ΠΠΎΡΠΎΡΠΊΠΈΠ΅ ΡΠ΅ΡΡΠΎΠΏΠΎΠ·ΠΎΠ½Ρ ΠΈΠ· Π³Π΅Π½ΠΎΠΌΠΎΠ² ΡΠ΅ΡΡΠΉΡΠ°ΡΡΡ ΡΠ΅ΠΏΡΠΈΠ»ΠΈΠΉ: ΠΡΡΡΠ΄ Squamata
ΠΠΈΡΡΠ΅ΡΡΠ°ΡΠΈΡ
ΠΠΈΡΠΏΠ΅ΡΠ³ΠΈΡΠΎΠ²Π°Π½Π½ΡΠ΅ ΠΏΠΎΠ²ΡΠΎΡΡ ΡΠΈΠΏΠ° SINE (Short INterspersed Elements), Π½Π°Π·ΡΠ²Π°Π΅ΠΌΡΠ΅ ΡΠ°ΠΊΠΆΠ΅ ΠΊΠΎΡΠΎΡΠΊΠΈΠΌΠΈ ΡΠ΅ΡΡΠΎΠΏΠΎΠ·ΠΎΠ½Π°ΠΌΠΈ, ΡΠΎΡΡΠ°Π²Π»ΡΡΡ Π·Π½Π°ΡΠΈΡΠ΅Π»ΡΠ½ΡΡ Π΄ΠΎΠ»Ρ Π³Π΅Π½ΠΎΠΌΠ° ΠΌΠ½ΠΎΠ³ΠΈΡ ΠΏΠΎΠ·Π²ΠΎΠ½ΠΎΡΠ½ΡΡ ΠΆΠΈΠ²ΠΎΡΠ½ΡΡ . ΠΡΠΈ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎΡΡΠΈ Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ ΠΈΠ·ΡΡΠ΅Π½Ρ Ρ ΠΌΠ»Π΅ΠΊΠΎΠΏΠΈΡΠ°ΡΡΠΈΡ ΠΈ ΡΡΠ±, Π½Π° ΠΏΡΠΈΠΌΠ΅ΡΠ΅ ΠΊΠΎΡΠΎΡΡΡ Π±ΡΠ»ΠΈ ΡΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½Ρ Π½Π΅ΠΊΠΎΡΠΎΡΡΠ΅ ΠΎΠ±ΡΠΈΠ΅ ΡΠ²ΠΎΠΉΡΡΠ²Π° SINE ΠΈ ΠΈΡ ΡΠΈΠΏΡ (Kramerov and Vassetzky, 2005). ΠΠ΄Π½Π°ΠΆΠ΄Ρ Π²ΠΎΠ·Π½ΠΈΠΊΠ½ΡΠ² ΠΈ ΡΠ°ΡΠΏΡΠΎΡΡΡΠ°Π½ΠΈΠ²ΡΠΈΡΡ Π² Π³Π΅Π½ΠΎΠΌΠ΅, SINEs… Π§ΠΈΡΠ°ΡΡ Π΅ΡΡ >
Π‘ΠΏΠΈΡΠΎΠΊ Π»ΠΈΡΠ΅ΡΠ°ΡΡΡΡ
- Altschul, S. F., W. Gish, W. Miller, E. W. Myers and D. J. Lipman, 1990 Basic localalignment search tool. J Mol Biol 215: 403−410.
- Arcot, S. S., Z. Wang, J. L. Weber, P. L. Deininger and M. A. Batzer, 1995 Alu repeats: asource for the genesis of primate microsatellites. Genomics 29: 136−144.
- Arnold, E. N., 1989 Towards a phylogeny and biogeography of the Lacertidae: relationshipswithin an old-world family of lizards derived from morphology. Bull British Mus Natur Hist (Zool.). 55: 209−257.
- Arribas, O. J., 1998 Osteology of the Pyrenean Mountain Lizards and comparison with otherspecies of the collective genus Archaeolacerta MERTENS, 1921 s.l. from Europe and Asia Minor. Herpetozoa 11: 47−70.
- Arribas, O. J., 1999 Phylogeny and relationships of the Mountain lizards of Europe and Near
- East (Archaeolacerta MERTENS, 1921 sensu lato) and their relationships among the Eurasian lacertid radiation. Russ J Herpetol 6: 1−22.
- Baltimore, D., 2001 Our genome unveiled. Nature 409: 814−816.
- Bashir, A., C. Ye, A. L. Price and V. Bafna, 2005 Orthologous repeats and mammalianphylogenetic inference. Genome Res 15: 998−1006.
- Batistoni, R., G. Pesole, S. Marracci and I. Nardi, 1995 A tandemly repeated DNA familyoriginated from SINE-related elements in the European plethodontid salamanders (Amphibia, Urodela). J Mol Evol 40: 608−615.
- Batzer, M. A., and P. L. Deininger, 2002 Alu repeats and human genomic diversity. Nat Rev1. Genet 3: 370−379.
- Batzer, M. A., G. E. Kilroy, P. E. Richard, Π’. H. Shaikh, T. D. Desselle et al., 1990
- Structure and variability of recently inserted Alu family members. Nucleic Acids Res 18: 6793−6798.
