Помощь в написании студенческих работ
Антистрессовый сервис

Роль PEDF в образовании фибриллярных внеклеточных структур при миопии

ДиссертацияПомощь в написанииУзнать стоимостьмоей работы

PEDF (pigment epithelium-derived factor), отнесенный к семейству неингибиторных серпинов, является мультифункциональным регуляторным фактором, одним из наиболее важных для нормального развития и функционирования тканей глаза. К числу его биологических активностей относятся протекторное воздействие на нейроны сетчатки, антиангиогенная активность, дифференцирующее воздействие на клетки пигментного… Читать ещё >

Роль PEDF в образовании фибриллярных внеклеточных структур при миопии (реферат, курсовая, диплом, контрольная)

Содержание

  • 1. ФАКТОР ДИФФЕРЕНЦИРОВКИ ПИГМЕНТНОГО ЭПИТЕЛИЯ: ОСОБЕННОСТИ СТРУКТУРЫ, БИОЛОГИЧЕСКАЯ АКТИВНОСТЬ И УЧАСТИЕ В МЕТАБОЛИЗМЕ Обзор литературы)
    • 1. 1. Введение
    • 1. 3. Структура РЕБР и кодирующего его гена
      • 1. 3. 1. Ген РЕБР человека
      • 1. 3. 2. Пространственная структура молекулы РЕБР
  • Расположение поверхностных зарядов
    • 1. 3. 3. РЕБР — член семейства неингибиторных серпинов
    • 1. 3. 4. Степень фосфорилирования молекулы РЕБР влияет на его антиангиогенную и нейротрофную активности
    • 1. 3. 5. Внутриядерная локализация РЕБР
    • 1. 3. 6. Распространенность и эволюционная консервативность фактора РЕБР
    • 1. 4. Эффекты, оказываемые РЕБР на клетки и ткани различного происхождения
    • 1. 4. 1. Дифференцирующее действие РЕБР и его влияние на метаболизм раковых клеток
    • 1. 4. 2. Нейропротекторное действие РЕБР
    • 1. 4. 3. Антиангиогенное действие РЕБР
    • 1. 4. 4. Проапоптотическая активность РЕБР
    • 1. 4. 5. РЕБР как перспективный терапевтический агент
    • 1. 5. Рецепторы РЕБР
    • 1. 5. 1. РЕБР-Я
    • 1. 5. 2. Ламининовый рецептор
    • 1. 5. 3. Взаимодействие с Р1-АТР синтазой
  • 2. РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ
    • 2. 1. Введение
    • 2. 2. Тенонова капсула как объект для прижизненного исследования патологии склеры
    • 2. 3. Различное содержание изоформ фактора РЕБР в тканях близоруких людей и в тканях контрольной группы
    • 2. 4. РЕБР45 является продуктом деградации РЕБР
    • 2. 5. В тканях миопических глаз РЕБР устойчив. к ограниченному протеолизу собственными ферментами организма
    • 2. 6. Мутационные замены не являются причиной устойчивости PEDF к ограниченному протеолизу
    • 2. 7. В теноновых капсулах миопических глаз часть PEDF присутствует в водонерастворимом состоянии
    • 2. 8. Иммуногистохимические исследования образцов тканей склеры и теноновой капсулы
    • 2. 9. Полноразмерная изоформа рекомбинантного PEDF. является малорастворимой
    • 2. 10. PEDF-(44−418) является амилоидогенным белком
  • 3. ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТ
    • 3. 1. Материалы
      • 3. 1. 1. Реактивы
      • 3. 1. 2. Сорбенты
      • 3. 1. 3. Антитела и адьюванты
      • 3. 1. 4. Ферменты
      • 3. 1. 5. Штаммы, клеточные линии и плазмидные векторы
      • 3. 1. 6. Наборы готовых реактивов
      • 3. 1. 7. Микробиологические среды и буферы
    • 3. 2. Методы
      • 3. 2. 1. Сбор клинического материала
      • 3. 2. 2. Выделение и очистка белковых препаратов
      • 3. 2. 3. Определение концентрации белка
        • 3. 2. 3. 1. Метод Лоури-Фолина
        • 3. 2. 3. 2. Метод Бредфорд
      • 3. 2. 4. Получение поликлональных антител к пептидным фрагментам PEDF
        • 3. 2. 4. 1. Иммунизация подопытных животных
        • 3. 2. 4. 2. Очистка поликлональных антител
      • 3. 2. 5. Денатурирующий электрофорез белков в полиакриламидном геле
      • 3. 2. 6. Вестерн-блоттинг
      • 3. 2. 6. 1. Электроблоттинг белков
        • 3. 2. 6. 2. Определение иммуно-реактивных белков
      • 3. 2. 7. Количественное определение PEDF
      • 3. 2. 8. Иммуногистохимические исследования
      • 3. 2. 9. Поиск мутационных замен в генеpedf
        • 3. 2. 9. 1. Получение кДНК PEDF
        • 3. 2. 9. 2. Полимеразная цепная реакция
        • 3. 2. 9. 3. Лигирование
        • 3. 2. 9. 4. Приготовление компетентных клеток Е. col
        • 3. 2. 9. 5. Трансформация компетентных клеток Е. col
        • 3. 2. 9. 6. Отбор рекомбинантных клеток при помощи ПЦР
        • 3. 2. 9. 7. Выделение плазмиды
        • 3. 2. 9. 8. Определение нуклеотидных последовательностей
      • 3. 2. 10. Получение рекомбинантного PEDF
        • 3. 2. 10. 1. Клонирование PEDF
        • 3. 2. 10. 2. Наработка PEDF в бакуловирусной системе
        • 3. 2. 10. 3. Контроль экспрессии рекомбинантных белков
        • 3. 2. 10. 4. Выделение рекомбинантных белков из клеток насекомых
      • 3. 2. 11. Атомно-силовая микроскопия PEDF
      • 3. 2. 12. Дот блот анализ
  • 4. ВЫВОДЫ
  • 5. СПИСОК СОКРАЩЕНИЙ

Близорукость, или миопия, является всемирно распространенным глазным заболеванием, охватывающим все возрастные группы пациентов. Прогрессирование миопии в первую очередь связано с поражением соединительно-тканной капсулы глазасклеры, чья опорная функция, морфологическая структура и биохимические показатели при миопии существенно нарушаются. Процесс деградации внеклеточного матрикса склеры, сопровождающий развитие заболевания, является предметом исследования ученых, как важнейший для понимания этиологии близорукости и возможностей предотвращения и лечения этого заболевания.

PEDF (pigment epithelium-derived factor), отнесенный к семейству неингибиторных серпинов, является мультифункциональным регуляторным фактором, одним из наиболее важных для нормального развития и функционирования тканей глаза. К числу его биологических активностей относятся протекторное воздействие на нейроны сетчатки, антиангиогенная активность, дифференцирующее воздействие на клетки пигментного эпителия. PEDF принимает участие в регуляции клеточного цикла и апоптоза. Внимание ученых привлекает его возможное участие в широком спектре патологических процессов, в том числе сопровождающих развитие ряда глазных заболеваний.

