Зондовая микроскопия углеродных материалов
Диссертация
Зондовая микроскопия широко применяется для исследования углеродных материалов с зр2-гибридизацией: графита, графена, углеродных нанотрубок, композиционных материалов с углеродными наночастицами. Перечисленные материалы имеют важное значение для науки и техники. Химическая инертность углеродного слоя позволяет проводить исследования при наличии атмосферы и при этом получать изображения… Читать ещё >
Список литературы
- Раков Э.Г. Химия и применение углеродных нанотрубок // Успехи химии. — 2001. -Том 70,№ 10.-С. 934−973.
- Moniruzzaman М., Winey K.I. Polymer Nanocomposites Containing Carbon Nanotubes // Macromolecules. 2006. — Vol. 39. — P. 5194−5205.
- Chen Z., Lin Y-M., Rooks M.J., Avouris P. Graphene nano-ribbon electronics // Physica E. 2007. -Vol. 40. — P. 228−232.
- Schedin F., Geim A.K., Morozov S.V. et al. Detection of individual gas moleculesadsorbed on graphene // Nat. Mater. 2007. — Vol. 6. — P. 652−655.
- Елецкий А.В. Перспективы применения углеродных нанотрубок // Российские нанотехнологии. 2007. — Том 2. — С. 6−17.
- Park S., Quate C.F. Tunneling microscopy of graphite in air // Appl. Phys. Lett. 1986. -Vol. 48.-P. 112−114.
- Миронов В. Основы сканирующей зондовой микроскопии. Москва: Техносфера, 2004. — 144 с.
- Binnig G., Rohrer Н. Surface imaging by scanning tunneling microscopy // Ultramicroscopy. 1983. — Vol. 11. — P. 157−160.
- Бинниг Г., Popep Г. Сканирующая туннельная микроскопия от рождения к юности // Успехи физических наук. — 1988. — Том 154, № 2. — С. 261−278.
- Baselt D., Clark S., Youngquist M., Spence С., Baldeschwieler J. Digital signal processor control of scanned probe microscopes // Rev. Sci. Instrum. — 1993.-Vol. 64, N. 7—P. 1874−1881.
- Simons J.G. Electric tunnel effect between dissimilar electrodes separated by a thin insulating film H J. Appl Phys. 1963.-Vol. 34.-P. 2581−2590.
- Sorensen A.H., Hvid U., Mortensen M.W., Morch K.A. Preparation of platinum/iridium scanning probe microscopy tips // Rev. Sci. Instrum. — 1999. — Vol. 70. P. 3059−3067.
- Kar A.K., Gangopadhyay S., Mathur B.K. A reverse electrochemical floating-layer technique of SPM tip preparation // Meas. Sci. Technol. 2000. — Vol. 11. — P. 1426−1431.
- Binnig G., Quate C.F., Gerber Ch. Atomic force microscopy // Phys. Rev. B. 1986. -Vol. 56, No. 9.-P. 930−933.
- Albrecht T.R., Akamine S., Carver Т.Е., Quate C.F. Microfabrication of cantilever styli for the atomic force microscope // J. Vac. Sci. Technol. A. 1990. — Vol. 8, No. 4. — P. 33 863 396.
- Sader J.E., Chon J.W.M., Mulvaney P. Calibration of rectangular atomic force microscope cantilevers // Rev. Sci. Instrum. 1999. — Vol. 70, No. 10. — P. 3967−3969.
- Martin Y., Williams C.C., Wickramasinghe H.K. Atomic force microscope force mapping and profiling on a sub 100-A scale II J. Appl. Phys. — 1987. — Vol. 61. — P. 4723−4729.
- Albrecht T.R., Grutter P., Ноше H.K., Rugar D. Frequency modulation detection using high-Q cantilevers for enhanced force microscope sensitivity // J. Appl. Phys. — 1991. — Vol. 69. P. 668−673.