- Bentolila, S., J. M. Bach, J. L. Kessler, I. Bordelais, C. Cruaud et al., 1999 Analysis ofmajor repetitive DNA sequences in the dog (Canis familiaris) genome. Mamm Genome 10: 699−705.
- Bibillo, A., and Π’. H. Eickbush, 2002 The reverse transcriptase of the R2 non-LTRretrotransposon: continuous synthesis of cDNA on non-continuous RNA templates. J Mol Biol 316: 459−473.
- Bischoff, W., 1982 Zur Kenntnis der innerartlichen’Gliederung der Arwin Eidechse, Lacertaderjugini Nikolskij, 1898. Zoologische Abhandlungen. 38: 1−52.
- Bischoff, W., 1984 Bemerkungen zur innerrtlichen Gliederung und zur Verbreitung der
- Artwiner Eideche (Lacerta derjugini Nikolskij, 1898) an den Sudhangen des Groben Kaukasus. Salamandra 20: 101−111.
- ΠΠΎΠ΅Π½ΠΌ, Π’., L. Mengle-Gaw, U. R. Kees, N. Spurr, I. Lavenir et al., 1989 Alternatingpurine-pyrimidine tracts may promote chromosomal translocations seen in a variety of human lymphoid tumours. Embo J: 8: 2621−2631.
- Boeke, J. D., 1997 LINEs and Alus--the polyA connection. Nat Genet 16: 6−7.
- Borodulina, O. R., and D. A. Kramerov, 1999 Wide distribution of short interspersedelements among eukaryotic genomes. FEBS Lett 457: 409−413.
- Borodulina, O. R., and D. A. Kramerov, 2001 Short interspersed elements (SINEs) frominsectivores. Two classes of mammalian SINEs distinguished by A-rich tail structure. Mamm Genome 12: 779−786.
- Borodulina, O. R., and D. A. Kramerov, 2005 PCR-based approach to SINE isolation: simple and complex SINEs. Gene 349: 197−205.
- Bowman, R. R., W. S. ΠΠΈ and V. K. Pathak, 1998 Relative rates of retroviral reversetranscriptase template switching during RNA- and DNA-dependent DNA synthesis. J Virol 72: 5198−5206.
- Brookfield, J. F., 2001 Selection on Alu sequences? Curr Biol 11: R900−901.
- Brosius, J., 1999a Transmutation of tRNA over time. Nat Genet 22: 8−9.
- Brosius, J., 19 996 Many G-protein-coupled receptors are encoded by retrogenes. Trends1. Genet 15: 304−305.
- Carroll, R.L., 1987 Vertebrate Paleontology and Evolution. W. H. Freeman and Company, 1. New York.
- Churakov, G., A. F. Smit, J. Brosius and J. Schmitz, 2005 A novel abundant family ofretroposed elements (DAS-SINEs) in the nine-banded armadillo (Dasypus novemcinctus). Mol Biol Evol 22: 886−893.
- Ciobanu, D., V. V. Grechko, I. S. Darevsky and D. A. Kramerov, 2004 New satellite DNAin Lacerta s. str. lizards (Sauria: Lacertidae): evolutionary pathways and phylogenetic impact. J Exp Zoolog Π Mol Dev Evol 302: 505−516.
- Cost, G. J., Q. Feng, A. Jacquier and J. D. Boeke, 2002 Human LI element target-primedreverse transcription in vitro. Embo J 21: 5899−5910.h
- Deininger, P. L., D. J. Jolly, Π‘. M. Rubin, T. Friedmann and C. W. Schmid, 1981 Basesequence studies of 300 nucleotide renatured repeated human DNA clones. J Mol Biol 151: 17−33.
- Deininger, P., and M. A. Batzer, 1995 SINE master genes and population biology, pp. 43−60in The impact of short interspersed elements (SINEs) on the host genome, edited by R. Maraia. R.G. Landes, Georgetown, Texas.
- Dewannieux, M., and T. Heidmann, 2005 LINEs, SINEs and processed pseudogenes: parasitic strategies for genome modeling. Cytogenet Genome Res 110: 35−48.
- Endoh, Π., S. Nagahashi and N. Okada, 1990 A highly repetitive and transcribable sequencein the tortoise genome is probably a retroposon. Eur J Biochem 189: 25−31.
- Evans, S. E., 2003 At the feet of the dinosaurs: the early history and radiation of lizards. Biol
- Rev Camb Philos Soc 78: 513−551.
- Evgen’ev, M. Π., and I. R. Arkhipova, 2005 Penelope-like elements-a new class ofretroelements: distribution, function and possible evolutionary significance. Cytogenet Genome Res 110: 510−521.
- Fantaccione, S., C. Russo, P. Palomba, M. Rienzo and G. Pontecorvo, 2004 A new pairof CRl-like LINE and tRNA-derived SINE elements in Podarcis sicula genome. Gene 339: 189−198.Π¬
- Fedorov, A. N., L. V. Fedorova, V. V. Grechko, D. M. Ryabinin, V. A. Sheremet’eva etal., 1999 Variable and invariable DNA repeat characters revealed by taxonprint approach are useful for molecular systematics. J Mol Evol 48: 69−76.