Основным источником PEDF в глазу являются клетки пигментного эпителия и сетчатки, однако некоторое его количество также вырабатывается фибробластами склеры. Сравнительно с клетками пигментного эпителия, фибробласты склеры как продуценты PEDF являются значительно менее изученным объектом. Исследования фактора PEDF, вырабатываемого фибробластами миопической склеры, представляются актуальными и важными, особенно в свете их возможного вклада в понимание патологии развития близорукости.

Данная работа является частью исследований, проводимых в ИБХ им. М. М. Шемякина и Ю. А. Овчинникова РАН в рамках идентификации и структурнофункциональных исследований новых белков, участвующих в патогенезе ряда социально-значимых заболеваний, и разработки на их основе подходов для диагностики и лечения этих заболеваний. Цель работы состояла в изучении особенностей и выявлении возможных нарушений метаболизма молекулы PEDF при прогрессирующей близорукости.

Выражаю глубочайшую признательность моим научным руководителям, кандидату химических наук И. А. Костанян и заведующему лабораторией белков гормональной регуляции, доктору химических наук, профессору В. М. Липкину за постоянное внимание, обучение, помощь в профессиональном росте и направление в работе.

Искренне благодарю доктора биологических наук E.H. Иомдину за предоставленный экспериментальный материал и ценнейшую медицинскую информацию, доктора медицинских наук, профессора И. И. Бабиченко за проведение иммуногистохимических исследований и консультирование в вопросах гистологии, и доктора физико-математических наук, профессора JI.A. Морозову-Рош за проведение атомно-силового микроскопирования образцов рекомбинантного PEDF.

За неоценимую помощь в исследованиях и оформлении диссертации искренне благодарю кандидата химических наук Т. В. Ракитину и Д. Л. Какуева, глубоко признательна коллективу лаборатории белков гормональной регуляции ИБХ РАН за теплую дружественную обстановку, помощь и поддержку в работе.

Безмерную благодарность за терпение и поддержку во всем выражаю моей семье, внесшей огромный вклад в мое становление как исследователя и сделавшей возможным завершение этой работы.

Также благодарю кандидата химических наук И. Л. Родионова за синтез пептидных фрагментов PEDF.

4. ВЫВОДЫ.

1. Показана иммунологическая идентичность PEDF склеры и теноновой капсулы, что позволяет вместо PEDF миопической склеры в качестве объекта исследования использовать PEDF теноновой капсулы, которая в отличие от склеры может быть легко и без вреда для здоровья пациента получена в процессе операции склеропластики.

2. В экстрактах водорастворимых белков теноновых капсул идентифицирована изоформа PEDF с молекулярной массой 45 кДа, являющаяся продуктом ограниченного протеолиза полноразмерного фактора PEDF по связи Leu382-Thr383. Обнаружено значительное уменьшение количества изоформы PEDF45 в ткани теноновой капсулы близоруких глаз по сравнению с контролем, а также общее снижение содержания водорастворимого фактора PEDF при близорукости.

3. Выявлена устойчивость фактора PEDF близоруких глаз к ограниченному протеолизу собственными протеолитическими ферментами организма.

4. Установлено, что наблюдаемое в тканях склеры и теноновой капсулы глаза при миопии нарушение нормального процессинга PEDF приводит к накоплению нерасщепленного белка в клетках фибробластов, сопровождающемуся образованием нерастворимых агрегатов.

5. Показано, что фибриллярные нерастворимые агрегаты, формируемые полноразмерным фактором PEDF в тканях склеры и теноновой капсулы глаз пациентов, страдающих различными формами близорукости, имеют амилоидоподобную структуру.

6. Высказано предположение, подтвержденное рядом полученных данных, что амилоидоподобные фибриллярные структуры, состоящие из молекул нерасщепленного.

PEDF, способны разрушать клеточные мембраны фибробластов и выходить во внеклеточный матрикс, что приводит к нарушению формирования коллагеновых волокон и, как следствие, к усилению миопического растяжения склеры.

5. СПИСОК СОКРАЩЕНИЙ.

ADP — adenosine diphosphate, аденозиндифосфат.

AIF — apoptosis inducing factor — фактор, индуцирующий апоптоз.

APH-1 — anterior pharynx-defective 1.

ARPE-19 — клеточная линия пигментного эпителия сетчатки ATP — Adenosine-5'-triphosphate, аденозинтрифосфат.

Bcl-2, Bax, Bak, Bad, Bid, Bim, Bik, Blk, Bel-10, Bcl-x, Bcl-xL, Bcl-xS, Bcl-w, BAG, Noxaвнутриклеточные белковые факторы-регуляторы апоптоза, представители семейства Вс1−2 bFGF — basic fibroblast growth factor, основной фактор роста фибробластов c-FLIP — cellular FLICE inhibitory protein.

CD44 — поверхностный клеточный гликопротеин, рецептор гиалуроновой кислоты.

CD95 — cluster of differentiation 95, кластер дифференцировки 95.

СК2 — casein kinase 2, казеинкиназа 2.

DHA — docosahexaenoic acid, докозагексоеновая кислота.

DMSO — диметилсульфоксид.

ELISA — enzyme-linked immunosorbent assay, иммуноферментный анализ.

ERK — Extracellular signal-regulated kinase, киназа, регулируемая внеклеточными сигналами.

FADD — Fas-Associated protein with Death Domain, белок, взаимодействующий с доменом смерти Fas-рецептора.

FasL — FAS ligand, Fas-лиганд.

FasR — FAS receptor, Fas-рецептор

G361 — клеточная линия меланомы человека.

GAPDH — glyceraldehyde-3-phosphate dehydrogenase, глицеральдегид-3-фосфат дегидрогеназа.

GFAP — glial fibrillary acidic protein, глиальный фибриллярный кислый белок.

НСТ116 — культура клеток раковой опухоли толстого кишечника человека HepG2 — клеточная линия гепатокарциномы человека HIF-la — hypoxia-inducible factor la, гипоксия-индуцируемый фактор la р53 — белок, транскрипционный фактор

HMVEC — линия микроваскулярных эндотелиальных клеток человека НиВМЕС — линия эндотелиальных костномозговых клеток человека.

HUVEC — Human umbilical vein endothelial cell, эндотелиальные клети аллантоисной вены человека.

IL — Interleukin, интерлекин.

JNK — c-Jun N-terminal kinase, c-Jun-N-концевая киназа LR — laminin receptor, ламининовый рецептор

МАРК — mitogen-activated protein kinase, митоген-активируемая протеинкиназа MDA-MB-231 — культура клеток линии M.D. Anderson — Metastatic Breast (рак грудной железы).

ММР — matrix metalloproteinase, матриксная металлопротеиназа NA — клеточная линия нейробластомы.

