Помощь в написании студенческих работ
Антистрессовый сервис

Влияние пониженного содержания кислорода на культивируемые мезенхимальные стромальные клетки-предшественники костного мозга крыс

ДиссертацияПомощь в написанииУзнать стоимостьмоей работы

Снижение жизнеспособности культивируемых мезенхимальных стромальных клеток-предшественников костного мозга крыс в условиях аноксии определяется продолжительностью аноксического воздействия. На начальных этапах воздействия аноксия активирует в клетках-предшественниках процессы апоптоза, а основным повреждающим механизмом при дальнейшем их пребывании в условиях аноксии является некроз. Часовое… Читать ещё >

Влияние пониженного содержания кислорода на культивируемые мезенхимальные стромальные клетки-предшественники костного мозга крыс (реферат, курсовая, диплом, контрольная)

Содержание

  • Список сокращений
  • Глава 1. Обзор литературы
    • 1. 1. Мультипотентные мезенхимальные стромальные клетки (МСК)
      • 1. 1. 1. Понятие стволовости, стволовой клетки, мезенхимальной 9 стволовой клетки
      • 1. 1. 2. Морфология культивируемых МСК и их гетерогенность
      • 1. 1. 3. Пролиферативная активность культивируемых МСК и их 13 гетерогенность
      • 1. 1. 4. Иммуннофенотип культивируемых МСК и их гетерогенность
      • 1. 1. 5. Дифференцировочные потенции МСК in vitro и in vivo и их 25 гетерогенность
    • 1. 2. Механизмы реализации воздействия гипоксии на клетки
    • 1. 3. Эффекты гипоксии на клетки in vitro
      • 1. 3. 1. Гипоксия и клеточная пролиферация
      • 1. 3. 2. Гипоксия и жизнеспособность клеток
      • 1. 3. 3. Гипоксия и иммунофенотип клеток
      • 1. 3. 4. Гипоксия и дифференцировка клеток
  • Глава 2. Материалы и методы исследований
    • 2. 1. Используемое оборудование, материалы и реактивы
    • 2. 2. Приготовление сред для культивирования МСК костного мозга крыс
      • 2. 2. 1. Приготовление полной среды
      • 2. 2. 2. Приготовление остеогенной среды
      • 2. 2. 3. Приготовление адипогенной среды
      • 2. 2. 4. Приготовление среды для криоконсервации клеток
    • 2. 3. Получение и культивирования МСК костного мозга крыс
      • 2. 3. 1. Получение первичных культур МСК костного мозга крыс
      • 2. 3. 2. Пассирование первичной культуры и последующих субкультур 71 МСК костного мозга крыс
      • 2. 3. 3. Культивирование клеток в условиях пониженного содержания 72 кислорода
      • 2. 3. 4. Криоконсервация культивируемых МСК костного мозга крыс
    • 2. 4. Индукция дифференцировки МСК костного мозга крыс in vitro
      • 2. 4. 1. Индукция остеогенной дифференировки
      • 2. 4. 2. Индукция адипогенной дифференцировки
    • 2. 5. Оценка характеристик культивируемых МСК костного мозга крыс
      • 2. 5. 1. Принцип метода проточной цитофлуориметрии для анализа 74 антигенов и морфологических характеристик клеток
      • 2. 5. 2. Оценка морфологических характеристик культивируемых МСК 75 костного мозга крыс
      • 2. 5. 3. Оценка пролиферативной активности культивируемых МСК 75 костного мозга крыс
      • 2. 5. 4. Оценка жизнеспособности культивируемых МСК костного 76 мозга крыс
      • 2. 5. 5. Оценка иммунофенотипа культивируемых МСК костного мозга 76 крыс
      • 2. 5. 6. Оценка дифференцировочного потенцала культивируемых МСК костного мозга крыс
        • 2. 5. 6. 1. Оценка остеогенной дифференцировки МСК
        • 2. 5. 6. 2. Оценка адипогенной дифференцировки МСК
    • 2. 6. Определение транскрипционного фактора HIF-1а в 79 культивируемых МСК костного мозга крыс
    • 2. 7. Оценка теломеразной активности в культивируемых МСК 80 костного мозга крыс
    • 2. 8. Статистическая обработка результатов
  • Глава 3. Результаты и обсуждение
    • 3. 1. Характеристика культивируемых МСК костного мозга крыс
      • 3. 1. 1. Первичные культуры МСК костного мозга крыс
      • 3. 1. 2. Морфология культивируемых МСК костного мозга крыс
      • 3. 1. 3. Пролиферативная активность культивируемых МСК костного 89 мозга крыс
      • 3. 1. 4. Иммунофенотип культивируемых МСК костного мозга крыс
      • 3. 1. 5. Дифференцировочный потенциал МСК костного мозга крыс in 97 vitro
    • 3. 2. Влияние гипоксии на культивируемые МСК костного мозга крыс
      • 3. 2. 1. Влияние гипоксии на морфологию культивируемых МСК 105 костного мозга крыс
      • 3. 2. 2. Влияние гипоксии на пролиферативную активность 108 культивируемых МСК костного мозга крыс
      • 3. 2. 3. Влияние гипоксии на жизнеспособность культивируемых МСК 112 костного мозга крыс
      • 3. 2. 4. Влияние гипоксии на иммунофенотип культивируемых МСК 116 костного мозга крыс
      • 3. 2. 5. Влияние гипоксии на дифференцировочный потенциал 117 культивируемых МСК костного мозга крыс
    • 3. 3. Влияние аноксии на культивируемые МСК костного мозга крыс
      • 3. 3. 1. Влияние аноксии на морфологию культивируемых МСК 124 костного мозга крыс
      • 3. 3. 2. Влияние аноксии на пролиферативную активность 125 культивируемых МСК костного мозга крыс
      • 3. 3. 3. Влияние аноксии на жизнеспособность культивируемых МСК 127 костного мозга крыс
      • 3. 3. 4. Влияние аноксии на иммунофенотип культивируемых МСК 133 костного мозга крыс
      • 3. 3. 5. Влияние аноксии на способность МСК костного мозга крыс к 133 дифференцировке in vitro
    • 3. 5. Пониженное содержание кислорода и транскрипционный 137 фактор HIF-la в культивируемых МСК костного мозга крыс

