A., Skehel, J.M., and Walker, J.E. A homologue of bovine mitochondrial Complex I is encoded in chloroplast genomes. (1991) Biochemistry, 30, 2954−2960.
  58. Dutton, P.L., Moser, C.C., Sled, V.D., Daldal, F., and Ohnishi, T. A reductant-induced oxidation mechanism for Complex I. (1998) Biochim. Biophys. Acta, 1364, 245−257.
  59. Earley, F.G.P., Patel, S.D., Ragan, C.I., and Attardi, G. Photolabelling of a mitochondrially encoded subunit of NADH dehydrogenase with 3H.dihydrorotenone. (1987) FEBSLett., 219, 108−113.
  60. Earley, F.G.P., and Ragan, C.I. Photoaffmity labelling of mitochondrial NADH dehydrogenase with arylazidoamorphigenin, an analogue of rotenone. (1984) Biochem. J., 224, 525−534.
  61. Enander, K., and Rydstrom, Y. Energy-linked nicotinamide nucleotide transhydrogenase. Kinetics and regulation of purified and reconstituted transhydrogenase from beef heart mitochondria. (1982) J. Biol. Chem., 257, 1 476 014 766.
  62. Ernster, L., Dallner, G., and Azzone, G.F. Differential effects of rotenone and amytal on mitochondrial electron and energy transfer. (1963) J. Biol Chem., 238, 1124−1131.
  63. Fearnley, I.M., and Walker, J.E. Initiation codons in mammalian mitochondria: differences in genetic code in the organelle. (1987) Biochemistry, 26, 8247−8251.
  64. Fearnley, I.M. and Walker, J.E. Review. Conservation of sequences of subunits of mitochondrial complex I and their relationships with other proteins. (1992) Bioch. Biophys. Acta, 1140, 105−134.
  65. Finel, M. The proton-translocating NADH: ubiquinone oxidoreductase: a discussion of selected topics. (Minireview). (1993) J. Bioenerg. Biomembr., 25, 357 366.
  66. Finel, M. Organization and evolution of structural elements within complex I. (1998) Biochim. Biophys. Acta, 1364, 112−121.
  67. Frenkin, M.V., and Kotlyar, A.B. Arylazido-|3-alanine ADP-ribose, a novel irreversible competitive inhibitor of mitochondrial NADH-ubiquinone reductase. (1999)Biochim. Biophys. Acta, 1413, 139−146.
  68. Friedrich, T., Strohdeicher, M., Hofhaus, G., Preis, D., Sahm, H., and Weiss, H. The same domain motif for ubiquinone reduction in mitochondrial or chloroplast NADH dehydrogenase. (1990) FEBSLett., 265, 37−40.
  69. Friedrich, T. The NADH: ubiquinone oxidoreductase (Complex I) from Escherichia coli. (1998)Biochim. Biophys. Acta, 1364, 134−146.
  70. Fujiki, Y., Hubbard, A.L., Fowler, S., and Lazarow, P.B. Isolation of intracellular membranes by means of sodium carbonate treatment: application to endoplasmic reticulum. (1982)/. Cell. Biol., 93, 97−102.
  71. Fukushima, T., Decker, R.Y., Anderson, W.M., and Spivey, H.O. Substrate channeling of NADH and binding of dehydrogenases to Complex I. (1989) J. Biol. Chem., 264, 16 483−16 488.
  72. Galante, Y.M., and Hatefi, Y. Purification and molcular and enzymic properties of mitochondrial NADH dehydrogenase. (1979) Arch. Biochem. Biophys., 192, 559 568.
  73. Galante, Y., and Hatefi, Y. Resolution of complex I and isolation of NADH dehydrogenase and an iron-sulfur protein. (1978) Meth. Enzymol., 53, 15−21.
  74. Galante, Y.M., Lee, Y., and Hatefi, Y. Effect of pH on the mitochondrial energy-linked and non-energy-linked transhydrogenase reactions. (1980) J. Biol. Chem., 255, 9641−9646.
  75. Galkin, A.S., Grivennicova, V.G., and Vinogradov, A.D. →H+/2e stoichiometry in NADH-quinone reductase reactions catalyzed by bovine heart submitochondrial perticles. (1999) FEBS Lett., 451, 157−161.
  76. Garrett, N.E., and Penefsky, H.S. Interaction of adenine nucleotides with multiple binding sites on beef heart mitochondrial adenosine triphosphatase. (1975) J. Biol. Chem., 250, 6640−6647.
  77. Gavricova, E.V., Grivennicova, V.G., Sled, V.D., Ohnishi, Т., and Vinogradov, A.D. Kinetics of the mitochondrial three subunit NADH dehydrogenase interaction with hexamineruthenium (III). (1995) Biochim. Biophys. Acta, 1230, 23−30.
  78. Gavricova, E.V., and Vinogradov, A.D. Active/de-active state transition of the mitochondrial complex I as revealed by specific sulfhydryl group labeling. (1999) FEBSLett, 455, 36−40.
  79. Glinn, M.A., Lee, C.P., and Ernster, L. Pro- and anti-oxidant activities of the mitochondrial respiratory chain: factors influencing NAD (P)H-induced lipid peroxidation. (1997) Biochim. Biophys. Acta, 1318, 246−254.
  80. Grivennikova, V.G., Gavrikova, E.V., and Vinogradov, A.D. An increase of the energy coupling capacity of submitochondrial particles by lanthanides. (1994) FEBS Lett., 347, 243−246.
  81. Grivennicova, V.G., Maklashina, E.O., Gavricova, E.V., and Vinogradov, A.D. Interaction of the mitochondrial NADH-ubiquinone reductase with rotenone as related to the enzyme active/inactive transition. (1997) Biochim. Biophys. Acta, 1319,223−232.