NF-кВ — nuclear factor kappa-light-chain-enhancer of activated В cells, ядерный фактор кВ NFAT — nuclear factor of activated T cells, ядерный фактор активированных T-лимфоцитов NLS — nuclear localization signal, сигнал внутриядерной локализации NPD1 — neuroprotectin D1, нейропротектин D1.

PAI-2 — plasminogen activator inhibitor, ингибитор активатора плазминогена тип 2 PEDF — pigment epithelium-derived factor, фактор дифференцировки пигментного эпителия PEDF-R — PEDF receptor, рецептор PEDF PEN-2 — presenilin enhancer 2.

PGDF — platelet-derived growth factor, тромбоцитарный фактор роста РКА — protein kinase А, протеинкиназа A.

PNPLA2 — РЕА2/натрин/пататин-подобный фосфолипазный домен PMSF — phenylmethanesulfonylfluoride, фенилметилсульфонилфторид.

PRAPy — proliferators-activated receptor-y.

PUMA — p53 upregulated modulator of apoptosis, р53-зависимый модулятор апоптоза RBM-4b — RNA binding motif protein 4b, белок с РНК-связывающим мотивом 4b RPE — retinal pigment epithelium, пигментный эпителий сетчатки TNF — tumor necrosis factor, фактор некроза опухоли U87-MG, Al72 — клеточные линии глиобластомы.

VEGF — vascular endothelial growth factor, сосудистый эндотелиальный фактор роста р38 -р38 митоген-активируемая протеинкиназа.

VEGFR — vascular endothelial growth factor receptor, рецептор сосудистого эндотелиального фактора роста а.о. — аминокислотный остаток АТР-синтаза — аденозинтрифосфатсинтаза БСА — бычий сывороточный альбумин ДАБ — 3,3' диаминобензидин.

ДНК, кДНК — дезоксирибонуклеиновая кислота, комплементарная ДНК.

ДТТ — dithiothreitol, дитиотрейтол.

ЕДТА — этилендиаминтетрауксусная кислота.

РНК — рибонуклеиновая кислота п.н. — пара нуклеотидов, т.п.н. — тысячи пар нуклеотидов ГТААГ — полиакриламидный гель ПЦР — полимеразная цепная реакция.

SDS-ПААГ — электрофорез в полиакриламидном геле в присутствии додецилсульфата натрия.

Трис — трис (гидроксиметил)аминометан.