На протяжении всей истории изучения стволовых клеток к ним всегда было приковано особое внимание в связи с выполняемой ими уникальной функцией генерации новых клеточных элементов для формирования тканей в эмбриогенезе и их поддержания на более поздних этапах развития. Функции стволовых клеток обуславливаются рядом уникальных характеристик, отличающих их от остальных клеток организма. Так, стволовые клетки обладают высоким пролиферативным потенциалом, то есть способны делиться гораздо большее количество раз, чем любая другая клетка, способная к делению. Деление стволовых клеток при этом ассиметрично и дает одну дочернюю клетку, которая сохраняет свойства стволовой, обеспечивая самоподдержание пула стволовых клеток, и одну дочернюю клетку, которая способна к дифференцировке с образованием менее или более комитированных предшественников, а также дифференцированных клеток. Термин «стволовая клетка» применяют чаще всего к клеткам, способным к различным направлениям дифференцировки, то есть к клеткам, в той или иной мере обладающим свойством пластичности. Особый интерес представляют собой стволовые клетки взрослого организма как клеточные элементы, оставшиеся недифференцированными при завершенном процессе формирования тканей, состоящих, прежде всего, из дифференцированных клеток, выполняющих свои специфические функции. В добавление к обнаруженным относительно давно и используемым гемопоэтическим стволовым клеткам, являющимся клетками-предшественниками для клеточных элементов крови, в последнее время было показано наличие во взрослом организме так называемых мезенхимальных стволовых клеток, или мультипотентных мезенхимальных стромальных (МСК), находящихся, в том числе, среди клеток стромы костного мозга, в жировой ткани, а также в ряде других тканей и органов. Эти клетки не только играют важную роль в гемопоэзе как составляющие микроокружения гемопоэтических клеток, но и являются самообновляющейся популяцией клеток, поддерживающих свое недифференцированное состояние, обладают высоким пролиферативным потенциалом, а также в определенных условиях способны к дифференцировке в различные клеточные типы, то есть обладают всеми характеристиками стволовых клеток (Сухих, Малайцев, Богданова и др., 2002; Вермель, 2004; Гольдберг, Дыгай, Жданов, 2005; Пальцев, Смирнов, Романов и др., 2006; Caplan, 1994; Prockop, 1997, 2003; Bruder, Jaiswal, Haynesworth, 1997; Pittenger, Mackay, Beck et al., 1999; Bianco, Riminucci, Gronthos et al., 2001; Barry, Murphy, 2004; Fibbe, 2002; Grove, Bruscia, Krause, 2004; Wagner, Wein, Seckinger et al., 2005). Колоссальный интерес к МСК объясняется прежде всего их мультипотентностью, обуславливающей возможность их использования в регенеративной медицине. Это, в свою очередь диктует необходимость детальных исследований биологии этих клеток. Растущее число работ, посвященных этой теме, однако, ставит все новые вопросы в отношении функционирования MCK in vivo и in vitro.