  82. Gutman, M. Effects of Triton X-100 on mitochondrial NADH dehydrogenase.1970) Physiol. Chem. Phys., 2, 9−14.
  83. Gutman, M. Electron flux through the mitochondrial ubiquinone. (1980) Biochim. Biophys. Acta, 594, 53−84.
  84. Gutman, M., Coles, C.J., Singer, T.P., and Casida, J.E. On the functional organization of the respiratory chain at the dehydrogenase-coenzyme Q junction.1971) Biochemistry, 10, 2036−2043.
  85. Gutman, M., and Singer, T.P. Studies on the respiratiory chain-linked reduced nicotinamide adenine dinucleotide dehydrogenase. XVII. Reaction sites of piericidin A and rotenone. (1970) J. Biol. Chem., 245, 1992−1997.
  86. Han, A-L., Yagi, T., and Hatefi, Y. Studies on the structure of NADHrubiquinone oxidoreductase complex: topography of the subunits of the iron-sulfur protein component. (1989) Arch. Biochem. Biophys., 275, 166−173.
  87. Hanson, R.L. The kinetic mechanism of pyridine nucleotide transhydrogenase from Escherichia coli. (1979) J. Biol. Chem., 254, 888−893.
  88. Hanstein, W.G. Uncoupling of oxidative phosphorilation. (1976) Biochim. Biophys. Acta, 456, 129−148.
  89. Hatefi, Y. Preparation and properties of NADH: ubiquinone oxidoreductase (complex I). (1978) Meth. Enzymol., 53, 3−14.
  90. Hatefi, Y., and Bearden, A.J. Electron paramagnetic resonance studies on the reduction of the components of complex I and transhydrogenase inhibited complex I by NADH andNADPH. (1976) Biochem. Biophys. Res. Commun., 69, 1032−1038,.
  91. Hatefi, Y., and Galante, Y.M. Dehydrogenase and transhydrogenase properties of the soluble NADH dehydrogenase of bovine heart mitochondria. (1977) Proc. Natl. Acad. Sci. USA, 74, 846−850.
  92. Hatefi, Y., Haavik, A.G., and Griffiths, D.E. Studies on the electron transfer system. XL. Preparation and properties of mitochondrial DPNH-coenzyme Q reductase. (1962) J. Biol. Chem., 237, 1676−1680.
  93. Hatefi, Y., and Hanstein, W.G. Interactions of reduced and oxidized triphosphopyridine nucleotides with the electron-transport system of bovine heart mitochondria. (1973) Biochemistry, 12, 3515−3522.
  94. Hatefi, Y., Phelps, D.C., and Galante, Y.M. Energy-linked transhydrogenation fromNADPH to 14C.NADP. (1980) J. Biol. Chem., 255, 9526−9529.
  95. Hatefi, Y., and Rieske, J.S. Preparation and properties of DPNH-coenzyme Q reductase (Complex I of the respiratory chain). (1967) Meth. Enzymol., 10, 235−239.
  96. Hatefi, Y., and Stempel, K.E. Isolation and enzymatic properties of the mitochondrial reduced diphosphopyridine nucleotide dehydrogenase. (1969) J. Biol. Chem., 244, 2350−2357.
  97. Hatefi, Y., Stempel, K.E., and Hanstein, W.G. Inhibitors and activators of mitochondrial reduced diphosphopyridine nucleotide dehydrogenase. (1969) J. Biol. Chem., 244, 2358−2365.
  98. Hatefi, Y., and Yamaguchi, M. Nicotinamide nucleotide transhydrogenase: a model for utilization of substrate binding energy for proton translocation. (1996) FASEBJ., 10, 444−452.
  99. Heinrich, H., Azevedo, J.E., and Werner, S. Characterization of the 9.5-kDa ubiquinone-binding protein of NADH: ubiquinone oxidoreductase (Complex I) from Neurospora crassa. (1992) Biochemistry, 31, 11 420−11 424.
  100. Heinrich, H., and Werner, S. Identification of the ubiquinone-binding site of the NADH: ubiquinone oxidoreductase (Complex I) from Neurospora crassa. (1992) Biochemistry, 31, 11 413−11 419.
  101. Helfenbaum, L., Ngo, A., Ghelli, A., Linnane, A.W., and Degli Esposti, M.D. Proton pumping of mitochondrial Complex I: differential activation by analogs of ubiquinone. (1997) J. Bioenerg. Biomembr., 29, 71−80.
  102. Heron, C., Corina, D., and Ragan, C.I. The phospholipid annulus of mitochondrial NADH-ubiquinone reductase. A dual phospholipid requirement for enzyme activity. (1977) FEBSLett., 79, 399−403.
  103. Heron, C., Ragan, C.I., and Trumpower, B.L. The interaction between mitochondrial NADH-ubiquinone oxidoreductase and ubiquinol-cytochrome c oxidoreductase. Restoration of ubiquinone-pool behaviour. (1978) Biochem. J., 174, 791−800.
  104. Heron, C., Smith, S., and Ragan, C.I. An analysis of the polypfptide composition of bovine heart mitochondrial NADH-ubiquinone oxidoreductase by two-dimensional polyacrylamide-gel electrophoresis. (1979) Biochem. J., 181, 435 443.
  105. Herter, S.M., Kortluke, C.M., and Drews, G. Complex I of Rhodobacter capsulatus and its role in reverted electron transport. (1998) Arch. Microbiol., 169, 98−105.
  106. Hoek, J.B., and Rydstrom, Y. Review article. Physyological roles of nicotinamide nucleotide transhydrogenase. (1988) Biochem. J., 254, 1−10.