- Martin Y., Abraham D.W., Wickramasinghe H.K. High-resolution capacitance measurement and potentiometry by force microscopy // Appl. Phys. Lett. 1998. — Vol. 52, No. 13.-P. 1103−1105
- Morita S., Ishizaka Т., Sugavara Y., Okada Т., Mishima S., Imai S., Mikoshiba N., Surface conductance of metal surfaces in air studied with a force microscope // Jpn. J. Appl. Phys. 1989. — Vol. 28, No. 9. — P. L1634-L1636.
- Wolf P.D., Clarysse Т., Vandervorst W. Quantification of nanospreading resistance profiling data II J. Vac. Sci. Technol. B. 1998. — Vol. 16, No. 1, P. 320−326.
- Филонов A.C., Яминский И. В. Руководство пользователя пакета программного обеспечения для управления сканирующим зондовым микроскопом и обработки изображений «ФемтоСкан Онлайн». М: Центр перспективных технологий, 2007.
- Jorgensen J.F. SPIP Online Manual // http://www.imagemet.com/WebHelp/spip.htm24 www.nanotec.es25 www.qwyddion.net
- Villarrubia J.S. Algorithms for Scanned Probe Microscope, Image Simulation, Surface Reconstruction and Tip Estimation II J. Nat. Inst. Stand, and Technol. 1997. — Vol. 102. -P. 435 454.
- Арутюнов П. А., Толстихина А. Л., Демидов В. Н. Система параметров для анализа шероховатости и микрорельефа поверхности материалов в сканирующей зондовой микроскопии. // Заводская лаборатория. Диагностика материалов. 1998. — Т. 9, № 65. -С. 27−37.
- Collins G.W., Letts S.A., Fearon Е.М., McEachem R.L., et al. Surface roughness scaling of plasma polymer films // Phys. Rev. Lett. 1994. — Vol. 73, No. 5. — P. 708−711.
- Krim J., Palasantzas G. Experimental observation of self-affine scaling and kinetic roughening at submicron length scales // Int. J. Modern Physics B. 1995. — Vol. 9, No. 6. — P. 599 — 632.
- Mummery L. Surface texture analysis. The handbook // Hommelwerke GmbH, 1990. -166 p.
- Эмсли Дж. Элементы. М.:Мир, 1993. — 255с.
- Moore A.W. Highly oriented pyrolytic graphite and its intercalation compounds // Chem. Phys. Carbon. 1973.-Vol. 11.-P. 11.
- Уббелоде A.P., Льюис Ф. А. Графит и его кристаллические соединения. Москва:1. Мир, 1965. -256 с.
- Фиалков А.С. Углеграфитовые материалы. М.: Энергия, 1979. — 320 с.
- Chung D.D.L. Review graphite // J. Mater. Set 2002. — Vol. 37. — P. 1475−1489.
- Telling, R. H. and Heggie, M. I. Radiation defects in graphite // Philosophical Magazine. 2007. — Vol. 87, No. 31. — P. 4797 — 4846.
- Urita K., Suenaga K., Sugai Т., Shinohara H., Iijima S. In Situ Observation of Thermal Relaxation of Interstitial-Vacancy Pair Defects in a Graphite Gap // Phys. Rev. Letters.-2005. -Vol. 94. P. 155 502: 1−4.
- Rakovan J., Jaszczak J.A. Multiple length scale growth spirals on metamorphic graphite {001}surfaces studied by atomic force microscopy // American Mineralogist. 2002. — Vol. 87, No. l.-P. 17−24.
- Химические и физические свойства углерода. Ред. Уокер Ф. Москва: Мир, 1969. -С. 10−77.
- Амелинкс С.А. Методы прямого наблюдения дислокаций. Москва: Мир, 1968. -440 с.
- Pierson Н.Е. Handbook of carbon, graphite, diamond and fullerenes. Noyes publications, Park Ridge, New Jersey, USA, 1993. — 399 p.
- Blanchard A. Appendix 2: The Thermal Oxidation of Graphite, Irradiation Damage in Graphite Due to Fast Neutrons in Fission and Fusion Systems // IAEA Report, IAEA-TECDOC-1154, Vienna. -2000.