- Feschotte, C., N. Fourrier, I. Desmons and C. Mouches, 2001 Birth of a retroposon: the
- Twin SINE family from the vector mosquito Culex pipiens may have originated from a dimeric tRNA precursor. Mol Biol Evol 18: 74−84.
- Fry, B. G., N. Vidal, J. A. Norman, F. J. Vonk, H. JScheib et al., 2006 Early evolution of thevenom system in lizards and snakes. Nature 439: 584−588.
- Fu, J., R. W. Murphy and I. S. Darevsky, 1997 Towards the phylogeny of Caucasian rocklizards: implications from mitochondrial DNA gene sequences. Zool J Linn Soc: 463−477.
- Gilbert, N., and D. Labuda, 1999 CORE-SINEs: eukaryotic short interspersed retroposingelements with common sequence motifs. Proc Natl Acad Sci USA 96: 2869−2874.
- Gilbert, N.,.and D. Labuda, 2000 Evolutionary inventions and continuity of CORE-SINEs inmammals. J Mol Biol 298: 365−377.
- Grechko, V. V., D. G. Ciobanu, I. S. Darevskii, S. A. Kosushkin and D. A. Kramerov, 2006 Molecular evolution of satellite DNA repeats and speciation of lizards of the genusЬ
- Darevskia (Sauria: Lacertidae). J Mol Evol in press.
- Grechko, V. V., L. V. Fedorova, A. N. Fedorov et al, 1997 Restriction endonucleaseanalysis of highly repetitive DNA as a phylogenetic tool. J Mol Evol 45: 332−336.
- Grechko, V. V., D. M. Ryabinin, L. V. Fedorova et al., 1997 Parentage of Caucasianparthenogenetic rock lizard species (Lacerta) as revealed by restriction endonuclease analysis of highly DNA. Amphibia-Reptilia 18: 407−418.
- Harris, D. J., E. N. Arnold and R. H. Thomas, 1998 Relationships of lacertid lizards
- Reptilia: Lacertidae) estimated from mitochondrial DNA sequences and morphology. Proc Biol Sci 265:1939−1948.
- Hillis, D. M., 1999 SINEs of the perfect character. Proc Natl Acad Sci USA 96: 9979−9981.
- Iwabe, N., Y. Hara, Y. Kumazawa, K. Shibamoto, Y. Saito et al., 2005 Sister group hrelationship of turtles to the bird-crocodilian clade revealed by nuclear DNA-coded proteins. Mol Biol Evol 22:810−813.
- Izsvak, Z., Z. Ivies, D. Garcia-Estefania, S. C. Fahrenkrug and P. B. Hackett, 1996
- DANA elements: a family of composite, tRNA-derived short interspersed DNA elements associated with mutational activities in zebrafish (Danio rerio). Proc Natl Acad Sci USA 93: 1077−1081.
- Jurka, J., and P. Klonowski, 1996 Integration of retroposable elements in mammals: selection of target sites. J Mol Evol 43: 685−689.
- Jurka, J., O. Kohany, A. Pavlicek, V. V. Kapitonov and M. V. Jurka, 2005 Clustering, duplication and chromosomal distribution of mouse SINE retrotransposons. CytogenetΠ¬1. Genome Res 110: 117−123.
- Jurka, J., E. Zietkiewicz and D. Labuda, 1995 Ubiquitous mammalian-wide interspersedrepeats (MIRs) are molecular fossils from the mesozoic era. Nucleic Acids Res 23: 170−175.
- Kajikawa, M., and N. Okada, 2002 LINEs mobilize SINEs in the eel through a shared 3'sequence. Cell 111: 433−444.
- Kalyabina, S. A., K. D. Milto, N. B. Ananjeva et al, 2001 Phylogeography and systematicsof Lacerta agilis based on mitochondrial cytochrome b gene sequences: first results. Rus J Herpetol 8: 149−158.
- Kapitonov, V. V., and J. Jurka, 2003 A Novel Class of SINE Elements Derived from 5SrRNA. Mol Biol Evol 20: 694−702.
- Kass, D. H., and M. A. Batzer, 1995 Inter-Alu polymerase chain reaction: advancements andapplications. Anal Biochem 228: 185−193.
- Kawai, Π., M. Nikaido, M. Harada, S. Matsumura, L. K. Lin et at., 2002 Intra- andinterfamily relationships of Vespertilionidae inferred by various molecular markers including SINE insertion data. J Mol Evol 55: 284−301.
- Keiler, Π. C., P. R. Waller and R. T. Sauer, 1996 Role of a peptide tagging system indegradation of proteins synthesized from damaged messenger RNA. Science 271: 990−993.
- Kido, Y., M. Aono, T. Yamaki, K. Matsumoto, S. Murata et al., 1991 Shaping andreshaping of salmonid genomes by amplification of tRNA-derived retroposons during evolution. Proc Natl Acad Sci USA 88: 2326−2330.
- Kido, Y., M. Himberg, N. Takasaki and N. Okada, 1994 Amplification of distinctsubfamilies of short interspersed elements during evolution of the Salmonidae. J Mol Biol 241:633−644.