Показать весь текст

Список литературы

  1. Tombran-Tink J., Johnson L.V. Neuronal differentiation of retinoblastoma cells induced by medium conditioned by human RPE cells // Invest. Ophthalmol. Vis. Sci. 1989. V. 30. P. 17 001 707.
  2. Tombran-Tink J., Chader G.J., Johnson L.V. PEDF: a pigment epithelium-derived factor with potent neuronal differentiative activity // Exp. Eye Res. 1991. V. 53. P. 411−414.
  3. Steele F.R., Chader G.J., Johnson L.V., Tombran-Tink J. Pigment epithelium-derived factor: neurotrophic activity and identification as a member of the serine protease inhibitor gene family // Proc. Natl. Acad. Sci. USA. 1993. V. 90. P. 1526−1530.
  4. Simonovic M., Gettins P.G., Volz K. Crystal structure of human PEDF, a potent anti-angiogenic and neurite growth-promoting factor // Proc. Natl. Acad. Sci. USA. 2001. V. 98. P. 11 131−11 135.
  5. Carrell R.W., Pemberton P.A., Boswell D.R. The serpins: evolution and adaptation in a family of protease inhibitors // Cold Spring Harb. Symp. Quant. Biol. 1987. V. 52. P. 527−535.
  6. Tombran-Tink J., Aparicio S., Xu X., Tink A.R., Lara N., Sawant S., Barnstable C.J., Zhang S.S. PEDF and the serpins: phylogeny, sequence conservation, and functional domains // J. Struct. Biol. 2005. V. 151. P. 130−150.
  7. Becerra S.P. Focus on Molecules: Pigment epithelium-derived factor (PEDF) // Exp. Eye. Res. 2006. V. 82. P. 739−740.
  8. Alberdi E., Hyde C.C., Becerra S.P. Pigment epithelium-derived factor (PEDF) binds to glycosaminoglycans: analysis of the binding site // Biochemistry. 1998. V. 37. P. 10 643−10 652.
  9. Huber R., Carrell R.W. Implications of the three-dimensional structure of alpha 1-antitrypsin for structure and function of serpins // Biochemistry. 1989. V. 28. P. 8951−8966.
  10. Pignolo R.J., Cristofalo V.J., Rotenberg M.O. Senescent WI-38 cells fail to express EPC-1, a gene induced in young cells upon entry into the GO state // J. Biol. Chem. 1993. V. 268. P. 8949−8957.
  11. Tombran-Tink J., Pawar H., Swaroop A., Rodriguez I., Chader G.J. Localization of the gene for pigment epithelium-derived factor (PEDF) to chromosome 17p 13.1 and expression in cultured human retinoblastoma cells // Genomics. 1994. V. 19. P. 266−272.
  12. Stratikos E., Alberdi E., Gettins P.G., Becerra S.P. Recombinant human pigment epithelium-derived factor (PEDF): characterization of PEDF overexpressed and secreted by eukaryotic cells // Protein Sei. 1996. V. 5. P. 2575−2582.
  13. Petersen S.V., Valnickova Z., Enghild J.J. Pigment-epithelium-derived factor (PEDF) occurs at a physiologically relevant concentration in human blood: purification and characterization // Biochem. J. 2003. V. 374. P. 199−206.
  14. Irving J. A., Pike R.N., Lesk A.M., Whisstock J.C. Phylogeny of the serpin superfamily: implications of patterns of amino acid conservation for structure and function // Genome Res. 2000. V. 10. P. 1845−1864.
  15. Tombran-Tink J., Shivaram S.M., Chader G.J., Johnson L.V., Bok D. Expression, secretion, and age-related downregulation of pigment epithelium-derived factor, a serpin with neurotrophic activity // J. Neurosci. 1995. V. 15. P. 4992−5003.
  16. Amaral J., Becerra S.P. Effects of human recombinant PEDF protein and PEDF-derived peptide 34-mer on choroidal neovascularization // Invest. Ophthalmol. Vis. Sci. 2010. V. 51. P. 1318−1326.
  17. Alberdi Е., Aymerich M.S., Becerra S.P. Binding of pigment epithelium-derived factor (PEDF) to retinoblastoma cells and cerebellar granule neurons: evidence for a PEDF receptor // J. Biol. Chem. 1999. V. 274. P. 31 605−31 612.
  18. Bilak M.M., Becerra S.P., Vincent A.M., Moss B.H., Aymerich M.S., Kuncl R.W. Identification of the neuroprotective molecular region of pigment epithelium-derived factor and its binding sites on motor neurons // J. Neurosci. 2002. V. 22. P. 9378−9386.
  19. Li H., Tran V.V., Hu Y., Mark Saltzman W., Barnstable C.J., Tombran-Tink J. A PEDF N-terminal peptide protects the retina from ischemic injury when delivered in PLGA nanospheres // Exp. Eye Res. 2006. V. 83. P. 824−833.
  20. Meyer C., Notari L., Becerra S.P. Mapping the type I collagen-binding site on pigment epithelium-derived factor. Implications for its antiangiogenic activity // J. Biol. Chem. 2002. V. 277. P. 45 400−45 407.
  21. Zhou A., Carrell R.W., Huntington J.A. The serpin inhibitory mechanism is critically dependent on the length of the reactive center loop // J. Biol. Chem. 2001. V. 276. P. 27 541−27 547.
  22. Gettins P.G.W., Patston P.A., Olson S.T. Serpins: Structure, function and biology. -Austin, Texas: R.G. Landes Co, 1996.
  23. Huntington J.A., Fan B., Karlsson K.E., Deinum J., Lawrence D.A., Gettins P.G. Serpin conformational change in ovalbumin. Enhanced reactive center loop insertion through hinge region mutations // Biochemistry. 1997. V. 36. P. 5432−5440.
  24. Becerra S.P., Sagasti A., Spinella P., Notario V. Pigment epithelium-derived factor behaves like a noninhibitory serpin. Neurotrophic activity does not require the serpin reactive loop // J. Biol. Chem. 1995. V. 270. P. 25 992−25 999.
  25. Shao H., Schvartz I., Shaltiel S. Secretion of pigment epithelium-derived factor. Mutagenic study // Eur. J. Biochem. 2003. V. 270. P. 822−831.
  26. Maik-Rachline G., Shaltiel S., Seger R. Extracellular phosphorylation converts pigment epithelium-derived factor from a neurotrophic to an antiangiogenic factor // Blood. 2005. V. 105. P. 670−678.
  27. Maik-Rachline G., Seger R. Variable phosphorylation states of pigment-epithelium-derived factor differentially regulate its function // Blood. 2006. V. 107. P. 2745−2752.
  28. Konson A., Pradeep S., Seger R. Phosphomimetic mutants of pigment epithelium-derived factor with enhanced antiangiogenic activity as potent anticancer agents // Cancer Res. 2010. V. 70. P. 6247−6257.
  29. Konson A., Pradeep S., DAcunto C.W., Seger R. Pigment epithelium-derived factor and its phosphomimetic mutant induce JNK-dependent apoptosis and p38-mediated migration arrest//J. Biol. Chem. 2011. V. 286. P. 3540−3551.
  30. Lai M.C., Kuo H.W., Chang W.C., Tarn W.Y. A novel splicing regulator shares a nuclear import pathway with SR proteins // EMBO J. 2003. V. 22. P. 1359−1369.
  31. Naidoo N., Cooperman B.S., Wang Z.M., Liu X.Z., Rubin H. Identification of lysines within alpha 1-antichymotrypsin important for DNA binding. An unusual combination of DNA-binding elements // J. Biol. Chem. 1995. V. 270. P. 14 548−14 555.