- He H, Klinowski J, Forster M, Lerf A. A new structural model for graphite oxide // Chem. Phys. Lett. 1998. — Vol. 287, No. 1,2. — P.53−56.
- Novoselov K. S., Jiang D., Schedin F., Booth T. J., Khotkevich V. V, Morozov S. V., Geim A. K. Two-dimensional atomic crystals // PNAS. 2005. — Vol. 102, No. 30. — P. 1 045 110 453.
- Avouris P., Chen Z., Perebeinos V. Carbon-based electronics // Nature nanotechnol. — 2007. Vol. 2. — P. 605−615.
- Lu X., Yu M., Huang H., Ruoff R.S. Tailoring graphite with the goal of achieving single sheets // Nanotechnology. 1999. — Vol. 10. — P. 269−272.
- Ohta Т., Gabaly F.E., Bosteick A., McChesney J.L., Emtsev K.V., Schmid A.K., Seyller Т., Horn K., Rotenberg E. Morphology of graphene thin film growth on SiC (0001) // New Journal of Physics. 2008. — Vol. 10. — P. 23 034, 1−7.
- Li X., Zhang G., Bai X., Sun X., Wang X., Wang E., Dai H. Highly conducting graphene sheets and Langmuir-Blodgett films IINature nanotechnology. 2008. — Vol. 3. — P. 538−542.
- Obraztsov A.N. Chemical vapour deposition: Making graphene on a large scale // Nature Nanotechnology. 2009. — Vol. 4. — P. 212 — 213.
- Areshkin D.A., White C.T. Building Blocks for Integrated Graphene Circuits // Nanoletters. 2007. — Vol. 7, No. 11. — P. 3253−3259.
- Iijima S. Helical microtubules of graphitic carbon // Nature. 1991. — Vol. 354. — P. 56 — 58.
- Iijima S., Ichihashi T. Single-shell carbon nanotubes of 1-nm diameter // Nature. 1993. -Vol. 363.-P. 603 -605.
- Харрис П. Мир материалов и технологий. Углеродные нанотрубы и родственные структуры. М.: Техносфера, 2003. — 336 с.
- Дьячков П.Н. Углеродные нанотрубки. Строение, свойства, применения. М.: Бином, 2006. 293 с.
- Carbon nanotubes. Ed. By Dresselhaus M.S., Dresselhaus G., Avouris Ph. Berlin: Springer, 2000. — 453 p.
- Hahn J.R., Kangm H., Song S., Jeon I.C. Observation of charge enhancement induced by graphite atomic vacancy: A comparative STM and AFM study // Phys. Rev. B. 1996. — Vol. 53. -P. R1725 -R1728.
- Hembacher S., Giessibl F.J., Mannhart J., Quate C. R Local Spectroscopy and Atomic Imaging of Tunneling Current, Forces, and Dissipation on Graphite // Phys. Rev. Lett. 2005. Vol. 94.-P. 56 101, 1−5.
- Binning G., Fuchs H., Gerber C., Rohrer H., Stoll E., Tossatti E. Energy-Dependent State-Density Corrugation of a Graphite Surface as Seen by Scanning Tunneling Microscopy // Europhys. Lett.-1986. Vol. 1, No. 1. — P. 31−36.
- Schneir J., Sonnenfeld R., Hansma P.K., Tersoff J. Tunneling microscopy study of thegraphite surface in air and water // Phys. Rev. B. 1986, Vol. 34. — P. 4979−4984.
- Paredes J.I., Martinez-Alonso A., Tascon J.M.D. Triangular versus honeycomb structure in atomic-resolution STM images of graphite // Carbon. 2001. — Vol. 39, Is. 3. — P.476−479.
- Tomanek D., Louie S.G. First-principles calculation of highly asymmetric structure in scanning-tunneling-microscopy images of graphite II Phys. Rev. B. 1998. — Vol. 37. — P. 83 278 336.