Одним из существенных факторов, определяющих функциональное состояние любой клетки, в том числе стволовой, является содержание кислорода в окружающей среде, определяющее концентрацию внутриклеточного кислорода. Поддержание этого параметра в узких пределах является важнейшим компонентом гомеостаза и необходимо для предупреждения в клетке повреждений различного характера. Наиболее частым нарушением постоянства газового состава среды является снижение парциального давления кислорода во внеклеточной среде, или гипоксия. МСК могут оказываться в условиях пониженного содержания кислорода по ряду причин. Так, гипоксия может быть обусловлена экзогенными факторами, рядом патофизиологических причин, а также ограниченным кровоснабжением имплантированных систем доставки клеток-предшественников (носителей) в место повреждения при применении современных репаративных технологий. Пониженное содержание кислорода может оказывать модифицирующее влияние на различные характеристики мезенхимальных стромальных клеток-предшественников, отражающие их морфофункциональное состояние, такие как их жизнеспособность, способность к пролиферации, дифференцировочный потенциал, а также морфологические и иммунофенотипические показатели, что, в свою очередь, может влиять на протекание репаративных процессов в ткани. Следует отметить также, что при применении репаративных технологий с использованием клеток-предшественников важным фактором является возможность получения необходимой клеточной массы, что требует культивирования клеток в течение определенного времени. В свою очередь, время культивирования клеток in vitro, может модифицировать их характеристики, в том числе изменять чувствительность клеток к тому или иному воздействию, например, содержанию кислорода в среде.

История исследования гипоксии насчитывает не один десяток лет, и к настоящему времени накоплено большое число работ, обобщающих и интегрирующих полученные данные (Малкин, Гиппенрейтер, 1977; Агаджанян, 1985; Агаджанян, Елфимов, 1986; Агаджанян, Гневушев, Катков, 1987; Агаджанян, Чижов, 2003; Лукьянова, Ушаков, 2004; Сазонтова, Жукова, Анчишкина и др., 2007; Лукьянова, Дудченко, Цыбина и др., 2007; Kaelin, 2002; Semenza, 2001, 2004; Wenger, 2000, 2001, 2002; Bruick, 2003). Однако в противовес прицельному изучению гипоксии на организменном уровне гипоксическое воздействие на культивируемые клетки исследовано значительно меньше. В частности, работы, посвященные воздействию пониженного содержания кислорода на культивируемые МСК, немногочисленны, затрагивают какие-либо отдельные характеристики клеток-предшественников, а их результаты зачастую противоречивы (Lennon, Edmison, Caplan, 2001; Salim, Nacamuli, Morgan et al., 2004; Ren, Cao, Zhao et al., 2006; Pacary, Legros, Valable et al., 2006; Malladi, Xu, Chiou et al., 2006; Lin, Lee, Yun, 2006). Таким образом, дальнейшее комплексное исследование функционального состояния мезенхимальных стромальных клеток-предшественников в условиях пониженного содержания кислорода является актуальной задачей клеточной биологии.

Цель исследования: изучение влияния пониженного содержания кислорода на морфо-функциональное состояние мезенхимальных стромальных клеток-предшественников костного мозга крыс на разных этапах культивирования.

Задачи исследования:

1. Отработка метода получения и культивирования мезенхимальных стромальных клеток-предшественников костного мозга крыс в условиях пониженного содержания кислорода.

2. Морфологическая, иммунофенотипическая и функциональная характеристика мезенхимальных стромальных клеток-предшественников костного мозга крыс на различных этапах культивирования.

3. Исследование влияния пониженного содержания кислорода в среде культивирования (5% Ог) на морфологию, пролиферативную активность, жизнеспособность, иммунофенотип и остеогенный и адипогенный дифференцировочный потенциал мезенхимальных стромальных клеток предшественников костного мозга крыс на начальных этапах культивирования.