- Kim, J., J. A. Martignetti, M. R. Shen, J. Brosius and P. Deininger, 1994 Rodent BC1 RNAgene as a master gene for ID element amplification. Proc Natl Acad Sci USA 91: 36 073 611.
- Kordis, D., and F. Gubensek, 1997 Bov-B long interspersed repeated DNA (LINE) sequencesare present in Vipera ammodytes phospholipase A2 genes and in genomes of Viperidae snakes. Eur J Biochem 246: 772−779.
- Kordis, D., and F. Gubensek, 1999 Horizontal transfer of non-LTR retrotransposons invertebrates. Genetica 107: 121−128.
- Kramerov, D. A., and N. S. Vassetzky, 2005 Short retroposons in eukaryotic genomes. Int1. Rev Cytol 247: 165−221.
- Lander, E. S., L. M. Linton, B. Birren et al., 2001 Initial sequencing and analysis of thehuman genome. Nature 409: 860−921.
- Lantz, L. A.', and 0. Cyren, 1936 Contribution a la connaissance de Lacerta saxicola
- EVERSMANN. Bull Soc Zool 61: 159−181.
- Lepetit, D., S. Pasquet, M. Olive, N. Theze and P. Thiebaud, 2000 Glider and Vision: twonew families of miniature inverted-repeat transposable elements in Xenopus laevis genome. Π¬ Genetica 108: 163−169.
- Lev-Maor, G., R. Sorek, N. Shomron and G. AST, 2003 The birth of an alternatively splicedexon: 3' splice-site selection in Alu exons. Science 300: 1288−1291.
- Lin, Z., O. Nomura, T. Hayashi, Y. Wada and H. Yasue, 2001 Characterization of a SINEspecies from vicuna and its distribution in animal species including the family Camelidae. Mamm Genome 12: 305−308.
- Lorenc, A., and W. Makalowski, 2003 Transposable elements and vertebrate proteindiversity. Genetica 118: 183−191.
- Luan, D. D., M. H. Korman, J. L. Jakubczak and Π’. H. Eickbush, 1993 Reverse transcriptionof R2Bm RNA is primed by a nick at the chromosomal target site: a mechanism for non-LTR retro transposition. Cell 72: 595−605.
- MacCulloch, R. D., I. S. Darevsky, R. W. Murphy and J. Fu, 1997 Allozyme variation andpopulation substructuring in the Caucasian Ground lizards Lacerta deijugini and Lacerta praticola. Russ J Herpetol 4: 115−119.
- MacCulloch, R. D., J. Fu, I. S. Darevsky, F. D. Danielyan and R. W. Murphy, 1995
- Allozyme variation in three closely related species of Caucasian rock lizards (Lacerta). Amphibia-Reptilia 16: 331−340.
- MacCulloch, R. D., J. Fu, I. S. Darevsky and R. W. Murphy, 2000 Genetic evidence forspecies status of some Caucasian rock lizards in the Darevskia saxicola group. Amphibia-Reptilia 21: 169−176.
- Makalowski, W., G. A. Mitchell and D. Labuda, 1994 Alu sequences in the coding regions Π¬of mRNA: a source of protein variability. Trends Genet 10: 188−193.
- Malik, H. S., W. D. Burke and Π’. H. Eickbush, 1999 The age and evolution of non-LTRretrotransposable elements. Mol Biol Evol 16: 793−805.
- Martignetti, J. A., and J. Brosius, 1993 BC200 RNA: a neural RNA polymerase III productencoded by a monomelic Alu element. Proc Natl Acad Sci U S A 90: 11 563−11 567.
- Mathews, D. H., A. R. Banerjee, D. D. Luan, Π’. H. Eickbush and D. H. Turner, 1997
- Secondary structure model of the RNA recognized by the reverse transcriptase from the R2 retrotransposable element. RNA 3: 1−16.
- Murphy, R. W., I. S. Darevsky, R. D. McCulloch, J. Fu and L. A. Kupriyanova, 1996
- Evolution of the bisexual species of Caucasian rock lizards: a phylogenetic evaluation of allozyme data. Russ J Herpetol 3:18−31.
- Murphy, R. W., J. Fu, R. D. MacCulloch, I. S. Darevsky and K. L.A., 2000 A fine linebetween sex and unisexuality: the phylogenetic constraints on parthenogenesis in lacertid lizards. Zool J Linnean Soc: 527−549.
- Nembrini, M., and A. Oppliger, 2003 Characterization of microsatellite loci in the wall lizard
- Podarcis muralis (Sauria: Lacertidae). Mol Ecol Notes 3: 123−124.
- Nicholas K.B., and Nicholas H.B., 1997 Genedoc: a tool for editing and annotating multiplesequence alignments, Multiple Sequence Alignment Editor and Shading Utility, pp.
- Nikaido, M., H. Nishihara, Y. Hukumoto and N. Okada, 2003 Ancient SINEs from African
- Endemic Mammals. Mol Biol Evol 20: 522−527. '
- Ogiwara, I., M. Miya, K. Ohshima and N. Okada, 1999 Retropositional parasitism of SINEson LINEs: identification of SINEs and LINEs in elasmobranchs. Mol Biol Evol 16:12 381 250.i>
- Ogiwara, I., M. Miya, K. Ohshima and N. Okada, 2002 V-SINEs: a new superfamily ofvertebrate SINEs that are widespread in vertebrate genomes and retain a strongly conserved segment within each repetitive unit. Genome Res 12: 316−324.