- Sonnenfeld R., Hansma P.K. Atomic-Resolution Microscopy in Water // Science. 1986. -Vol. 232, No. 4747. — P. 211−213.
- Scanning Tunneling Microscopy and related methods. (Ed. Behm R.J., Rohrer H., Garcia N.). Dordrecht: Kluwer Academic Publishers, 1990 — 540 p.
- Scanning Tunneling Microscopy I. (Ed. Guntherodt H.-J., Wiesendanger R.). Springer Series in Surface Sciences. Berlin: Springer-Verlag, 1992. — 280 p.
- Wiesendanger R. Scanning Probe Microscopy and Spectroscopy. Methods and Applications. Cambridge: Cambridge University Press, 1994. — 637 p.
- Magonov S.N., Whangbo N.-H. Surface Analysis with STM and AFM. Weinheim: VCH, 1996.-323 p.
- Atamny F., Spillecke O., Schlogl R. On the STM imaging contrast of graphite: towards a «true» atomic resolution // Phys. Chem. Chem. Phys.- 1999. Vol. 1. P. 4113−4118.
- Kelty S.P., Lieber C.M. Atomic-resolution scanning-tunneling-microscopy investigations of alkali-metal-graphite intercalation compounds // Phys. Rev. B. -1989. Vol. 40. — P. 58 565 859.
- Mamin H.J., Ganz E., Abraham D.W., Thomson R. E., Clarke J. Contamination-mediated deformation of graphite by the scanning tunneling microscope // Phys. Rev. B. -1986. -Vol. 34.-P. 9015−9018.
- TersofF J. Anomalous Corrugations in Scanning Tunneling Microscopy: Imaging of Individual States // Phys. Rev. Lett. 1986. Vol. 57. — P. 440−443.
- Tang S.L., Bokor S.L., Storz R.H. Direct force measurement in scanning tunneling microscopy II Appl. Phys. Lett. -1988, Vol. 52, No. 3. P. 188−190 (1988)
- Tekman E., Ciraci S. Atomic theory of scanning tunneling microscopy // Phys. Rev. B. -1989. Vol. 40. — P. 10 286−10 293.
- Selloni A., Carnevali P., Tosatti E., Chen C.D. Voltage-dependent scanning-tunneling microscopy of a crystal surface: Graphite II Phys. Rev. B. 1985. Vol. 31. — P. 2602−2605.
- Moriarty P., Hughes G. Atomic resolved material displacement on graphite surfaces by scanning tunnelling microscopy II Appl. Phys. Lett. 1992. — Vol. 60. — P. 2338−2340.
- Tomanek D., Louie S.G., Mamin H. J., Abraham D.W., Thomson R.E., E. Ganz, Clarke J. Theory and observation of highly asymmetric atomic structure in scanning-tunneling-microscopy images of graphite И Phys. Rev. B. 1987. — Vol. 35. — P. 7790−7793.
- Ouseph P.J., Poothackanal Т., Mathew G. Honeycomb and other anomalous surface pictures of graphite II Phys. Lett. A. 1995. — Vol. 205, Is. 1. — P. 65−71.
- Mate С. M., McClelland G. M., Erlandsson R., Chiang S. Atomic-scale friction of a tungsten tip on a graphite surface // Phys. Rev. Lett. 1987. — Vol. 59. — P. 1942 — 1945.
- Albrecht Т.К., Quate C.F. Atomic resolution with the atomic force microscope on conductors and nonconductors II J. Vac. Sci. Technol. A. 1988. — Vol. 6, Is. 2. — P. 271−274.
- Holscher H., Schwarz U. D., Zworner O., Wiesendanger R. Consequences of the stick-slip movement for the scanning force microscopy imaging of graphite // Phys. Rev. B. 1998. -Vol. 57. P. 2477−2481.
- Giessibl F. J. AFM’s path to atomic resolution // Mat. Tod. 2005. — Vol. 8, Is. 5. — P. 3241
- Sumomogi T., Hieda K., EndoT., Kuwahara K. Influence of atmosphere humidity on tribological properties in scanning probe microscope observation // Appl. Phys. A. 1998. — Vol. 66. — P. S299-S303.