  32. Pignolo R.J., Rotenberg M.O., Cristofalo V.J. Analysis of EPC-1 growth state-dependent expression, specificity, and conservation of related sequences // J. Cell. Physiol. 1995. V. 162. P. 110−118.
  33. Isobe M., Emanuel B.S., Givol D., Oren M., Croce C.M. Localization of gene for human p53 tumour antigen to band 17pl3 // Nature. 1986. V. 320. P. 84−85.
  34. Jablonski M.M., Tombran-Tink J., Mrazek D.A., Iannaccone A. Pigment epithelium-derived factor supports normal development of photoreceptor neurons and opsin expression after retinal pigment epithelium removal // J. Neurosci. 2000. V. 20. P. 7149−7157.
  35. Houenou L.J., D’Costa A.P., Li L., Turgeon V.L., Enyadike C., Alberdi E., Becerra S.P. Pigment epithelium-derived factor promotes the survival and differentiation of developing spinal motor neurons // J. Comp. Neurol. 1999. V. 412. P. 506−514.
  36. Jablonski M.M., Tombran-Tink J., Mrazek D.A., Iannaccone A. Pigment epithelium-derived factor supports normal Miiller cell development and glutamine synthetase expression after removal of the retinal pigment epithelium // Glia. 2001. V. 35. P. 14−25.
  37. Sugita Y., Becerra S.P., Chader G.J., Schwartz J.P. Pigment epithelium-derived factor (PEDF) has direct effects on the metabolism and proliferation of microglia and indirect effects on astrocytes // J. Neurosci. Res. 1997. V. 49. P. 710−718.
  38. Brodeur G.M. Schwann cells as antineuroblastoma agents // N. Engl. J. Med. 1996. V. 334. P. 1537−1539.
  39. Phillips N.J., Ziegler M.R., Radford D.M., Fair K.L., Steinbrueck T., Xynos F.P., Donis-Keller H. Allelic deletion on chromosome 17pl3.3 in early ovarian cancer // Cancer Res. 1996. V. 56. P. 606−611.
  40. Guillery R.W. Neural abnormalities in albinos // Trends Neurosci. 1986. V. 9. P. 364 367.
  41. Abul-Hassan K., Walmsley R., Tombran-Tink J., Boulton M. Regulation of tyrosinase expression and activity in cultured human retinal pigment epithelial cells // Pigment Cell Res. 2000. V. 13. P. 436−441.
  42. Knudson W. Tumor-associated hyaluronan. Providing an extracellular matrix that facilitates invasion // Am. J. Pathol. 1996. V. 148. P. 1721−1726.
  43. Fjeldstad K., Kolset S.O. Decreasing the metastatic potential in cancers—targeting the heparan sulfate proteoglycans // Curr. Drug Targets. 2005. V. 6. P. 665−682.
  44. Gotte M., Yip G.W. Heparanase, hyaluronan, and CD44 in cancers: a breast carcinoma perspective // Cancer Res. 2006. V. 66. P. 10 233−10 237.
  45. Guo Y.J., Liu G., Wang X., Jin D., Wu M., Ma J., Sy M.S. Potential use of soluble CD44 in serum as indicator of tumor burden and metastasis in patients with gastric or colon cancer // Cancer Res. 1994. V. 54. P. 422−426.
  46. Sy M.S., Guo Y.J., Stamenkovic I. Inhibition of tumor growth in vivo with a soluble CD44-immunoglobulin fusion protein // J. Exp. Med. 1992. V. 176. P. 623−627.
  47. Mohapatra S., Yang X., Wright J.A., Turley E.A., Greenberg A.H. Soluble hyaluronan receptor RHAMM induces mitotic arrest by suppressing Cdc2 and cyclin B1 expression // J. Exp. Med. 1996. V. 183. P. 1663−1668.
  48. Taniwaki T., Becerra S.P., Chader G.J., Schwartz J.P. Pigment epithelium-derived factor is a survival factor for cerebellar granule cells in culture // J. Neurochem. 1995. V. 64. P. 2509−2517.
  49. Araki T., Taniwaki T., Becerra S.P., Chader G.J., Schwartz J.P. Pigment epithelium-derived factor (PEDF) differentially protects immature but not mature cerebellar granule cells against apoptotic cell death // J. Neurosci. Res. 1998. V. 53. P. 7−15.
  50. Taniwaki T., Hirashima N., Becerra S.P., Chader G.J., Etcheberrigaray R., Schwartz J.P. Pigment epithelium-derived factor protects cultured cerebellar granule cells against glutamate-induced neurotoxicity // J. Neurochem. 1997. V. 68. P. 26−32.
  51. DeCoster M.A., Schabelman E., Tombran-Tink J., Bazan N.G. Neuroprotection by pigment epithelial-derived factor against glutamate toxicity in developing primary hippocampal neurons // J. Neurosci. Res. 1999. V. 56. P. 604−610.
  52. Bilak M.M., Corse A.M., Bilak S.R., Lehar M., Tombran-Tink J., Kuncl R.W. Pigment epithelium-derived factor (PEDF) protects motor neurons from chronic glutamate-mediated neurodegeneration // J. Neuropathol. Exp. Neurol. 1999. V. 58. P. 719−728.
  53. Cao W., Tombran-Tink J., Chen W., Mrazek D., Elias R., McGinnis J.F. Pigment epithelium-derived factor protects cultured retinal neurons against hydrogen peroxide-induced cell death // J. Neurosci. Res. 1999. V. 57. P. 789−800.
  54. Ho T.C., Yang Y.C., Cheng H.C., Wu A.C., Chen S.L., Tsao Y.P. Pigment epithelium-derived factor protects retinal pigment epithelium from oxidant-mediated barrier dysfunction // Biochem. Biophys. Res. Commun. 2006. V. 342. P. 372−378.
  55. Cayouette M., Smith S.B., Becerra S.P., Gravel C. Pigment epithelium-derived factor delays the death of photoreceptors in mouse models of inherited retinal degenerations // Neurobiol. Dis. 1999. V. 6. P. 523−532.
  56. Wang H., Shimoji M., Yu S.W., Dawson T.M., Dawson V.L. Apoptosis inducing factor and PARP-mediated injury in the MPTP mouse model of Parkinson’s disease // Ann. N. Y. Acad. Sci. 2003. V. 991. P. 132−139.
  57. Reinoso M.A., Mukherjee P., Marcheselli V., Bergsma D., Hesse R., Bazan N. PEDF Promotes Biosynthesis of a Novel Anti-inflammatory and Anti-apoptotic Mediator NPD1 in Retinal Pigment Epithelial Cells // Ochsner J. 2008. V. 8. P. 39−43.
  58. Klein J.A., Ackerman S.L. Oxidative stress, cell cycle, and neurodegeneration // J. Clin. Invest. 2003. V. 111. P. 785−793.
  59. Gross A., McDonnell J.M., Korsmeyer S.J. BCL-2 family members and the mitochondria in apoptosis // Genes Dev. 1999. V. 13. P. 1899−1911.
  60. Mukherjee P.K., Marcheselli V.L., Barreiro S., Hu J., Bok D., Bazan N.G. Neurotrophins enhance retinal pigment epithelial cell survival through neuroprotectin D1 signaling //Proc. Natl. Acad. Sci. USA. 2007. V. 104. P. 13 152−13 157.
  61. Broadhead M.L., Becerra S.P., Choong P.F., Dass C.R. The applied biochemistry of PEDF and implications for tissue homeostasis // Growth Factors. 2010. V. 28. P. 280−285.
  62. Zhou X., Li F., Kong L., Chodosh J., Cao W. Anti-inflammatory effect of pigment epithelium-derived factor in DBA/2J mice // Mol. Vis. 2009. V. 15. P. 438−450.