  107. Hollingworth, R.M., Ahammadsahil, K.I., Gadelhak, G., and McLaughlin, J.L. New inhibitors of Complex I of the mitochondrial electron transport chain with activity as pesticides. (1994) Biochem. Soc. Trans., 22, 230−233.
  108. Hommes, F.A. The succinate-linked nicotinamide-adenine dinucleotide reduction in submitochondrial particles. I. Kinetic studies of the reaction. (1963) Biochim. Biophys. Acta, 77, 173−182.
  109. Hommes, F.A. The succinate-linked nicotinamide-adenine dinucleotide reduction in submitochondrial particles. II. Studies with inhibitors. (1963) Biochim. Biophys. Acta, 77, 183−190.
  110. Homyk, M., and Bragg, P.D. Steady-state kinetics and the inactivation by 2,3-butanedione of the Esherichia coli cell membranes. (1979) Biochim. Biophys. Acta, 571, 201−217.
  111. Horgan, D.J., Ohno, H., and Singer, T.P. Studies on the respiratory chain-linked reduced nicotinamide adenine dinucleotide dehydrogenase. XV. Interaction of piericidin with the mitochondrial respiratory chain. (1968) J. Biol. Chem., 243, 5967−5976.
  112. Horgan, D.J., and Singer, T.P. Studies on the respiratory chain-linked reduced nicotinamide adenine dinucleotide dehydrigenase. XIII. Binding sites of rotenone, piericidin A, and amytal in the respiratory chain. (1968) J. Biol. Chem., 243, 834 843.
  113. Ingledew, W.J., and Ohnishi, T. An analysis of some thermodynamic properties of iron-sulfur centres in site I of mitochondria. (1980) Biochem. J., 186, 111−117.
  114. Jewess, P.J. Insecticides and acaricides which act at the rotenone-binding site of mitochondrial NADH: ubiquinone oxidoreductase- competitive displacement studiesysmg a 3H-labelled rotenone analogue. (1994) Biochem. Soc. Trans., 22, 247−251.
  115. Kang, D., Narabayashi, H., Sata, T., and Takeshige, K. Kinetics of superoxide formation by respiratory chain NADH-dehydrogenase of bovine heart mitochondria. (1983)7. Biochem., 94, 1301−1306.
  116. Kaniuga, Z. The transformation of mitochondrial NADH dehydrogenase into NADH: cytochrome c oxidoreductase. (1963) Biochim. Biophys. Acta, 73, 550−564.
  117. Kaniuga, Z., and Gardas, A. Isolation of high-molecular-weight NADH dehydrogenase of the respiratory chain by diethyl ether triton X-100 treatment. (1967) Biochim. Biophys. Acta, 143, 647−649.
  118. Kaplan, N.O. The pyridine coenzymes. (1960) The enzymes 3 (2 ed.), 105−171.
  119. Kaplan, N.O. Beef heart TPNH-DPN pyridine nucleotide transhydrogenases. (1967) Meth. Enzymol., 10, 317−322.
  120. Kaplan, N.O., Ciotti, M.M., and Stolzenbach, F.E. Reaction of pyridine nucleotide analogues with dehydrogenases. (1956) J. Biol. Chem., 221, 833−844.
  121. Kaplan, N.O., and Stolzenbach, F.E. Preparation of DPN derivaties and analogs. (1957) Meth Enzymol., 3, 899−905.
  122. Kaufman, B., and Kaplan, N.O. Pyridine nucleotide transhydrogenase. Properties of the transhydrogenase reactions of an enzyme complex isolated from beef heart mitochondria. (1961)7 Biol. Chem., 236, 2133−2139.
  123. Kean, E.A. Rhein: an inhibitor of mitochondrial oxidations. (1968) Arch. Biochem. Biophys., 127, 528−533.
  124. Kean, E.A., Gutman, M., and Singer, T.P. Rhein, a selective inhibitor of the DPNH-flavin step in mitochondrial electron transport. (1970) Biochem. Biophys. Res. Commun., 40, 1507−1513.
  125. Kean, E.A., Gutman, M., and Singer, T.P. Stadies on the respiratory chain-linked nicotinamide adenine dinucleotide dehydrogenase. XXII. Rhein, a competitive inhibitor of the dehydrogenase. (1971) J. Biol. Chem., 246, 2346−2353.
  126. Т. (1990) Основы ферментативной кинетики, изд-во «Мир», Москва, 286−295.
  127. Kiehl, R.D., and Hanstein, W.G. ATP-dependent spectral response of oxonol VI in an ATP-Pj exchange complex. (1984) Biochim. Biophys. Acta, 766, 375−383.
  128. King, Т.Е. and Howard, R.L. Preparation and properties of soluble NADH dehydrogenase from cardiac muscle. (1967) Meth. Enzymol., 10, 275−294.
  129. King, Т.Е., Howard, R.L., Wilson, D.F., and Li, J.C.R. The partition of flavins in the heart muscle preparation and heart mitochondria. (1962) J. Biol. Chem., 237, 2941−2946.
  130. Kotlyar, A.B. Complex I activation during NADH oxidation and A|iH+~ dependent NAD+ reduction by succinate. (1990) Biokhimia, 55, 195−200.
  131. Kotlyar, A.B., Albracht, S.P.J., and van Spanning, R.J.M. Comparison of energization of Complex I in membrane particles from Paracoccus denitrificans and bovine heart mitochondria. (1998) Biochim. Biophys. Acta, 1365, 53−59.
  132. Kotlyar, A.B., and Gutman, M. The effect of Ар, н+ on the interaction ofrotenone with Complex I of submitochondrial particles. (1992) Biochim. Biophys. Acta, 1140, 169−174.