4. Изучение влияния пониженного содержания кислорода в среде культивирования (5% Ог) на морфологию, пролиферативную активность, жизнеспособность, иммунофенотип длительно культивируемых мезенхимальных стромальных клеток предшественников костного мозга крыс.

5. Оценка влияния пониженного содержания кислорода в среде культивирования (0% Ог) на морфологию, пролиферативную активность, жизнеспособность, иммунофенотип и остеогенный и адипогенный дифференцировочный потенциал мезенхимальных стромальных клеток предшественников костного мозга крыс на начальных этапах культивирования.

ВЫВОДЫ.

1. Мезенхимальные стромальные клетки-предшественники костного мозга крыс на начальных этапах культивирования характеризуются высокой степенью гетерогенности, которая выражается в наличии в культуре нескольких типов клеток с различными морфофункциональными характеристиками. При длительном культивировании происходит снижение гетерогенности культур клеток-предшественников и стабилизация их пролиферативной активности, что, по-видимому, объясняется субселекцией клеточной популяции, адаптированной к условиям культивирования, в том числе, к высокому, по сравнению с условиями in vivo, содержанию кислорода в среде.

2. 96-часовое воздействие гипоксии (5% Ог) оказывает стимулирующее влияние на мезенхимальные стромальные клетки-предшественники костного мозга крыс на начальных этапах культивирования (1−4 пассажи), что выражается в снижении степени гетерогенности культур клеток, стимуляции их пролиферации, цитопротективном действии, сохранении характерного для клеток-предшественников фенотипа.

3. Культивирование мезенхимальных стромальных клеток-предшественников костного мозга крыс в течение 96 часов в условиях гипоксии (5% Ог) приводит к снижению в культуре доли клеток, в которых гистохимически выявляется спонтанная и индуцированная активность щелочной фосфатазы, что может свидетельствовать о подавлении начальных этапов спонтанной и индуцированной остеогенной дифференцировки клеток-предшественников.

4. Культивирование мезенхимальных стромальных клеток-предшественников костного мозга крыс в течение 96 часов в условиях гипоксии (5% Ог) не оказывает существенного влияния на их адипогенную дифференцировку.

5. Эффекты гипоксии на морфологию, пролиферацию и жизнеспособность длительно культивируемых (более 20 пассажей) мезенхимальных стромальных клеток-предшественников костного мозга крыс варьируют, однако в любом случае гипоксия не приводит к стимуляции их пролиферативной активности и изменению характерного для клеток-предшественников иммунофенотипа.

6. 96-часовое воздействие аноксии на культивируемые мезенхимальные стромальные клетки-предшественники костного мозга крыс не приводит к изменению их морфологии и иммунофенотипа, к ингибированию их пролиферативной активности, к значительному увеличению доли поврежденных клеток, а также не отменяет начальных этапов дифференцировки клеток-предшественников.

7. Снижение жизнеспособности культивируемых мезенхимальных стромальных клеток-предшественников костного мозга крыс в условиях аноксии определяется продолжительностью аноксического воздействия. На начальных этапах воздействия аноксия активирует в клетках-предшественниках процессы апоптоза, а основным повреждающим механизмом при дальнейшем их пребывании в условиях аноксии является некроз.