  63. Shohami E., Ginis I., Hallenbeck J.M. Dual role of tumor necrosis factor alpha in brain injury // Cytokine Growth Factor Rev. 1999. V. 10. P. 119−130.
  64. Yuan L., Neufeld A.H. Tumor necrosis factor-alpha: a potentially neurodestructive cytokine produced by glia in the human glaucomatous optic nerve head // Glia. 2000. V. 32. P. 4250.
  65. Yuan L., Neufeld A.H. Activated microglia in the human glaucomatous optic nerve head // J. Neurosci. Res. 2001. V. 64. P. 523−532.
  66. Gracie J.A., Robertson S.E., Mclnnes I.B. Interleukin-18 // J. Leukoc. Biol. 2003. V. 73. P. 213−224.
  67. Wang L., Cioffi G.A., Cull G., Dong J., Fortune B. Immunohistologic evidence for retinal glial cell changes in human glaucoma // Invest. Ophthalmol. Vis. Sci. 2002. V. 43. P. 10 881 094.
  68. Dawson D.W., Volpert O.V., Gillis P., Crawford S.E., Xu H., Benedict W.B., N. P. Pigment epithelium-derived factor: a potent inhibitor of angiogenesis // Science. 1999. V. 285. P. 245−248.
  69. Ferrara N., Davis-Smyth T. The biology of vascular endothelial growth factor // Endocr. Rev. 1997. V. 18. P. 4−25.
  70. Klagsbrun M., Vlodavsky I. Biosynthesis and storage of basic fibroblast growth factor (bFGF) by endothelial cells: implication for the mechanism of action of angiogenesis // Prog. Clin. Biol. Res. 1988. V. 266. P. 55−61.
  71. DiPietro L.A., Nebgen D.R., Polverini P.J. Downregulation of endothelial cell thrombospondin 1 enhances in vitro angiogenesis // J. Vase. Res. 1994. V. 31. P. 178−185.
  72. Apte R.S., Barreiro R.A., Duh E., Volpert O., Ferguson T.A. Stimulation of neovascularization by the anti-angiogenic factor PEDF // Invest. Ophthalmol. Vis. Sci. 2004. V. 45. P. 4491−4497.
  73. Matsumoto T., Claesson-Welsh L. VEGF receptor signal transduction // Sci. STKE. 2001. V. 2001. P. re21.
  74. Boulton M.E., Cai J., Grant M.B. gamma-Secretase: a multifaceted regulator of angiogenesis //J. Cell. Mol. Med. 2008. V. 12. P. 781−795.
  75. Cai J., Jiang W.G., Grant M.B., Boulton M. Pigment epithelium-derived factor inhibits angiogenesis via regulated intracellular proteolysis of vascular endothelial growth factor receptor 1 //J. Biol. Chem. 2006. V. 281. P. 3604−3613.
  76. Yang X.M., Yafai Y., Wiedemann P., Kuhrt H., Wang Y.S., Reichenbach A., Eichler W. Hypoxia-induced upregulation of pigment epithelium-derived factor by retinal glial (Miiller) cells // J. Neurosci. Res. 2012. V. 90. P. 257−266.
  77. Angayarkanni N., Selvi R., Pukhraj R., Biswas J., Bhavesh S.J., Tombran-Tink J. Ratio of the vitreous vascular endothelial growth factor and pigment epithelial-derived factor in Eales disease // J. Ocul. Biol. Dis. Infor. 2009. V. 2. P. 20−28.
  78. Pons M., Marin-Castano M.E. Cigarette smoke-related hydroquinone dysregulates MCP-1, VEGF and PEDF expression in retinal pigment epithelium in vitro and in vivo // PLoS One. 2011. V. 6. P. el6722.
  79. Fan W., Crawford R., Xiao Y. The ratio of VEGF/PEDF expression in bone marrow mesenchymal stem cells regulates neovascularization // Differentiation. 2011. V. 81. P. 181−191.
  80. Pons M., Marin-Castano M.E. Nicotine increases the VEGF/PEDF ratio in retinal pigment epithelium: a possible mechanism for CNV in passive smokers with AMD // Invest. Ophthalmol. Vis. Sci. 2011. V. 52. P. 3842−3853.
  81. Broadhead M.L., Dass C.R., Choong P.F. Cancer cell apoptotic pathways mediated by PEDF: prospects for therapy // Trends Mol. Med. 2009. V. 15. P. 461−467.
  82. Alberts B., Johnson A., Lewis J., Raff M., Roberts K., Walter P. Molecular Biology of the Cell. New York: Garland Science, 2008.
  83. Locksley R.M., Killeen N., Lenardo M.J. The TNF and TNF receptor superfamilies: integrating mammalian biology // Cell. 2001. V. 104. P. 487−501.
  84. Peter M.E., Krammer P.H. Mechanisms of CD95 (APO-l/Fas)-mediated apoptosis // Curr. Opin. Immunol. 1998. V. 10. P. 545−551.
  85. Mirochnik Y., Aurora A.S.-H., F. T., Deabes A., Shifrin V., Beckmann R., Polsky C., Volpert O.V. Short pigment epithelial-derived factor-derived peptide inhibits angiogenesis and tumor growth // Clin. Cancer Res. 2009. V. 15. P. 1655−1663.
  86. Bouck N. PEDF: anti-angiogenic guardian of ocular function // Trends Mol. Med. 2002. V. 8. P. 330−334.
  87. Gerber H.P., Dixit V., Ferrara N. Vascular endothelial growth factor induces expression of the antiapoptotic proteins Bcl-2 and Al in vascular endothelial cells // J. Biol. Chem. 1998. V. 273. P. 13 313−13 316.
  88. Aoudjit F., Vuori K. Matrix attachment regulates Fas-induced apoptosis in endothelial cells: a role for c-flip and implications for anoikis // J. Cell Biol. 2001. V. 152. P. 633−643.
  89. Stellmach V., Crawford S.E., Zhou W., Bouck N. Prevention of ischemia-induced retinopathy by the natural ocular antiangiogenic agent pigment epithelium-derived factor // Proc. Natl. Acad. Sci. USA. 2001. V. 98. P. 2593−2597.
  90. Barreiro R., Schadlu R., Herndon J., Kaplan H.J., Ferguson T.A. The role of Fas-FasL in the development and treatment of ischemic retinopathy // Invest. Ophthalmol. Vis. Sci. 2003. V. 44. P.1282−1286.
  91. Chen L., Zhang S.S., Barnstable C.J., Tombran-Tink J. PEDF induces apoptosis in human endothelial cells by activating p38 MAP kinase dependent cleavage of multiple caspases // Biochem. Biophys. Res. Commun. 2006. V. 348. P. 1288−1295.
  92. Mayo L.D., Kessler KM., Pincheira R., Warren R.S., Donner D.B. Vascular endothelial cell growth factor activates CRE-binding protein by signaling through the KDR receptor tyrosine kinase // J. Biol. Chem. 2001. V. 276. P. 25 184−25 189.
  93. Rousseau S., Houle F., Landry J., Huot J. p38 MAP kinase activation by vascular endothelial growth factor mediates actin reorganization and cell migration in human endothelial cells // Oncogene. 1997. V. 15. P. 2169−2177.
  94. Du C., Fang M., Li Y., Li L., Wang X. Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition // Cell. 2000. V. 102. P. 33−42.
  95. Elmore S. Apoptosis: a review of programmed cell death // Toxicol. Pathol. 2007. V. 35. P. 495−516.
  96. Cory S., Adams J.M. The Bcl2 family: regulators of the cellular life-or-death switch // Nat. Rev. Cancer. 2002. V. 2. P. 647−656.
  97. Zhang T., Guan M., Xu C., Chen Y., Lu Y. Pigment epithelium-derived factor inhibits glioma cell growth in vitro and in vivo // Life Sci. 2007. V. 81. P. 1256−1263.
  98. Ghobrial I.M., Witzig T.E., Adjei A.A. Targeting apoptosis pathways in cancer therapy// CA Cancer J. Clin. 2005. V. 55. P. 178−194.