  133. Kotlyar, A.B., Sled, V.D., Burbaev, D.Sh., Moroz, I.A., and Vinogradov, A.D. Coupling site I and the rotenone-sensitive ubisemiquinone in tightly coupled submitochondrial particles. (1990) FEBSLett., 264, 17−20.
  134. Kotlyar, A.B., Sled, V.D., and Vinogradov, A.D. Effect of Ca2+ ions on the slow active/inactive transition of the mitochondrial NADH-ubiquinone reductase. (1992) Biochim. Biophys. Acta, 1098, 144−150.
  135. Kotlyar, A.B., and Vinogradov, A.D. The hysteretic behavior of Complex I during the ApH+ dependent NAD+ reduction by succinate. (1989) Biokhimia, 54, 916.
  136. Kotlyar, A.B., and Vinogradov, A.D. Slow active/inactive transition of the mitochondrial NADH-ubiquinone reductase. (1990) Biochim. Biophys. Acta, 1019, 151−158.
  137. Kowal A.T., Morningstar J.E., and Johnson M.K. Spectroscopic characterization of the number and type of iron-sulfur clusters in NADH: ubiquinone oxidoreductase. (1986) J. Biol. Chem., 261, 9239−9245.
  138. Krishnamoorthy, G., and Hinkle, P.C. Studies on the electron transfer pathway, topography of iron-sulfur clasters, and site of coupling in NADH-Q oxidoreductase.1988) J. Biol. Chem., 263, 17 566−17 575.
  139. Lawford, H.G., and Garland, P.B. Proton translocation coupled to quinone reduction by reduced nicotinamide-adenine dinucleotide in rat liver and ox heart mitochondria. (1972) Biochem. J., 130,1029−1044.
  140. Lee, C.P. Mitochondrial NAD (P)H-oxidizing enzymes. (1987) Chemica Scripta, 21 A, 21−26.
  141. Lee, C.P., and Ernster, L. Energy-linked nicotinamide nucleotide transhydrogenase 1963−1988: a commentary by Chuan-Pu Lee and Lars Ernster.1989) Biochim. Biophys. Acta, 1000, 371−376.
  142. Lenaz, G. Quinone specificity of Complex I. (1998) Biochim. Biophys. Acta, 1364, 207−221.
  143. Lindahl, P.E., and Oberg, K.E. The effect of rotenone on respiration and its point of attack. (1961) Experimental Cell Research, 23, 228−237.
  144. Mackler, B. Studies of DPNH oxidase: properties of a soluble DPNH dehydrogenase. (1961) Biochim. Biophys. Acta, 50, 141−146.
  145. Mahler, H.R., Sarkar, N.K., Vernon, L.P., and Alberty, R.A. Studies on diphosphopyridine nucleotide cytochrome с reductase. II. Purification and properties. (1952) J. Biol. Chem., 199, 585−597.
  146. Majander, A., Finel, M., and Wikstrom, M. Diphenyleneiodonium inhibits reduction of iron-sulfur clusters in the mitochondrial NADH-ubiquinone oxidoreductase (complex I). (1994)J. Biol Chem., 269, 21 037−21 042.
  147. Maklashina, E.O., and Vinogradov, A.D. Participation of quinone in the activation of Complex I. (1994) Biokhimia, 59, 1221−1226.
  148. , С.Э., Кулаев, И.С., Холоденко, В.П., Поляков, В.Ю., и Чистяков, В. В. Кислоторастворимые нуклеотиды митохондрий сердца быка. (1969) Биохимия, 34, 800−805.
  149. Mansurova, S.E., and Kulaev, I.S. Acid-soluble nucleotides of beef heart mitochondria. (1969) Biochim. Biophys. Acta, 172, 328−330.
  150. Mansurova, S.E., Drobishev, V.I., and Kulaev, I.S. Nucleotides of beef heart mitochondria and submitochondrial particles. (1972) J. Bioenerg. Biomembr., 3, 499−507.
  151. Matsuno-Yagi, A. and Hatefi, Y. Studies on the mechanism of oxidative phosphorilation. ATP synthesis by submitochondrial particles inhibited at Fo by venturicidin and organotin compounds. (1993) J. Biol Chem., 268, 6168−6173.
  152. Matthews, R.G., Ballou, D.P., and Williams, Ch.H. Reaction of pig heart lipoamide dehydrogenase with pyridine nucleotides. Evidence for an effector role for bound oxidized pyridine nucleotide. (1979) J. Biol. Chem., 254, 4974−4981.
  153. Mayhew, S.G., and Wassink, J.H. Determination of FMN and FAD by fluorescence titration with apoflavodoxin. (1980) Meth. Enzymol., 66, 217−227.
  154. Meijer, E.M., Schuitenmaker, M.G., Boogerd, F.C., Wever, R., and Stouthamer, A.H. Effect induced by rotenone during aerobic growth of Paracoccus denitrificans in continuous culture. (1978) Arch. Microbiol., 119, 119−127.
  155. Meinhardt, S.W., Kula, Th., Yagi, T, Lillich, T, and Ohnishi, T. EPR characterization of the iron-sulfur clusters in the NADH: ubiquinone oxidoreductase segment of the respiratory chain in Pracoccus denitrificans. (1987) J. Biol. Chem., 262,9147−9153.
  156. Minakami, S., Cremona, T., Ringler, R.L., and Singer, T.P. Studies on the respiratory chain-linked redused nicotinamide adenine dinucleotide dehidrogenase. III. Catalytic properties of the enzyme from beef heart. (1963) J. Biol. Chem., 238, 1528−1537.