- Hembacher S., Giessibl F.J., Mannhart J., Quate C.F. Revealing the hidden atom in graphite by low-temperature atomic force microscopy // PNAS. 2003. — Vol. 100. — P. 1 253 912 542.
- Sasaki N., Kobayashi K., Tsukada M. Atomic-scale friction image of graphite in atomic-force microscopy II Phys. Rev. B. 1996. — Vol. 54. — P. 2138−2149.
- Abraham F.F., Batra I.P. Theoretical interpretation of atomic-force-microscope images of graphite // Surf. Sci. 1989. — Vol. 209, Is. 1−2. — P. L125-L132.
- Matsushita K., Matsukawa H., Sasaki N. Atomic scale friction between clean graphite surfaces II Sol St. Commun. 2005. — Vol. 136. — P. 51−55.
- Miura K., Sasaki N., Kamiya S. Friction mechanisms of graphite from a single-atomic tip to a large-area flake tip II Phys. Rev. B. 2004. — Vol. 69. — P. 75 420: 1−9.
- Horie C., Miyazaki H. Atomic-force-microscopy images of graphite due to Van der Waals interactions II Phys. Rev. B. 1990. — Vol. 42. — P. 11 757−11 761.
- Ciraci S., BaratofF A., Batra I.P. Tip-sample interaction effects in scanning-tunneling and atomic-force microscopy И Phys. Rev. B. 1990. — Vol. 41. — P. 2763−2775.
- Xu L., Yao X.-W., Zhang L.-P., Li M.-Q., Yang F.-J. Interpretations of atomic-resolution images in atomic-force microscopy II Phys. Rev. B. 1995. — Vol. 51. — P. 10 013−10 016.
- Tomanek D., Overney G., Miyazaki H., Mahanti S.D., Guntherodt H.J. Theory for the atomic force microscopy of deformable surface // Phys. Rev. Lett. 1989. — Vol. 63. — P. 876−879.
- Sasaki N., Tsukada M. Effect of the tip structure on atomic-force microscopy // Phys. Rev. B. 1995. — Vol. 52. — P. 8471−8482.
- Schwarz A., Schwarz U. D., Langkat S., Holscher H., Allers W., Wiesendanger R. Dynamic Force Microscopy with Atomic Resolution at Low Temperatures // App. Surf. Sci. -2002.-Vol. 188.-P. 245−251.
- Chen C.J. Introduction to Scanning Tunneling Microscopy. New York: Oxford University Press, 1993.
- Holscher H., Allers W., Schwarz U. D., Schwarz A., Wiesendanger R. Interpretation of «true atomic resolution» images of graphite (0001) in noncontact atomic force microscopy // Phys. Rev. B. 2000. — Vol. 62. — P. 6967−6970.
- Tracz A., Kalachev A. A., Wegner G., Rabe J. P. Control over Nanopits on the Basal Plane of Graphite by Remote Argon Plasma and Subsequent Thermal Oxidation // Langmuir. -1995. Vol. 11. — P. 2840−2842.
- Brauchle G., Richard-Schneider S., Illig D., Rockenberger J., Beck R. D., Kappes M. M. Etching nanometer sized holes of variable depth from carbon cluster impact induced defects on graphite surfaces // Appl. Phys. Lett. 1995. — Vol. 67. — P. 52−54.
- Bourelle E., Tanabe Y., Yasuda E., Kimura S. STM study on surfaces of HOPG modified by implantation and heat treatment// Carbon. 2001. — Vol. 39. — P. 1557−1566.
- Liu F., Wang Y., Xue J., Wang S" Yan S., Zhao W. STM observation of damage on HOPG induced by energetic ions escaped from thick botanic samples // Phys. Lett. A. 2001. — Vol. 283. — P. 360−367.