- Ohshima, Π., M. Hamada, Y. Terai and N. Okada, 1996 The 3' ends of tRNA-derived shortinterspersed repetitive elements are derived from the 3' ends of long interspersed repetitive elements. Mol Cell Biol 16: 3756−3764.
- Ohshima, K., and N. Okada, 2005 SINEs and LINEs: symbionts of eukaryotic genomes witha common tail. Cytogenet Genome Res 110: 475−490.
- Okada, N., and M. Hamada, 1997 The 3' ends of tRNA-derived SINEs originated from the 3'ends of LINEs: A new example from the bovine genome. J Mol Evol 44: 52−56.
- Okada, N., M. Hamada, I. Ogiwara and K. Ohshima, 1997 SINEs and LINEs share common Π¬3' sequences: a review. Gene 205: 229−243.
- Okada, N., and K. Ohshima, 1995 Evolution of tRNA-derived SINEs, pp. 61 in The impact ofshort interspersed elements (SINEs) on the host genome, edited by R. J. maraia. Springer-Verlag, New York.
- Op De Bekke, A., M. Kiefmann, J. Kremerskothen, H. P. Vornlocher, M. Sprinzl et al., Π¬1998 The lOSa RNA gene oiThermus thermophilus. DNA Seq 9: 31−35.
- Ostertag, E. M., and H. H. Kazazian, Jr., 2001 Biology of mammalian LI retrotransposons.
- Annu Rev Genet 35: 501−538.
- Panning, Π., and J. R. Smiley, 1993 Activation of RNA polymerase III transcription of human
- Alu repetitive elements by adenovirus type 5: requirement for the Elb 58-kilodalton protein and the products of E4 open reading frames 3 and 6. Mol Cell Biol 13: 3231−3244.
- Panning, Π., and J. R. Smiley, 1994 Activation of RNA polymerase III transcription of human
- Alu elements by herpes simplex virus. Virology 202: 408−417.
- Panning, Π., and J. R. Smiley, 1995 Activation of expression of multiple subfamilies ofhuman Alu elements by adenovirus type 5 and herpes simplex virus type 1. J Mol Biol 248: 513−524. Π¬
- Paule, M. R., and R. J. White, 2000 Survey and summary: transcription by RNA polymerases1. and III. Nucleic Acids Res 28: 1283−1298.
- Piskurek, Π., M. Nikaido, Boeadi, M. Baba and N. Okada, 2003 Unique mammaliantRNA-derived repetitive elements in dermopterans: the t-SINE family and its retrotransposition through multiple sources. Mol Biol Evol 20: 1659−1668.
- Rest, J. S., J. C. Ast, Π‘. C. Austin, P. J. Waddell, E. A. Tibbetts et al., 2003 Molecularsystematics of primary reptilian lineages and the tuatara mitochondrial genome. Mol Phyl Evol 29: 289−297.
- Rinehart, T. A., R. A. Grahn and H. A. Wichman, 2005 SINE extinction preceded LINEextinction in sigmodontine rodents: implications for retrotranspositional dynamics andi>mechanisms. Cytogenet Genome Res 110: 416−425.
- Romer, A. S., 1956 Osteology of the Reptiles. Chicago, University of Chicago Press.
- Roy-Engel, A. M., A. H. Salem, Π. O. Oyeniran, L. Deininger, D. J. Hedges et al., 2002
- Active Alu element «A-tails»: size does matter. Genome Res 12: 1333−1344.
- Ryabinin, D. M., V. V. Grechko, I. S. Darevsky, A. P. Ryskov and S. K. Semenova, 1996
- Comparative study of DNA repetitive sequences by means of restriction endonucleases among populations and subspecies of some lacertid lizard species. Russ J Herpetol 3: 178 185.
- Saint, Π. M., Π‘. Π‘. Austin, S. Π‘. Donnellan and M. N. Hutchinson, 1998 C-mos, a nuclearmarker useful for squamate phylogenetic analysis. Mol Phyl Evol 10: 259−263.
- Schmid, C. W., 1996 Alu: structure, origin, evolution, significance and function of one-tenthof human DNA. Prog Nucleic Acid Res Mol Biol 53: 283−319.
- Schmitz, J., and H. Zischler, 2003 A novel family of tRNA-derived SINEs in the colugo andtwo new retrotransposable markers separating dermopterans from primates. Mol Phyl Evol 28: 341−349.
- Schwahn, U., S. Lenzner, J. Dong et al., 1998 Positional cloning of the gene for X-linkedretinitis pigmentosa 2. Nat Genet 19: 327−332.
- Shedlock, A. M., and N. Okada, 2000 SINE insertions: powerful tools for molecularsystematics. Bioessays 22: 148−160.
- Singer, M. F., 1982 SINEs and LINEs: highly repeated short and long interspersed sequencesin mammalian genomes. Cell 28: 433−434.
- Smit, A. F., and A. D. Riggs, 1995 MIRs are classic, tRNA-derived SINEs that amplifiedbefore the mammalian radiation. Nucleic Acids Res 23: 98−102.