  157. Minakami, S., Ringler, R.L., and Singer, T.P. Stadies on the respiratory chain-linked dihydrodiphosphopyridine nucleotide dehydrogenase. I. Assay of the enzyme in particulate and in soluble preparations. (1962) J. Biol. Chem., 237, 569−576.
  158. Minakami, S., Schindler, F.J., and Estabrook, R.W. Hydrogen transfer between reduced diphosphopyridine nucleotide dehydrogenase and the respiratory chain. I. Effect of sulfhydryl inhibitors and phospholipase. (1964) J. Biol. Chem., 239, 20 422 048.
  159. Mitchell, P. Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. (1961) Nature, 191, 144−148.
  160. Mitchell, P. Chemiosmotic coupling in oxidative and photosynthetic phosphorylation. (1966) Biol. Rev., 41,445−502.
  161. Ohnishi, T. Thermodynamic and EPR characterization of iron-sulfur centers in the NADH-ubiquinone segment of the mitochondrial respiratory chain in pigeon heart. (1975)Biochim. Biophys. Acta, 387, 475−490.
  162. Ohnishi, T. NADH-quinone oxidoreductase, the most complex complex. (Minireview). (1993) J. Bioenerg. Biomembr., 25, 325−329.
  163. Ohnishi, T. Iron-sulfur clusters / semiquinones in Complex I. (1998) Biochim. Biophys. Acta, 1364, 186−206.
  164. Ohnishi, T., Asakura, T., Yonetani, T., and Chance, B. Electron paramagnetic resonance studies at temperatures below 77°K an iron-sulfur proteins of yeast and bovine heart submitochondrial particles. (1971) J. Biol. Chem., 246, 5960−5964.
  165. Ohnishi, T., and Blum, H. Iron-sulfur N-l clusters studied in NADH-ubiquinone oxidoreductase and in soluble NADH dehydrogenase. (1981) J. Biol. Chem., 256, 9216−9220.
  166. Ohnishi, T., and Leigh, J.S. Low temperature electron paramagnetic resonance studies on iron-sulfur centers in cardiac NADH dehydrogenase. (1974) Biochem. Biophys. Res. Commun., 56, 775−782.
  167. Ohnishi, T., Ragan, C.I., and Hatefi, Y. EPR studies of iron-sulfur clusters in isolated subunits and subfractions of NADH-ubiquinone oxidoreductase. (1985) J. Biol. Chem., 260, 2782−2788.
  168. Pharo, R.L., Sordahl, L.A., Vyas, S.R., and Sanadi, D.R. Studies on dihydronicotinamide adenine dinucleotide ubiquinone reductase. (1966) J. Biol. Chem., 241, 4771−4780.
  169. Phelps, D.C., Galante, Y.M., and Hatefi, Y. Energy-linked mitochondrial transhydrogenation from NADPH to NADP analogs. (1980) J. Biol. Chem., 255, 9647−9652.
  170. Pilkington, S.J., Skehel, J.M., Gennis, B., and Walker, J.E. Relationship between mitochondrial NADH-ubiquinone reductase and a bacterial NAD±reducing hydrogenase. (1991) Biochemistry, 30, 2166−2175.
  171. Pozzan, T., Miconi, V., di Virgilio, F., and Azzone, G.F. H+/site, charge/site, and ATP/site ratios at coupling sites I and II in mitochondrial e" transport. (1979) J. Biol. Chem., 254, 10 200−10 205.
  172. Rafter, G.W., and Colowick, S.P. Enzymatic preparation of DPNH and TPNH. (1957) Meth. Enzymol., 3, 887−899.
  173. Ragan, C.I. The structure and subunit composition of the particulate NADH-ubiquinone reductase of bovine heart mitochondria. (1976) Biochem. J., 154, 295 305.
  174. Ragan, C.I. The effects of proteolytic digestion by trypsin on the structure and catalytic properties of reduced nicotinamide-adenine dinucleotide dehydrogenase from bovine heart mitochondria. (1976) Biochem. J., 156, 367−374.
  175. Ragan, C.I. The interaction of reduced nicotinamide-adenine dinucleotide phosphate with reduced nicotinamide-adenine dinucleotide-ubiquinone reductase from bovine heart mitochondria. (1976)Biochem. J., 158, 149−151.
  176. Ragan, C.I. NADH-ubiquinone oxidoreductase. (1976) Biochim. Biophys. Acta, 456, 249−290.
  177. Ragan, C.I., and Cottingham, I.R. (1985) The kinetics of quinone pools in electron transport. Biochim. Biophys. Acta, 811, 13−31.
  178. Ragan, C.I., and Hinkle, P.C. Ion transport and respiratory control in vesicles formed from reduced nicotinamide adenine dinucleotide coenzyme Q reductase and phospholipids. (1975) J. Biol. Chem., 250, 8472−8476.
  179. Ragan, C.I., Galante, Y.M., and Hatefi, Y. Purification of three iron-sulfur proteins from the iron-protein fragment of mitochondrial NADH-ubiquinone oxidoreductase. (1982) Biochemistry, 21, 2518−2524.
  180. Ragan, C.I., Galante, Y.M., Hatefi, Y., and Ohnishi, T. Resolution of mitochondrial NADH dehydrogenase and isolation of two iron-sulfur proteins. (1982) Biochemistry, 21, 590−594.
  181. Ragan, C.I., Widger, W.R., and King, T.E. Pyridine nucleotide transhydrogenase activiti of soluble cardiac NADH dehydrogenase and particulate NADH-ubiquinone reductase. (1974) Biochem. Biophys. Res. Commun., 60, 894 900.
  182. Rao, N.A., Feiton, S.P., and Huennekens, F.M. Quantitative determination of mitochondrial flavins. (1967) Meth. Enzymol, 10, 494−499.