Показать весь текст

Список литературы

  1. Н.А. (ред.). Адаптация человека и животных к экстремальным условиям внешней среды.// Сб. научных трудов под ред. Н. А. Агаджаняна. М.: Изд-во УДН.-1985. —184 с.
  2. Н.А., Елфимов А. И. Функции организма в условиях гипоксии и гиперкапнии.// М.: Медицина. 1986. — 272 с.
  3. Н.А., Гневушев В. В., Катков А. Ю. Адаптация к гипоксии и биоэкономика внешнего дыхания.// Монография. М.: Изд-во УДН. — 1987 — 186 с.
  4. Н.А., Чижов А. Я. Гипоксические, гипокапнические и гиперкапнические состояния.// М.: Медицина. 2003. — 96 с.
  5. Н.П., Воронина Е. С., Косякова Н. В. и др. Хромосомная изменчивость мультипотентных мезенхимальных стромальных клеток человека.// Клеточные технологии в биологии и медицине. -2007. -№ 1. С. 11 — 15.
  6. А.В. Стволовые клетки: общая характеристика и перспективы применения в клинической практике.// Клиническая медицина. 2004. — № 1. — С. 1 — 5.
  7. С.В., Туровецкий В. Б., Буравкова Л. Б. и др. Действие кратковременной гипоксии и реоксигенации на перитонеальные макрофаги мышей in vitro.// Российский физиологический журнал им. И. М. Сеченова. 2003. — Т. 89. — № 3. — С. 329−338.
  8. Е.Д., Дыгай A.M., Жданов В. В. Современные взгляды на проблему стволовых клеток и возможности их использования в медицине.// Клеточные технологии в биологии и медицине. 2005. — № 4. — С. 15−20.
  9. Р.В., Цупкина Н. В., Сериков В. Б. и др. Участие трансфузированных клеток костного мозга в репаративном остеогистогенезе.// Цитология. 2005. — Т. 47. -№ 9.-С. 755−759.
  10. Р.В., Николаенко Н. С., Цупкина Н. В. и др. Формирование и морфофункциональная характеристика остеобластического фенотипа в клеточных культурах in vitro.// Цитология. 2004. — Т. 46. — № 3. — С. 185−190.
  11. П.В., Соколова И. Б., Зинькова Н. Н. и др. Влияние сингенных мезенхимных стволовых клеток на восстановление костной ткани у крыс при имплантации деминерализованного костного матрикса.// Цитология. 2005. — Т. 47,-№ 6.-С. 466−477.
  12. П.В., Соколова И. Б., Аминева Х. К. и др. Влияние сроков трансплантации мезенхимных стволовых клеток на репарацию сердечной мышцы крыс после инфаркта.// Цитология. 2005. — Т. 47. — № 5. — С. 404 — 416.
  13. П.В., Соколова И. Б., Зинькова Н. Н. и др. Дифференцировка мезенхимальных стволовых клеток в кардиомиоцитарном направлении in vitro и in vivo.// Клеточные технологии в биологии и медицине. 2006. — № 4. — С. 194 — 197.
  14. М.А., Лякишева А. В., Филоненко Е. С. и др. Характеристика мезенхимальных стволовых клеток костного мозга человека, выделенных методом иммуномагнитной селекции.// Клеточные технологии в биологии и медицине. -2006.-№ 1.-С. 3−7.
  15. Л.Д., Ушаков И. Б. (ред.). Проблемы гипоксии: молекулярные, физиологические и медицинские аспекты под ред. Л. Д. Лукьяновой, И. Б. Ушакова.// М.- Воронеж: Издательство «Истоки». 2004. — 590 с.
  16. Л.Д., Дудченко A.M., Цыбина Т. А. и др. Регуляторная роль митохондриальной дисфункции при гипоксии и ее взаимодействие с транскрипционной активностью.// Вестник Российской АМН. 2007. — № 2. — С. 3 -13.
  17. А.Ю., Каралкин П. А., Суздальцева Ю. Г. и др. Цитофлюориметрический анализ фенотипов фибробластоподобных клеток из костного мозга и пуповины человека.// Клеточные технологии в биологии и медицине. 2006. — № 4. — С. 212 -217.
  18. В.Б., Гиппенрейтер Е. Б. Острая и хроническая гипоксия.// Проблемы космической биологии. М.: Наука. — 1977. — Т. 35. — 315 с.
  19. Р.А., Бекчанова Е. С., Белявский А. В. и др. Мезенхимальные стволовые клетки пуповинной крови. // Клеточные технологии в биологии и медицине. 2007. -№ 1. — С. 16−20.
  20. М.А., Смирнов В. Н., Романов Ю. А. и др. Перспективы использования стволовых клеток в медицине.// Вестник Российской Академии Наук. 2006. — Т. 76.-№ 2.-С. 99−111.