- Staden, R., K. F. Beal and J. K. Bonfield, 2000 The Staden package, 1998. Methods Mol1. Biol 132: 115−130. Π¬
- Takahashi, K., Y. Terai, M. Nishida and N. Okada, 2001 Phylogenetic relationships andancient incomplete lineage sorting among cichlid fishes in Lake Tanganyika as revealed by analysis of the insertion of retroposons. Mol Biol Evol 18: 2057−2066.
- Terai, Y., K. Takahashi and N. Okada, 1998 SINE cousins: the Π'-end tails of the two oldestand distantly related families of SINEs are descended from the 3' ends of LINEs with the same genealogical origin. Mol Biol Evol 15:1460−1471.
- Tyler-Smith, C., P. Corish and E. burns, 1998 Neocentromeres, the Y chromosome andcentromere evolution. Chromosome Res 6: 65−67.
- Ullu, E., and C. Tschudi, 1984 Alu sequences are processed 7SL RNA genes. Nature 312:171.172.ΠΈ
- Van de Peer, Y., and R. De Wachter, 1994 TREECON for Windows: a software package forthe construction and drawing of evolutionary trees for the Microsoft Windows environment. Comput. Applic. Biosci. 9: 569−570.
- Vidal, N., and S. B. Hedges, 2004 Molecular evidence for a terrestrial origin of snakes. Proc
- Biol Sci 271 Suppl 4: S226−229.it
- Vidal, N., and S. B. Hedges, 2005 The phylogeny of squamate reptiles (lizards, snakes, andamphisbaenians) inferred from nine nuclear protein-coding genes. Π‘ R Biol 328: 1000−1008.Ρ
- Vitt, L. J., E. R. Pianka, W. E. Cooper, Jr. and K. Schwenk, 2003 History and the globalecology of squamate reptiles. Am Nat 162: 44−60.
- Wahls, W. P., L. J. Wallace and P. D. Moore, 1990 The Z-DNA motif d (TG)30 promotesreception of information during gene conversion events while stimulating homologous recombination in human cells in culture. Mol Cell Biol 10: 785−793.
- Weiner, A. M., 1980 An abundant cytoplasmic 7S RNA is complementary to the dominantinterspersed middle repetitive DNA sequence family in the human genome. Cell 22: 209 218.
- Weiner, A. M., 2002 SINEs and LINEs: the art of biting the hand that feeds you. Curr Opin 'ΠΈ1. Cell Biol 14: 343−350.127. zuckerkandl, E., 1992 Revisiting junk DNA. J Mol Evol 34: 259−271.
- ΠΠ°Π½Π½ΠΈΠΊΠΎΠ²Π°, Π. Π., Π. Π. ΠΠ°ΡΠ²Π΅Π΅Π² ΠΈ Π. Π. ΠΡΠ°ΠΌΠ΅ΡΠΎΠ², 2002 ΠΠΏΡΡ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΡ ΠΠ½ΡΠ΅Ρ
- SINE-PCR Π² ΠΈΠ·ΡΡΠ΅Π½ΠΈΠΈ ΡΠΈΠ»ΠΎΠ³Π΅Π½Π΅Π·Π° ΠΌΠ»Π΅ΠΊΠΎΠΏΠΈΡΠ°ΡΡΠΈΡ . ΠΠ΅Π½Π΅ΡΠΈΠΊΠ° 38: 853−864.
- ΠΡΠ΅ΡΠΊΠΎ, Π. Π., 2002 ΠΠΎΠ»Π΅ΠΊΡΠ»ΡΡΠ½ΡΠ΅ ΠΌΠ°ΡΠΊΠ΅ΡΡ ΠΠΠ Π² ΠΈΠ·ΡΡΠ΅Π½ΠΈΠΈ ΡΠΈΠ»ΠΎΠ³Π΅Π½ΠΈΠΈ ΠΈ ΡΠΈΡΡΠ΅ΠΌΠ°ΡΠΈΠΊΠΈ.1. ΠΠ΅Π½Π΅ΡΠΈΠΊΠ° 38: 1013−1033.t>
- ΠΡΠ΅ΡΠΊΠΎ, Π. Π., JI. Π. Π€Π΅Π΄ΠΎΡΠΎΠ²Π°, Π. Π. Π ΡΠ±ΠΈΠ½ΠΈΠ½ ΠΈ ΡΠΎΠ°Π²Ρ., 2006 ΠΠΎΠ»Π΅ΠΊΡΠ»ΡΡΠ½ΡΠ΅ ΠΌΠ°ΡΠΊΠ΅ΡΡΡΠ΄Π΅ΡΠ½ΠΎΠΉ ΠΠΠ Π² ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠΈ Π²ΠΈΠ΄ΠΎΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΡ ΠΈ ΡΠΈΡΡΠ΅ΠΌΠ°ΡΠΈΠΊΠΈ Π½Π° ΠΏΡΠΈΠΌΠ΅ΡΠ΅ ΡΡΠ΅ΡΠΈΡ «ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠ° Lacerta agilis» (Sauria: Lacertidae). ΠΠΎΠ» Π±ΠΈΠΎΠ» 40: 61−73.