  183. Rao, N.A., Feiton, S.P., Huennekens, F.M., and Mackler, B. Flavin mononucleotide: the coenzyme of reduced diphosphopyridine nucleotide dehidrogenase. (1963) J. Biol. Chem., 238, 449−455.
  184. Rasmusson, A.G., Heiser, V., Zabaleta, E., Brenniche, A., and Grohmann, L. Physiological, biochemical and molecular aspects of mitochondrial complex I in plants. (1998) Biochim. Biophys. Acta, 1364, 101−111.
  185. Ravanel, P., Tissut, M., and Douce, R. Effects of rotenoids on isolated plant mitochondria. (1984) Plant Physiol., 75, 414−420.
  186. Reichenbach, H., Gerth, K., Irschik, H., Kunze, B., and Hofle, G. Myxobacteria: a source of new antibiotics. (1988) Trends Biotechnol., 6, 115−121.
  187. Reil, E., Hofle, G., Draber, W., and Oettmeier, W. Quinolones and their noxides as inhibitors of mitochondrial complexes I and III. (1997) Biochim. Biophys. Acta, 1318, 291−298.
  188. Ringler, R.L., Minakami, S., and Singer, T.P. Studies on the respiratory chain-linked reduced nicotinamide adenine dinucleotide dehydrogenase. II. Isolation and molecular properties of the enzyme from beef heart. (1963) J. Biol Chern., 238, 801 810.
  189. Robinson, B.H. Human complex I deficiency: clinical spectrum and involvement of oxygen free radicals in the pathogenicity of the defect. (1998) Biochim. Biophys. Acta, 1364, 271−286.
  190. Rottenberg, H., and Gutman, M. Control of the rate of reverse electron transport in submitochondrial particles by the free energy. (1977) Biochemistry, 16, 32 203 227.
  191. Runswick, M.J., Fearnley, I.M., Skehel, J.M., and Walker, J.E. Presence of an acyl carrier protein in NADH: ubiquinone oxidoreductase from bovine heart mitochondria. (1991) FEBS Lett., 286,121−124.
  192. Runswick, M.J., Gennis, R.B., Fearnley, I.M., and Walker, J.E. Mitochondrial NADH: ubiquinone reductase: complementary DNA sequence of the import precursor of the bovine 75-kDa subunit. (1989) Biochemistry, 28, 9452−9459.
  193. Ruzicka, F.J., and Crane, F.L. Quinone interaction with the respiratory chain-linked NADH dehydrogenase of beef heart mitochondria. II. Duroquinone reductase activity. (1971) Biochim. Biophys. Acta, 226, 221−233.
  194. Rydstrom, Y. Energy-linked nicotinamide nucleotide transhydrogenases. (1977) Biochim. Biophys. Acta, 463, 155−184.
  195. Rydstrom, Y., Montelius, J., Backstrom, D., and Ernster, L. The mechanism of oxidation of reduced nicotinamide dinucleotide phosphate by submitochondrial particles from beef heart. (1978) Biochim. Biophys. Acta, 501, 370−380.
  196. Rydstrom, Y., Teixeira, da Cruz A., and Ernster, L. Steady-state kinetics of mitochondrial nicotinamide nucleotide transhydrogenase. 2. The energy-linked reaction. (1971) Eur. J. Biochem., 23, 212−219.
  197. Salerno, J.C., Blum, H., and Ohnishi, T. The orientation of iron-sulfur clusters and a spin-coupled ubiquinone pair in the mitochondrial membrane. (1979) Biochim. Biophys. Acta, 547, 270−281.
  198. Satoh, T., Miyoshi, H., Sakamoto, K., and Iwamura, H. Comparison of the inhibitory action of syntetic capsaicin analogues with various NADH-ubiquinone oxidoreductases. (1996) Biochim. Biophys. Acta, 1273, 21−30.
  199. Sazanov, L.A., and Jackson, J.B. Cyclic reactions catalysed by detergent -dispersed and reconstituted transhydrogenase from beef-heart mitochondria- implications for the mechanism of proton translocation. (1995) Biochim. Biophys. Acta, 1231,304−312.
  200. Schapira, A.H.V. Human complex I defects in neurodegenerative diseases. (1998) Biochim. Biophys. Acta, 1364, 261−270.
  201. Scholes, T.A., and Hinkle, P.C. Energetics of ATP-driven reverse electron transfer from cytochrome c to fumarate and from succinate to NAD in submitochondrial particles. (1984) Biochemistry, 23, 3341−3345.
  202. Schulte, U., Fecke, W., Krull, C., Nehls, U., Schmiede, A., Schneider, R., Ohnishi, T., and Weiss, H. In vivo dissection of the mitochondrial respiratory NADH: ubiquinone oxidoreductase (complex I). (1994) Biochim. Biophys. Acta, 1187, 121−124.
  203. Siegel, L.M. Quantitative determination of noncovalently bound flavins: types and methods of ahalysis. (1978) Meth. Enzymol., 53, 419−429.
  204. Siegel, J.M., Montgomery, G.A., and Bock, R.M. Ultraviolet absorption spectra of DPN and analogues of DPN. (1959) Arch. Biochem. Biophys., 82, 288−299.
  205. Singer, T.P., and Gutman, M. The DPNH dehydrogenase of the mitochondrial respiratory chain. (1971) Adv. Enzymol., 34, 79−153.
  206. Skulachev, V.P. Uncoupling: new approaches to an old problem of bioenergetics. (1998) Biochim. Biophys. Acta, 1363, 100−124.
  207. Sled, V.D., Friedrich, T., Leif, H., Weiss, H., Meinhardt, S.W., Fukumori, Y., Calhoun, M.W., Gennis, R.B., and Ohnishi, T. Bacterial NADH-quinone oxidoreductases: iron-sulfur clusters and related problems. (1993) J. Bioenerg. Biomembr., 25, 347−356.