  21. О.В., Домарацкая Е. И., Старостин В. И. Мезенхимные стволовые клетки: источники, фенотип и потенции к дифференцировке.// Известия РАН. Серия биологическая. 2006. — № 1. — С.6 — 25.
  22. О.В., Буеверова Э. И., Сатдыкова Г. П. и др. Сравнительное исследование мезенхимальных стволовых клеток, выделенных из костного мозга и эмбриональной печени мыши и крысы.// Известия РАН. Серия биологическая. -2004. № 6. — С.659 — 664.
  23. Ю.А., Даревская А. Н., Кабаева Н. В. и др. Выбор оптимальных условий культивирования мезенхимальных клеток-предшественников костного мозга и жировой ткани человека.// Клеточные технологии в биологии и медицине. 2006. -№ 4.-С. 206−211.
  24. Т.Г. Адаптация организма к изменению уровня кислорода к гипоксии и гипероксии: роль активных форм кислорода и редокс-сигнализации.// Вопросы гипербарической медицины. — 2006. -№ 1. — С. 4 — 19.
  25. Т.Г., Жукова А. Г., Анчишкина Н. А. и др. Фактор транскрипции HIF-la, белки срочного ответа и резистетнтность мембранных структур в динамике после острой гипоксии.// Вестник Российской АМН. 2007. — № 2. — С. 17−25.
  26. В.Д., Олескин А. В., Лагунова Е. М. Программируемая клеточная смерть.//Биохимия.-2000.-Т. 65.-№ 8.-С. 1029- 1046.
  27. B.C. Иммунологические свойства мультипотентных мезенхимальных стромальных клеток.// Клеточная трансплантология и тканевая инженерия. 2005. -№ 2.-С. 39−41.
  28. И.Б., Федотова О. Р., Зинькова Н. Н. и др. Влияние трансплантации мезенхимальных стволовых клеток на когнитивные функции крыс после ишемического инсульта.// Клеточные технологии в биологии и медицине. 2006. -№ 4.-С. 202−205.
  29. И.Б., Зинькова Н. Н., Шведова Е. В. и др. Распределение мезенхимальных стволовых клеток в области тканевого воспаления при разных способах трансплантации клеточного материала.// Клеточные технологии в биологии и медицине. 2007. — № 1. — С. 34−37.
  30. Ю.Г., Бурунова В. В., Петракова Н. В. и др. Сравнительный анализ цитофенотипов клеток мезенхимального ряда, изолированных из тканей человека.// Клеточные технологии в биологии и медицине. 2007. — № 1. — С. 38 — 45.
  31. Г. Т., Малайцев В. В., Богданова И. М. и др. Мезенхимальные стволовые клетки.// Бюллетень экспериментальной биологии и медицины. 2002. — Т. 133. -№ 2.-С. 124−131.
  32. А.С., Коржикова С. В., Шарифуллина С. З. и др. Характеристика мезенхимальных стволовых клеток человека, выделенных из костного мозга и жировой ткани.// Цитология. 2005. — Т. 47. — №.2. — С. 130 — 135.
  33. К.П. Апоптоз: современное состояние проблемы.// Известия АН. Серия биологическая. 1998. — № 2. — С. 134 -141.
  34. Л. Смертность и бессмертие на клеточном уровне.// Биохимия. 1997. -Т. 62.-№ 11.-С. 1380- 1393.
  35. И.Л., Дризе Н. И. Дифференцировочный потенциал стволовых клеток (проблема пластичности).// Вестник Российской АМН. 2005. — № 10. — С. 37 — 44.
  36. Д.А., Козинец Г. И. Лабораторно-клиническое значение проточно-цитометрического анализа крови.// М., Медицинское информационное агенство. -2004.-128 с.
  37. Alfranca A., Gutierrez M.D., Vara A. et al. c-Jun and hypoxia-inducible factor 1 functionally cooperate in hypoxia-induced gene transcription.// Molecular and Cellular Biology. 2002. — Vol. 22. — N. 1. — P. 12 — 22.
  38. Allen C.B., Schneider B.K., White C.W. Limitations to oxygen diffusion and equilibration in in vitro cell exposure systems in hyperoxia and hypoxia.// Am J Physiol Lung Cell Mol Physiol. 2001. — Vol. 281. — P. L1021 — 1027.
  39. Alvarez-Dolado M., Pardal R., Garcia-Verdugo J.M. et al. Fusion of bone-marrow-derived cells with Purkinje neurons, cardiomyocytes and hepatocytes.// Nature. 2003. -Vol. 425. — N. 6961. — P. 968 — 973.