- Marton D., Bu H., Boyd K.J., Todorov S.S., Al-Bayati A.H., Rabalais J.W. On the defect structure due to low energy ion bombardment of graphite // Surf. Sci. 1995. — Vol. 326. — P. L489-L493.
- Wang Y., Kang Y., Zhao W., Yan S. Studies on surface damage induced by ion bombardment II J. Appl. Phys. 1998. — Vol. 83. — P. 1341.
- Telling R.H., Ewels C.P., El-Barbary A.A., Heggie M.I. Wigner defects bridge the graphite gap // Nature Materials. 2003. — Vol. 2. — P. 333−337.
- Paredes J.P., Martinez-Alonso A., Tascon J.M.D. Atomic force microscopy investigation of the surface modification of highly oriented pyrolytic graphite by oxygen plasma // J. Mater. Chem. 2000. — Vol. 10. — P. 1585−1591.
- Chu X., Schmidt L.P. Reactions of NO, 02, H20, and C02 with the basal plane ofgraphite II Surf. Sci. 1992. — Vol. 268. — P. 325−332.
- Lee K.H., Lee H.M., Eun H.M., Lee W.R., Kim S., Kim D. The electronic structure of lattice vacancies on the STM image of a graphite surface // Surf. Sci. 1994. — Vol. 321. — P. 267 275.
- Takeuchi N., Valenzuela-Benavides J., Morales de la Garza L. Electronic superstructures on the graphite surface studied by first-principles calculations // Surf. Sci. 1997. — Vol. 380. — P. 190−198.
- Valenzuela-Benavides J., Morales de la Garza L. Electronic superstructures on the graphite surface observed by scanning tunneling microscopy: an interference model // Surf Sci. -1995.-Vol. 330. P. 227−233.
- Mizes H.A., Foster J. S. Long-Range Electronic Perturbations Caused by Defects Using Scanning Tunneling Microscopy II Science. 1989. — Vol. 244. — P. 559−562.
- Kelly K.F., Mickelson E.T., Hauge R. H., Margrave J.L., Halas N. J. Nanoscale imaging of chemical interactions: Fluorine on graphite // PNAS. 2000. — Vol. 97. — P. 10 318−10 321.
- Heckl W.M., Binning G. Domain walls on graphite mimic DNA // Ultramicroscopy. -1992. Vol. 42−44. — P. 1073−1078.
- Kluzek Z. Scanning tunneling spectroscopy study of the edge surface states on oxygen-etched graphite surface with the presence of liquid crystal steps // Vacuum. 2001. — Vol. 63. — P. 139−144.
- Kobayashi Y., Fukui K., Enoki Т., Kusakabe K., Kaburagi Y. Observation of zigzag and armchair edges of graphite using scanning tunneling microscopy and spectroscopy // arxiv. org/cond-mat/5 034 72
- Nakada K., Fujita M., Dresselhaus G., Dresselhaus M.S. Edge state in graphene ribbons: Nanometer size effect and edge shape dependence // Phys. Rev. B. 1996. — Vol. 54. — P. 1 795 417 961.
- Simonis P., Goffaux C., Thiry P.A., Biro L.P., Lambin Ph., Meunier V. STM study of a grain boundary in graphite // Surf. Sci. 2002. — Vol. 511. — P. 319−322.
- Chu X., Schmidt L.D. Gasification of Graphite studied by Scanning Tunneling Microscopy // Carbon. 1991. — Vol. 29. — P. 1251−1255.
- Atamny F., Faessler T.F., Baiker A., Schloegl R. On the imaging mechanism of monatomic steps in graphite // Appl. Phys. A. 2000. — Vol. 71. — P. 441−447.
- Roy H.V., Kallinger C., Sattler K. Study of single and multiple foldings of graphitic sheets II Surf. Sci. 1998. — Vol. 407. — P. 1−6.
- Bernhardt T.M., Kaiser В., Rademann K. Formation of superperiodic patterns on highlyoriented pyrolytic graphite by manipulation of nanosized graphite sheets with the STM tip // Surf. Sci. 1998. — Vol. 408. — P. 86−94.