  208. Sled, V.D., and Vinogradov, A.D. Kinetics of the mitochondrial NADH-ubiquinone oxidoreductase interaction with hexamineruthenium (III). (1992) Biochim. Biophys. Acta, 1141, 262−268.
  209. Sled, V.D., and Vinogradov, A.D. Reductive interaction of the mitochondrial three subunit NADH dehidrogenase. (1993) Biochim. Biophys. Acta, 1143, 199−203.
  210. Sled, V.D., Zinich, V.N., and Kotlyar, A.B. One- and two- electron reduction of ubiquinone homologs by NADH dehydrogenase of mitochondrial respiratory chain. (1989)Biokhimia, 54, 1571−1575.
  211. Smith, J.C., Russ, P., Cooperman, B.S., and Chance, B. Synthesis, structure determination, spectral properties, and energy-linked spectral responses of the extrinsic probe oxonol V in membranes. (1976) Biochemistry, 15, 5094−5105.
  212. Stein, A.M., Kaplan, N.O., and Ciotti, M.M. Pyridine nucleotide transhydrogenase. VII. Determination of the reactions with coenzyme analogues in mammalian tissues. (1959) J. Biol. Chem., 234, 979−986.
  213. Steuber, J., Schmid, C., Rufibach, M., and Dimroth, P. Na+ translocation by Complex I (NADH:quinone oxidoreductase) of Escherichia coli. (2000) Mol. Microbiol., 35, 428−434.
  214. Stilwell, S.N., Bizouarn, T., and Jackson, J.B. The reduction of acetylpyridine adenine dinucleotide by NADH: is it a significant reaction of proton-translocating transhydrogenase, or an artefact? (1997) Biochim. Biophys. Acta, 1320, 83−94.
  215. Sumegi, B., and Srere, P.A. Complex I binds several mitochondrial NADcoupled dehydrogenases. (1984) J. Biol. Chem., 259, 15 040−15 045.
  216. Suzuki, H., and King, T.E. Evidence of an ubisemiquinone radical (s) from the NADH-ubiquinone reductase of the mitochondrial respiratory chain. (1983) J. Biol. Chem., 258, 352−358.
  217. Suzuki, H., and Ozawa, T., An ubiquinone-binding protein in mitochondrial NADH-ubiquinone reductase (complex I). (1986) Biochem. Biophys. Res. Commun., 138, 1237−1242.
  218. Szolcsanyi, J., Joo, F., and Jancso-Gabor, A. Mitochondrial changes in preoptic neurones after capsaicin desensitization of the hypothalamic thermodetectors in rats. (1971) Nature, 229, 116−117.
  219. Takano, S., Yano, T., and Yagi, T. Structural studies of the proton-translocating NADH-quinone oxidoreductase (NDH-1) of Paracoccus denitrificans: identity, property, and stoichiometry of the peripheral subunits. (1996) Biochemistry, 35, 9120−9127.
  220. Takeshige, K., and Minakami, S. NADH- and NADPH-dependent formation of superoxide anions by bovine heart submitochondrial particles and NADH-ubiquinone reductase preparation. (1979) Biochem. J., 180, 129−135.
  221. Teixeira da Cruz, A., Rydstrom, Y., and Ernster, L. Steady-state kinetics of mitochondrial nicotinamide nucleotide transhydrogenase. 1. The nonenergy-linked reaction. (1971) Eur. J. Biochem., 23, 203−211.
  222. Thierbach, G., and Reichenbach, H. Myxothiazol, a new inhibitor of the cytochrome b-c segment of the respiratory chain. (1981) Biochim. Biophys. Acta, 638, 282−289.
  223. Turrens, J.F., and Boveris, A. Generation of superoxide anion by the NADH dehydrogenase of bovine heart mitochondria. (1980) Biochem. J., 191, 421−427.
  224. Tyler, D.D. A protective function of superoxide dismutase during respiratory chain activity. (1975) Biochim. Biophys. Acta, 396, 335−346.
  225. Ushakova, A. V., Grivennikova, V.G., Ohnishi, T., and Vinogradov, A.D. Triton X-100 as a specific inhibitor of the mammalian NADH-ubiquinone oxidoreductase (Complex I). (1999) Biochim. Biophys. Acta, 1409, 143−153.
  226. Vallin, I., and Low, H. Succinate-linked nicotinamide-adenine dinucleotide reduction coupled with the aerobic oxidation of reduced tetramethyl-p-phenylendiamine in submitochondrial particles. (1964) Biochim. Biophys. Acta, 92, 446−457.
  227. Van Belzen, R., and Albracht, S.P.J. The pathway of electron transfer in NADH: Q oxidoreductase. (1989) Biochim. Biophys. Acta, 974, 311−320.
  228. Van Belzen, R., Gaalen, M.C.M., Cuypers, P.A., and Albracht S.P.I. New evidende for the dimeric nature of NADH: Q oxidoreductase inbovine-heart submitochondrial particles. (1990) Biochim. Biophys. Acta, 1017, 152−159.
  229. Van Belzen, R., Jong, A.M.P., and Albracht, S.P.J. On the stoichiometry of the iron sulfur clusters in mitochondrial NADH: ubiquinone oxidoreductase. (1992) Eur. J. Biochem., 209, 1019−1022.
  230. Videira, A. Complex I from the fungus Neurospora crassa. (1998) Biochim. Biophys. Acta, 1364, 89−100.
  231. Vinogradov, A.D. Kinetics, control, and mechanism of ubiquinone reduction by the mammalian respiratory chain-linked NADH-ubiquinone reductase. (1993) J. Bioenerg. Biomembr., 25, 367−375.