  99. Liu F.T., Newland A.C., Jia L. Bax conformational change is a crucial step for PUMA-mediated apoptosis in human leukemia // Biochem. Biophys. Res. Commun. 2003. V. 310. P.956−962.
  100. Oda E., Ohki R., Murasawa H., Nemoto J., Shibue T., Yamashita T., Tokino T., Taniguchi T., Tanaka N. Noxa, a BH3-only member of the Bcl-2 family and candidate mediator of p53-induced apoptosis // Science. 2000. V. 288. P. 1053−1058.
  101. Gaetano C., Colussi C., Capogrossi M.C. PEDF, PPAR-gamma, p53: deadly circuits arise when worlds collide // Cardiovasc. Res. 2007. V. 76. P. 195−196.
  102. Zaichuk T.A., Shroff E.H., Emmanuel R., Filleur S., Nelius T., Volpert O.V. Nuclear factor of activated T cells balances angiogenesis activation and inhibition // J. Exp. Med. 2004. V. 199. P. 1513−1522.
  103. Ogata N., Wang L., Jo N., Tombran-Tink J., Takahashi K., Mrazek D., Matsumura M. Pigment epithelium derived factor as a neuroprotective agent against ischemic retinal injury // Curr. Eye Res. 2001. V. 22. P. 245−252.
  104. Chen P., Hamilton M., Thomas C.A., Kroeger K., Carrion M., Macgill R.S., Gehlbach P., Brough D.E., Wei L.L., King C.R., Bruder J.T. Persistent expression of PEDF in the eye using high-capacity adenovectors // Mol. Ther. 2008. V. 16. P. 1986−1994.
  105. Hamilton M.M., Byrnes G.A., Gall J.G., Brough D.E., King C.R., Wei L.L. Alternate serotype adenovector provides long-term therapeutic gene expression in the eye // Mol. Vis. 2008. V. 14. P. 2535−2546.
  106. Zhou X.Y., Liao Q., Pu Y.M., Tang Y.Q., Gong X., Li J., Xu Y., Wang Z.G. Ultrasound-mediated microbubble delivery of pigment epithelium-derived factor gene into retina inhibits choroidal neovascularization // Chin. Med. J. 2009. V. 122. P. 2711−2717.
  107. Park K., Jin J., Hu Y., Zhou K., Ma J.X. Overexpression of pigment epithelium-derived factor inhibits retinal inflammation and neovascularization // Am. J. Pathol. 2011. V. 178. P. 688−698.
  108. Imai D., Yoneya S., Gehlbach P.L., Wei L.L., Mori K. Intraocular gene transfer of pigment epithelium-derived factor rescues photoreceptors from light-induced cell death // J. Cell Physiol. 2005. V. 202. P. 570−578.
  109. Takita H., Yoneya S., Gehlbach P.L., Duh E.J., Wei L.L., Mori K. Retinal neuroprotection against ischemic injury mediated by intraocular gene transfer of pigment epithelium-derived factor // Invest. Ophthalmol. Vis. Sci. 2003. V. 44. P. 4497−4504.
  110. Leaver S.G., Cui Q., Plant G.W., Arulpragasam A., Hisheh S., Verhaagen J., Harvey A.R. AAV-mediated expression of CNTF promotes long-term survival and regeneration of adult rat retinal ganglion cells // Gene Ther. 2006. V. 13. P. 1328−1341.
  111. Sanagi T., Yabe T., Yamada H. Adenoviral gene delivery of pigment epithelium-derived factor protects striatal neurons from quinolinic acid-induced excitotoxicity // J. Neuropathol. Exp. Neurol. 2010. V. 69. P. 224−233.
  112. Yang H., Grossniklaus H.E. Constitutive overexpression of pigment epithelium-derived factor inhibition of ocular melanoma growth and metastasis // Invest. Ophthalmol. Vis. Sci. 2010. V. 51. P. 28−34.
  113. Streck C.J., Zhang Y., Zhou J., Ng C., Nathwani A.C., Davidoff A.M. Adeno-associated virus vector-mediated delivery of pigment epithelium-derived factor restricts neuroblastoma angiogenesis and growth // J. Pediatr. Surg. 2005. V. 40. P. 236−243.
  114. Wang L., Schmitz V., Perez-Mediavilla A., Izal I., Prieto J., Qian C. Suppression of angiogenesis and tumor growth by adenoviral-mediated gene transfer of pigment epithelium-derived factor // Mol. Ther. 2003. V. 8. P. 72−79.
  115. He S.S., Shi H.S., Yin T., Li Y.X., Luo S.T., Wu Q.J., Lu L" Wei Y.Q., Yang L. AAV-mediated gene transfer of human pigment epithelium-derived factor inhibits lewis lung carcinoma growth in mice // Oncol. Rep. 2012. V. 27. P. 1142−1148.
  116. Cui F.Y., Song X.R., Li Z.Y., Li S.Z., Mu B., Mao Y.Q., Wei Y.Q., Yang L. The pigment epithelial-derived factor gene loaded in PLGA nanoparticles for therapy of colon carcinoma // Oncol. Rep. 2010. V. 24. P. 661−668.
  117. Gao Y., Yao A., Zhang W., Lu S., Yu Y., Deng L., Yin A., Xia Y., Sun B" Wang X. Human mesenchymal stem cells overexpressing pigment epithelium-derived factor inhibit hepatocellular carcinoma in nude mice // Oncogene. 2010. V. 29. P. 2784−2794.
  118. Guan M., Jiang H., Xu C., Xu R., Chen Z., Lu Y. Adenovirus-mediated PEDF expression inhibits prostate cancer cell growth and results in augmented expression of PAI-2 // Cancer Biol. Ther. 2007. V. 6. P. 419−425.
  119. Guan M., Pang C.P., Yam H.F., Cheung K.F., Liu W.W., Lu Y. Inhibition of glioma invasion by overexpression of pigment epithelium-derived factor // Cancer Gene Ther. 2004. V. 11. P. 325−332.
  120. Ek E.T., Dass C.R., Contreras K.G., Choong P.F. Pigment epithelium-derived factor overexpression inhibits orthotopic osteosarcoma growth, angiogenesis and metastasis // Cancer Gene Ther. 2007. V. 14. P. 616−626.
  121. Zhang L., Chen J., Ke Y., Mansel R.E., Jiang W.G. Down-regulation of PEDF expression by ribozyme transgene in endothelial and lung cancer cells and its impact on angiogenesis in vitro // Oncol. Rep. 2005. V. 14. P. 1615−1619.
  122. Wang J.J., Zhang S.X., Mott R., Chen Y., Knapp R.R., Cao W., Ma J.X. Antiinflammatory effects of pigment epithelium-derived factor in diabetic nephropathy // Am. J. Physiol. Renal Physiol. 2008. V. 294. P. F1166-F1173.
  123. Wong W.T., Rex T.S., Auricchio A., Maguire A.M., Chung D., Tang W., Bennett J. Effect of over-expression of pigment epithelium derived factor (PEDF) on developing retinal vasculature in the mouse // Mol. Vis. 2004. V. 10. P. 837−844.
  124. Aymerich M.S., Alberdi E.M., Martinez A., Becerra S.P. Evidence for pigment epithelium-derived factor receptors in the neural retina // Invest. Ophthalmol. Vis. Sci. 2001. V. 42. P. 3287−3293.
  125. Gettins P.G., Simonovic M., Volz K. Pigment epithelium-derived factor (PEDF), a serpin with potent anti-angiogenic and neurite outgrowth-promoting properties // Biol. Chem. 2002. V. 383. P. 1677−1682.
  126. Goetzl E.J., Tigyi G. Lysophospholipids and their G protein-coupled receptors in biology and diseases // J. Cell Biochem. 2004. V. 92. P. 867−868.
  127. Balsinde J., Winstead M.V., Dennis E.A. Phospholipase A (2) regulation of arachidonic acid mobilization // FEBS Lett. 2002. V. 531. P. 2−6.