- Pong W.T., Durkan C. A review and outlook for an anomaly of scanning tunneling microscopy (STM) superlattices on graphite // J. Phys. D: Appl. Phys. — 2005. — Vol. 38. — P. R329.
- Beyer H., Mtiller M., Schimmel Th. Monolayers of Graphite Rotated by a Defined Angle: Hexagonal Superstructures by STM // Appl. Phys. A. 1999. — Vol. 68. — P. 163.
- Kuwabara M., Clarke D.R., Smith D.A. Anomalous superperiodicity in scanning tunneling microscope images of graphite // Appl. Phys. Lett. 1990. — Vol. 56. — P. 2396−2398.
- Liu C.Y., Chang H., Bard A.J. Large scale hexagonal domainlike structures superimposed on the atomic corrugation of a graphite surface observed by scanning tunneling microscopy // Langmuir. 1991. — Vol. 7. — P. 1138−1142.
- Rong Z.Y., Kuiper P. Electronic effects in scanning tunneling microscopy: Moire pattern on a graphite surface II Phys. Rev. B. 1993. — Vol. 48. — P. 17 427−17 431.
- Rong Z.Y. Extended modifications of electronic structures caused by defects: scanning tunneling microscopy of graphite // Phys. Rev. B. Vol. 50. — P. 1839−1843.
- Xhie J., Sattler K., Ge M., Venkateswaran N. Giant and supergiant lattices on graphite // Phys. Rev. B. Vol. 47. — P. 15 835−15 841.
- Kobayashi Y., Fukui K., Enoki Т., Harigaya K., Kaburagi Y., Hishiyama Y. STM observation of the quantum interference effect in finite-sized graphite// J. Phys. Chem. Sol. -2004.-Vol. 65.-P. 199−203.
- Maslova N.S., Oreshkin A.I., Panov V. I, Savinov S.V., Kalachev A.A., Rabe J.P. STM evidence of dimensional quantization on the nanometer size surface defects // Sol. St. Commun. -1995.-Vol.95.-P. 507−510.
- Ouseph P.J. Transformation of graphite superlattice to triangular dislocations // Phys. Rev. Lett. 1996. — Vol. 53. — P. 9610−9613.
- Snyder S. R., Gerberich W.W., White H.S. Scanning-tunneling-microscopy study of tip-induced transitions of dislocation-network structures on the surface of higly oriented pyrolytic graphite И Phys. Rev. B. 1993. — Vol. 47. — P. 10 823−10 831.
- Snyder S.R., Foecke Т., White H.S., Gerberich W.W. Imaging of stacking faults in highly oriented pyrolytic graphite using scanning tunneling microscopy // J. Mater. Res. 1992. — Vol. 7. -P. 341−344.
- Loiseau A., Launois P., Petit P., Roche S., Salvetat J.-P. (Eds.). Understanding Carbon Nanotubes. Springer, Berlin, 2006.-553c.
- Falvo M.R., Steele J., Taylor R.M., Superfine R. Gearlike rolling motion mediated by commensurate contact: Carbon nanotubes on HOPG // Phys. Rev. B. 2000. — Vol. 62, No. 16. -P. RIO 665 -RIO 667.
- Phang I.Y., Liu Т., Zhang W.-D., Schonherr H., Vancso G.J. Probing buried carbon nanotubes within polymer-nanotube composite matrices by atomic force microscopy // European Polymer Journal. 2007. — Vol. 43. — P. 4136−4142.
- Ed. By O’Connell M.J. Carbon Nanotubes. Properties and Applications. -Taylor&Francis Group, LLC. 2006.
- E. Lee. An integrated system of microcantilever arrays with carbon nanotube tips for imaging, sensing, and 3D nanomanipulation: Design and control // Sensors and Actuators A-2007.-Vol. 134.-P. 286−295.
- Pasquini A., Picotto G.B., Pisani M. STM carbon nanotube tips fabrication for critical dimension measurements // Sensors and Actuators A. 2005. Vol. 123—124. — P. 655−659.