- ΠΠ°ΡΠ΅Π²ΡΠΊΠΈΠΉ, Π. Π‘., 1967 Π‘ΠΊΠ°Π»ΡΠ½ΡΠ΅ ΡΡΠ΅ΡΠΈΡΡ ΠΠ°Π²ΠΊΠ°Π·Π°. ΠΠ°ΡΠΊΠ°, JI.
- ΠΠΎΡΠΎΡΠΊΠΎΠ², Π. Π., Π. Π. ΠΠΎΡΠΎΡΠΊΠΎΠ²Π° ΠΈ Π. Π. Π ΡΠ΄Π΅Π½ΠΊΠΎ, 2000 MIR: ΡΠ΅ΠΌΠ΅ΡΡΠ²ΠΎ ΠΏΠΎΠ²ΡΠΎΡΠΎΠ², ΠΎΠ±ΡΠ΅Π΅ Π΄Π»Ρ Π³Π΅Π½ΠΎΠΌΠΎΠ² ΠΌΠ½ΠΎΠ³ΠΈΡ ΠΏΠΎΠ·Π²ΠΎΠ½ΠΎΡΠ½ΡΡ . ΠΠΎΠ»Π΅ΠΊΡΠ»ΡΡΠ½Π°Ρ Π±ΠΈΠΎΠ»ΠΎΠ³ΠΈΡ 34: 553−559.
- ΠΠΈΠΊΠΎΠ»ΡΡΠΊΠΈΠΉ, Π. Π., 1907 ΠΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΠ΅Π»Ρ ΠΏΡΠ΅ΡΠΌΡΠΊΠ°ΡΡΠΈΡ ΡΡ Π·Π΅ΠΌΠ½ΠΎΠ²ΠΎΠ΄Π½ΡΡ Π ΠΎΡΡΠΈΠΉΡΠΊΠΎΠΉ1. ΠΠΌΠΏΠ΅ΡΠΈΠΈ, Π₯Π°ΡΡΠΊΠΎΠ².
- ΠΠΈΠΊΠΎΠ»ΡΡΠΊΠΈΠΉ, Π. Π., 1913 Herpetologia Caucasica, Π’ΠΈΡΠ»ΠΈΡ.
- ΠΡΠ»ΠΎΠ²Π°, Π. Π€., 1975 Π‘ΠΈΡΡΠ΅ΠΌΠ°ΡΠΈΠΊΠ° ΠΈ Π½Π΅ΠΊΠΎΡΠΎΡΡΠ΅ ΠΌΠΎΡΡΠΎ-ΡΠΊΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΎΡΠΎΠ±Π΅Π½Π½ΠΎΡΡΠΈΠ»Π΅ΡΠ½ΡΡ ΡΡΠ΅ΡΠΈΡ ΡΠΎΠ΄Π° Lacerta. // ΠΠ²ΡΠΎΡΠ΅Ρ. Π΄ΠΈΡΡ. Π½Π° ΡΠΎΠΈΡΠΊΠ°Π½ΠΈΠ΅ ΡΡ. ΡΡΠ΅ΠΏΠ΅Π½ΠΈ ΠΊΠ°Π½Π΄. Π±ΠΈΠΎΠ». Π½Π°ΡΠΊ, ΠΠΎΡΠΊΠ²Π°.
- ΠΡΠ»ΠΎΠ²Π°, Π. Π€., 1978Π° ΠΠ΅ΠΎΠ³ΡΠ°ΡΠΈΡΠ΅ΡΠΊΠ°Ρ ΠΈΠ·ΠΌΠ΅Π½ΡΠΈΠ²ΠΎΡΡΡ ΠΈ ΠΎΠΏΠΈΡΠ°Π½ΠΈΠ΅ Π»Π΅ΠΊΡΠΎΡΠΈΠΏΠ° Π°ΡΡΠ²ΠΈΠ½ΡΠΊΠΎΠΉΡΡΠ΅ΡΠΈΡΡ L. deijugini Nik. Π’ΡΡΠ΄Ρ ΠΠΎΠΎΠ». ΠΡΠ·Π΅Ρ ΠΠΠ£. ΠΡΡΠ»Π΅Π΄. ΠΠΎ ΡΠ°ΡΠ½Π΅ Π‘ΠΎΠ²Π΅ΡΡΠΊΠΎΠ³ΠΎ Π‘ΠΎΡΠ·Π°. ΠΡΠΈΡΡ ΠΈ ΠΏΡΠ΅Π΅ΠΌ. 17: 188−203.
- ΠΡΠ»ΠΎΠ²Π°, Π. Π€., 19 786 ΠΠ΅ΠΎΠ³ΡΠ°ΡΠΈΡ Π΅ΡΠΊΠΎΠ΅ ΡΠ°ΡΠΏΡΠΎΡΡΡΠ°Π½Π΅Π½ΠΈΠ΅ ΠΈ Π²Π½ΡΡΡΠΈΠ²ΠΈΠ΄ΠΎΠ²Π°Ρ ΠΈΠ·ΠΌΠ΅Π½ΡΠΈΠ²ΠΎΡΡΡΠ»ΡΠ³ΠΎΠ²ΠΎΠΉ ΡΡΠ΅ΡΠΈΡΡ Π½Π° ΠΠ°Π²ΠΊΠ°Π·Π΅. Π’ΡΡΠ΄Ρ ΠΠΎΠΎΠ». ΠΡΠ·Π΅Ρ ΠΠΠ£. ΠΡΡΠ»Π΅Π΄. ΠΠΎ ΡΠ°ΡΠ½Π΅ Π‘ΠΎΠ²Π΅ΡΡΠΊΠΎΠ³ΠΎ Π‘ΠΎΡΠ·Π°. ΠΡΠΈΡΡ ΠΈ ΠΏΡΠ΅Π΅ΠΌ. 17: 204−215.