  128. SanGiovanni J.P., Chew E.Y. The role of omega-3 long-chain polyunsaturated fatty acids in health and disease of the retina // Prog. Retin. Eye Res. 2005. V. 24. P. 87−138.
  129. Kim H.Y., Akbar M., Kim K.Y. Inhibition of neuronal apoptosis by polyunsaturated fatty acids // J. Mol. Neurosci. 2001. V. 16. P. 223−227.
  130. Rose D.P., Connolly J.M. Omega-3 fatty acids as cancer chemopreventive agents // Pharmacol. Ther. 1999. V. 83. P. 217−244.
  131. Rose D.P., Connolly J.M. Antiangiogenicity of docosahexaenoic acid and its role in the suppression of breast cancer cell growth in nude mice // Int. J. Oncol. 1999. V. 15. P. 10 111 015.
  132. Bernard A., Gao-Li J., Franco C.A., Bouceba T., Huet A., Li Z. Laminin receptor involvement in the anti-angiogenic activity of pigment epithelium-derived factor // J. Biol. Chem. 2009. V. 284. P. 10 480−10 490.
  133. Wang K.S., Kuhn R.J., Strauss E.G., Ou S., Strauss J.H. High-affinity laminin receptor is a receptor for Sindbis virus in mammalian cells // J. Virol. 1992. V. 66. P. 4992−5001.
  134. Tio P.H., Jong W.W., Cardosa M.J. Two dimensional VOPBA reveals laminin receptor (LAMR1) interaction with dengue virus serotypes 1, 2 and 3 // Virol. J. 2005. V. 2. P. 25.
  135. Buto S., Tagliabue E., Ardini E., Magnifico A., Ghirelli C., van den Brule F., Castronovo V., Colnaghi M.I., Sobel M.E., Menard S. Formation of the 67-kDa laminin receptor by acylation of the precursor // J. Cell Biochem. 1998. V. 69. P. 244−251.
  136. Nelson J., McFerran N.V., Pivato G., Chambers E., Doherty C., Steele D., Timson D.J. The 67 kDa laminin receptor: structure, function and role in disease // Biosci. Rep. 2008. V. 28. P. 33−48.
  137. Kleinman H.K., Ogle R.C., Cannon F.B., Little C.D., Sweeney T.M., Luckenbill-Edds L. Laminin receptors for neurite formation // Proc. Natl. Acad. Sci. USA. 1988. V. 85. P. 12 821 286.
  138. McKenna D.J., Simpson D.A., Feeney S., Gardiner T.A., Boyle C., Nelson J., Stitt A.W. Expression of the 67 kDa laminin receptor (67LR) during retinal development: correlations with angiogenesis // Exp. Eye Res. 2001. V. 73. P. 81−92.
  139. Tanaka M., Narumi K., Isemura M., Abe M., Sato Y., Abe T., Saijo Y., Nukiwa T., Satoh K. Expression of the 37-kDa laminin binding protein in murine lung tumor cell correlates with tumor angiogenesis // Cancer Lett. 2000. V. 153. P. 161−168.
  140. Notari L., Arakaki N., Mueller D., Meier S., Amaral J., Becerra S.P. Pigment epithelium-derived factor binds to cell-surface F (1)-ATP synthase // FEBS J. 2010. V. 277. P. 2192−2205.
  141. Veitonmaki N., Cao R., Wu L.H., Moser T.L., Li B., Pizzo S.V., Zhivotovsky B., Cao Y. Endothelial cell surface ATP synthase-triggered caspase-apoptotic pathway is essential for kl-5-induced antiangiogenesis // Cancer Res. 2004. V. 64. P. 3679−3686.
  142. Chi S.L., Pizzo S.V. Angiostatin is directly cytotoxic to tumor cells at low extracellular pH: a mechanism dependent on cell surface-associated ATP synthase. // Cancer Res. 2006. V. 66. P. 875−882.
  143. Summers Rada J.A., Shelton S., Norton T.T. The sclera and myopia // Exp Eye Res. 2006. V. 82. P. 185−200.
  144. Э.С. Близорукость. Москва: Медицина, 1999.
  145. Е.Н. Биомеханические и биохимические нарушения склеры при прогрессирующей близорукости и методы их коррекции Book Section. // Зрительные функции и их коррекция у детей / book auth. Аветисов С. Э., Кащенко Т. П., М. Ш. А. -Москва: Медицина, 2006.
  146. Trier К., Olsen Е.В., Kobayashi Т., Ribel-Madsen S.M. Biochemical and ultrastructural changes in rabbit sclera after treatment with 7-methylxanthine, theobromine, acetazolamide, or L-ornithine // Br J Ophthalmol. 1999. V. 83. P. 1370−1375.
  147. Jablonski M., Tombran-Tink J., Mrazek D., Iannaccone A. Pigment epithelium-derived factor supports normal development of photoreceptor neurons and opsin expression after retinal pigment epithelium removal // JNeurosci. 2000. V. 20. P. 7149−7157.
  148. Ogata N., Imaizumi M., Miyashiro M., Arichi M., Matsuoka M., Ando A., Matsumura M. Low levels of pigment epithelium-derived factor in highly myopic eyes with chorioretinal atrophy // Am J Ophthalmol. 2005. V. 140. P. 937−939.
  149. Guggenheim J., McBrien N. Form-deprivation myopia induces activation of scleral matrix metalloproteinase-2 in tree shrew // Invest Ophthalmol Vis Sci. 1996. V. 37. P. 1380−1395.
  150. Shauly Y., Miller В., Lichtig C., Modan M., Meyer E. Tenon’s capsule: ultrastructure of collagen fibrils in normals and infantile esotropia // Invest Ophthalmol Vis Sci. 1992. V. 33. P. 651−656.
  151. Thomas P., Fenech М. A review of genome mutation and Alzheimer’s disease // Mutagenesis. 2006. V. 22. P. 15−33.
  152. Hou X., Aguilar M.I., Small D.H. Transthyretin and familial amyloidotic polyneuropathy. Recent progress in understanding the molecular mechanism of neurodegeneration // FEBS J. 2007. V. 274. P. 1637−1650.
  153. Xu X., Zhang S.S., Barnstable C.J., Tombran-Tink J. Molecular phylogeny of the antiangiogenic and neurotrophic serpin, pigment epithelium derived factor in vertebrates // BMC Genomics. 2006. V. 7. P. 248.
  154. Engel A., Gaub H.E., Miiller D.J. Atomic force microscopy: a forceful way with single molecules // Curr Biol. 1999. V. 9. P. R133−136.
  155. Uversky V.N., Fink A.L. Conformational constraints for amyloid fibrillation: the importance of being unfolded // Biochim Biophys Acta. 2004. V. 1698. P. 131−153.
  156. Yanamandra K., Gruden M.A., Casaite V., Meskys R., Forsgren L., Morozova-Roche L.A. a-Synuclein Reactive Antibodies as Diagnostic Biomarkers in Blood Sera of Parkinson’s Disease Patients // PLoS ONE. 2011. V. 6. P. el8513.
  157. Steiner J.A., Angot E., Brundin P. A deadly spread: cellular mechanisms of a-synuclein transfer // Cell Death Differ. 2011. V. 18. P. 1425−1433.
  158. Zhou A., Faint R., Charlton P., Dafforn T.R., Carrell R.W., Lomas D.A. Polymerization of plasminogen activator inhibitor-1. // J Biol Chem. 2001. V. 276. P. 9115−9122.
  159. Lowry O.H., Rosebrough N.J., Farr A.L., Randall R.J. Protein Measurement With the Folin Phenol Reagent // J Biol Chem. 1952. V. 193. P. 265−275.
  160. Bradford M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding // Anal Biochem. 1976. V. 72. P. 248−254.
  161. Laemmli U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4 //Nature. 1970. V. 227. P. 680−685.
Заполнить форму текущей работой