- Guo L., Liang J., Dong S., Xu Z., Zhao Q. Property of carbon nanotube tip for surface topography characterization // Applied Surface Science. 2004. — Vol. 228. — P. 53—56.
- Brioude A., Vincent P., Journet C., Plenet J.C., Purcell S.T. Synthesis of sheathed carbon nanotube tips by the sol-gel technique // Applied Surface Science. 2004. — Vol. 221. — P. 4−9.
- Konishi H., Murata Y., Wongwiriyapan W. et al. High-yield synthesis of conductive carbon nanotube tips for multiprobe scanning tunneling microscope // Review of scientific instruments. 2007. — Vol. 78. -P. 13 703, 1−6.
- Barthold P., Luedtke Т., Haug R.J. Nanomachining of mesoscopic graphite // arXiv: 803.2470vl cond-mat.mes-hall.
- Hiura H. Tailoring graphite layers by scanning tunneling microscopy // Applied Surface Science. 2004. — Vol. 222. — P. 374−381.
- Kondo S., Lutwyche M., Wada Y. Nanofabrication of layered materials with the scanning tunneling microscope // Surface Science. 1994. — Vol. 75. — P. 39−44.
- Tapaszto L., Dobrik G., Lambin P., Biro L.P. Tailoring the atomic structure of graphene nanoribbons by scanning tunnelling microscopy lithography // Nature nanotechnol. — 2008. -Vol. 3,-P. 397−401.
- Неволин В.К. Мир электроники. Зондовые технологии в наноэлектронике. М.: Техносфера, 2006. — 160 с.
- Abe Т., Нале К., Okuma S. Nanometer-scale pit formation by scanning tunneling microscopy on graphite surface and tip current measurements // J. Appl. Phys. 1994. — Vol. 75, No 2.-P. 1228 — 1230.
- Kim D.-H., Koo J.-Y, Kim J.-J. Cutting of multiwalled carbon nanotubes by a negative voltage tip of an atomic force microscope: A possible mechanism // Phys. Rev. B. 2003. — Vol. 68.-P. 113 406, 1−4.
- Albrecht T.R., Dovek M.M., Kirk M.D., Lang C.A., Quate C.F., Smith D.P.E. Nanometer-scale hole formation on graphite using a scanning tunneling microscope // Applied Physics Letters. 1989. — Vol. 55, Is. 17. — P. 1727−1729.
- Mizutani W., Inukai J., Ono M. Making a Monolayer Hole in a Graphite Surface by Means of a Scanning Tunneling Microscope // Jpn. J. Appl. Phys. 1990. — Vol. 29. — P. L815-L817.
- Вартапетин Р.Ш., Полищук A.M. Механизм адсорбции воды на углеродных адсорбентах // Успехи химии. 1995. — Т. 64, № 11. — С. 1055−1072.
- Мешков Г. Б. Кандидатская диссертация «Совмещенная атомно-силовая и сканирующаярезистивная микроскопия полш1ерных и неорганических материалов», 2007.
- Cui N.-Y., Brown N.M.D. Crystallinity effects on primary beam and Auger electron signal intensities observed for graphite // J. Electron Spectr. and Rel. Phenom. 2002. — Vol. 127. -P. 93−101.
- Ouseph P.J. Substitution and vacancy loops in graphite // Phys. Stat. Sol. A. 1998. — Vol. 169. — P. 25.
- Charlier J.-C., Michenaud J.-P., Lambin P. Tight-binding density of electronic states of pregraphitic carbon // Phys.Rev. B. 1992. — Vol. 46, No. 8. — P. 4540−4543.
- Fang S.U., Rao A.M., Eklund P.C., et al. Raman Scattering Study of coalesced single-walled carbon nanotubes // J. Mater. Res. -1998. Vol. 13, No. 9. — P. 2405−2411.
- Курс физической химии. Том II (под общей редакцией Я.Н. Герасимова). Москва: Химия, 1973. — 624 с.