- ΠΠ°ΡΡΡΡΠ΅Π², JI. Π., 2000 ΠΠΊΡΠΏΡΠ΅ΡΡΠΈΡ Π³Π΅Π½ΠΎΠ². ΠΠ°ΡΠΊΠ°, Π.
- ΠΡΡΡΠΊΠ°Ρ ΡΡΠ΅ΡΠΈΡΠ°. ΠΠΎΠ΄ ΡΠ΅Π΄. Π. Π. Π―Π±Π»ΠΎΠΊΠΎΠ²Π°. 1976. ΠΠ°ΡΠΊΠ°, Π.141. ΡΡΠ±ΠΈΠ½ΠΈΠ½, Π΄. ΠΌ., 1997 ΠΠΎΠ²ΡΠΎΡΡΡΡΠΈΠ΅ΡΡ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎΡΡΠΈ ΠΠΠ ΠΈ ΠΏΡΠΎΠ±Π»Π΅ΠΌΠ° Π²ΠΈΠ΄ΠΎΠ²ΠΎΠ³ΠΎΡΠΈΠΏΠΈΡΠΎΠ²Π°ΠΏΠΈΡ Π½Π° ΠΏΡΠΈΠΌΠ΅ΡΠ΅ ΠΈΠ·ΡΡΠ΅Π½ΠΈΡ ΡΡΠ΅ΡΠΈΡ ΠΠ°Π²ΠΊΠ°Π·Π°. ΠΠΈΡΡ. Π½Π° ΡΠΎΠΈΡΠΊΠ°Π½ΠΈΠ΅ ΡΡ. ΡΡΠ΅ΠΏΠ΅Π½ΠΈ ΠΊΠ°Π½Π΄. Π±ΠΈΠΎΠ». Π½Π°ΡΠΊ. ΠΠΎΡΠΊΠ²Π°.
- Π ΡΠ±ΠΈΠ½ΠΈΠ½Π°, Π. JI., Π. Π. ΠΡΠ΅ΡΠΊΠΎ ΠΈ Π. Π‘. ΠΠ°ΡΠ΅Π²ΡΠΊΠΈΠΉ, 1998 ΠΠΎΠ»ΠΈΠΌΠΎΡΡΠΈΠ·ΠΌ ΠΠΠ ΠΏΠΎΠΏΡΠ»ΡΡΠΈΠΉΡΡΠ΅ΡΠΈΡ ΡΠ΅ΠΌΠ΅ΠΉΡΡΠ²Π° Lacertidae, ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ΅ΠΌΡΠΉ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ RAPD. ΠΠ΅Π½Π΅ΡΠΈΠΊΠ° 34: 1661−1667.
- Π’Π΅ΡΠ΅Π½ΡΡΠ΅Π², Π. Π., Π‘. Π. Π§Π΅ΡΠ½ΠΎΠ², 1949 ΠΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΠ΅Π»Ρ ΠΏΡΠ΅ΡΠΌΡΠΊΠ°ΡΡΠΈΡ ΡΡ ΠΈ Π·Π΅ΠΌΠ½ΠΎΠ²ΠΎΠ΄Π½ΡΡ .1. Π‘ΠΎΠ². Π½Π°ΡΠΊΠ°, Π.
- Π§ΠΎΠ±Π°Π½Ρ, Π., Π. Π. Π ΡΠ΄ΡΡ , Π. JI. Π ΡΠ±ΠΈΠ½ΠΈΠ½Π° ΠΈ ΡΠΎΠ°Π²Ρ., 2002 Π‘Π΅ΡΡΠ°ΡΠ°Ρ ΡΠ²ΠΎΠ»ΡΡΠΈΡΠΏΠ°ΡΡΠ΅Π½ΠΎΠ²ΠΈΠ΄ΠΎΠ² ΡΠΊΠ°Π»ΡΠ½ΡΡ ΡΡΠ΅ΡΠΈΡ ΡΠ΅ΠΌ. Lacertidae: Π½Π°ΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ ΡΠ°Π½Π΄Π΅ΠΌΠ½ΠΎΠ³ΠΎ ΠΏΠΎΠ²ΡΠΎΡΠ° CLsat ΠΈ Π°Π½ΠΎΠ½ΠΈΠΌΠ½ΡΡ ΠΌΠ°ΡΠΊΠ΅ΡΠΎΠ² ΠΌΠ΅ΡΠΎΠ΄Π° RAPD (Π ΠΠΠΠ). ΠΠΎΠ». Π±ΠΈΠΎΠ». 36: 296−306.