  232. Vinogradov, A.D. Catalytic properties of the mitochondrial NADH-ubiquinone oxidoreductase (Complex I) and the pseudo-reversible active/inactive enzyme transition. (1998) Biochim. Biophys. Acta, 1364, 169−185.
  233. Vinogradov, A.D. Mitochondrial ATP synthase: fifteen years later. (1999) Biokhimia, 64, 1443−1456.
  234. Vinogradov, A.D., Sled, V.D., Burbaev, D.Sh., Grivennicova, V.G., Moroz, I.A., and Ohnishi, T. Energy-dependent Complex I-associated ubisemiquinones in submitochondrial particles. (1995) FEBSLett., 370, 83−87.
  235. Walker, J.E. The NADH: ubiquinone oxidoreductase (Complex I) of respiratory chains. (1992) Q. Rev. Biophys., IS, 253−324.
  236. Wan, Y-P., Williams, R.H., and Folkers, K. Low molecular weight analogs of coenzyme Q as hydrogen acceptors and donors in systems of the respiratory chain. {1915) Biochem. Biophys. Res. Commu., 63, 11−15.
  237. Wang, D-C., Meinhardt, S.W., Sackmann, U., Weiss, H., and Ohnishi, T. The iron-sulfur clusters in the two related forms of mitochondrial NADH: ubiquinone oxidoreductase made by Neurospora crassa. (1991) Eur. J. Biochem., 197, 257−264.
  238. Wikstrom, M. Two protons are pumped from the mitochondrial matrix per electron transferred between NADH and ubiquinone. (1984) FEBS Lett., 169, 300 304.
  239. Williamson, J.R., and Corcey, B.E. Assays of intermediates of the citric acid cycle and related compounds by fluorometric enzyme methods. (1969) Meth. EnzymoL, 13, 437−488.
  240. Wu, L.N.Y., Earle, S.R., and Fisher, R.R. Bovine heart mitochondrialtranshydrogenase catalyzes an exchange reaction between NADH and NAD+.(1981) J. Biol. Chem., 256, 7401−7408.
  241. Xu, X-M., and Yagi, T. Identification of the NADH-binding subunit of energy-transducting NADH-quinone oxidoreductase (NDH-1) of Thermus thermophilus HB-8. (1991) Biochem. Biophys. Res. Commun., 174, 667−672.
  242. Yagi, T. Inhibition of NADH-ubiquinone reductase activity by N, N'-dicyclohexylcarbodiimide and correlation of this inhibition with the occurrence of energy-coupling site 1 in various organisms. (1987) Biochemistry, 26, 2822−2828.
  243. Yagi, T. Review. The bacterial energy-transducing NADH-quinone oxidoreuctases. (1993) Biochim. Biophys. Acta, 1141, 1−17.
  244. Yagi, T., and Dinh, T. Identification of the NADH-binding subunit of NADH-ubiquinone oxidoreductase of Paracoccus denitrificans. (1990) Biochemistry, 29, 5515−5520.
  245. Yagi, T., and Hatefl, Y. Identification of the dicyclohexylcarbodiimide-binding subunit of NADH-ubiquinone oxidoreductase (complex I). (1988) J. Biol. Chem., 263, 16 150−16 155.
  246. Yagi, T., Yano, T., Di Bernardo, S., and Matsuno-Yagi, A. Procaryotic complex I (NDH-1), an overview. (1998) Biochim. Biophys. Acta, 1364, 125−133.
  247. Yamaguchi, M., Belogrudov, G.I., Matsuno-Yagi, A., and Hatefi, Y. The multiple nicotinamide nucleotide-binding subunits of bovine heart mitochondrial
  248. NADH:ubiquinone oxidoreductase (Complex I). (2000) Eur. J. Biochem., 267, 329 336.
  249. Yamaguchi, M., and Hatefi, Y. Mitochondrial energy-linked nicotinamide nucleotide transhydrogenase. Membrane topography of the bovine enzyme. (1991) J. Biol. Chem., 266, 5728−5735.
  250. Yamaguchi, M., and Hatefi, Y. Energy-transducing nicotinamide nucleotide transhydrogenase. Nucleotide binding properties of the purified enzyme and proteolytic fragments. (1993) J. Biol. Chem., 268, 17 871−17 877.
  251. Yamaguchi, M., and Hatefi, Y. High cyclic transhydrogenase activity catalyzed by expressed and reconstituted nucleotide-binding domains of Rhodospirillum rubrum transhydrogenase. (1997)Biochim. Biophys. Acta, 1318, 225−234.
  252. Yamaguchi, M., Hatefi, Y., Trach, K., and Hoch, J.A. The primary structure of the mitochondrial energy-linked nicotinamide nucleotide transhydrogenase deduced from the sequence of cDNA clones. (1988) J. Biol. Chem., 263, 2761−2767.
  253. Yamaguchi, M., Wakabayashi, S., and Hatefi, Y. Mitochondrial energy-linked nicotinamide nucleotide transhydrogenase: effect of substrates on the sensitivity of tryptic cleavage sites. (1990) Biochemistry, 29, 4136−4143.
  254. Yano, T., Sled, V.D., Ohnishi, T., and Yagi, T. Expression of the 25-kilodalton iron-sulfur subunit of the energy-transducing NADH-ubiquinone oxidoreductase of Paracoccus denitrificans. (1994) Biochemistry, 33, 494−499.
  255. Yano, T., and Yagi, T. Expression and characterization of the 66-kilodalton (NQ03) iron-sulfur subunit of the proton-trnslocating NADH-quinone
Заполнить форму текущей работой