  40. Alvarez-Tejado M., Narano-Suarez S., Jimenez C. et al. Hypoxia induces the activation of the phosphatidylinositol-3-kinase/Akt cell survival pathway in PC 12 cells.// The Journal of Biological Chemistry. 2001. — Vol. 276. — N. 25. — P. 22 368 — 22 374.
  41. Amellem 0., Loffler M., Pettersen E.O. Regulation of cell proliferation under extreme and moderate hypoxia: the role of pyrimidine (deoxy)nucleotides.// Br J Cancer. 1994. -Vol. 70.-N. 5.-P. 857−866.
  42. An W.G., Kanekal M., Simon M.C. et al. Stabilization of wild-type p53 by hypoxia-inducible factor 1 alpha.// Nature. -1998. Vol. 392. — N. 6674. — P. 405 — 408.
  43. Anjos-Afonso F., Siapati E.K., Bonnet D. In vivo contribution of murine mesenchymal stem cells into multiple cell-types under minimal damage conditions.// Journal of Cell Science. 2004. — Vol. 117. — P. 5655 — 5664.
  44. Annabi В., Lee Y.T., Turcotte S. et al. Hypoxia promote murine bone-marrow-derived stromal cell migration and tube formation.// Stem Cells. 2003. — Vol. 21. — P. 337 -347.
  45. Arany Z., Huang L.E., Eckner R. et al. An essential role for рЗОО/CBP in the cellular response to hypoxia.// Proc. Natl. Acad. Sci. USA. 1996. — Vol. 93. — N. 23 — P. 12 969 -12 973.
  46. Awad H.A., Butler D.L., Boivin G.P. et al. Autologous mesenchymal stem cell-mediated repair of tendon.// Tissue Eng. -1999. Vol. 5. — N. 3. — P. 267 — 277.
  47. Azizi S.A., Stokes D., Augelli B.J. et al. Engraftment and migration of human bone marrow stromal cells implanted in the brains of albino rats similarities to astrocyte grafts.// Proc. Natl. Acad. Sci. USA. — 1998. — Vol. 95. — N. 7. — P. 3908 — 3913.
  48. Barry F.P., Murphy J.M. Mesenchymal stem cells: clinical applications and biological characterization.// The International Journal of Biochemistry and Cell Biology. 2004. -Vol. 36.-P. 568−584.
  49. Baxter M.A., Wynn R.F., Jowitt S.N. et al. Study of telomere length reveals rapid aging of human marrow stromal cells following in vitro expansion.// Stem Cells. 2004. — Vol. 22.-N. 5.-P. 675−682.
  50. Beresford J.N., Bennett J.H., Delvin C. et al. Evidence for an inverse relationship between the differentiation of adipocytic and osteogenic cells in rat marrow stromal cell cultures.// Journal of Cell Science. 1992. — Vol. 102. — N. 2. — P. 341 — 351.
  51. Bertani N., Malatesta P., Volpi G. et al. Neurogenic potential of human mesenchymal stem cells revisited: analysis by immunostaining, time-lapse video and microarray.// Journal of Cell Science. Vol. 118.-N. 17.-P. 3925−3936.
  52. Bianco P., Riminucci M., Grothos S. et al. Bone Marrow Stromal Stem Cells: Nature, Biology, and Potential Application.// Stem Cells. 2001. — Vol. 19. — P. 180 — 192.
  53. Bianco P., Robey P.G. Stem cells in tissue engineering.//Nature. -2001. Vol. 414. -N.1.-P. 118−121.
  54. Bos R., van Diest P.J., van der Groep P. et al. Expression of hypoxia-inducible factor-la and cell cycle proteins in invasive breast cancer are estrogen receptor related.// Breast Cancer Res 2004. Vol. 6. — P. R450 — R459.
  55. Bosch P., Pratt S.L., Stice S.L. Isolation, characterization, gene modification and nuclear reprogramming of porcine mesenchymal stem cells.// Biology of reproduction. 2006. -Vol. 74.-P. 46−57.
  56. Brazelton T.R., Rossi F.M.V., Keshet G.I. et al. From marrow to brain: Expression of neuronal Phenotypes in adult mice.// Science. 2000. — Vol. 290. — N. 5497. — P. 1775 -1779.
  57. Brazelton T.R., Nystom M., Blau H.M. Significant differences among skeletal muscles in the incorporation of bone marrow-derived cells.// Dev Biol. 2003. — Vol. 262. — N. 1. -P. 64−74.
  58. Bruick R.K. Expression of the gene encoding the proapoptotic Nip3 protein is induced by hypoxia.// PNAS. 2000. — Vol. 97. — N. 16. — P. 9082 — 9087.
  59. Bruick R.K. Oxygen sensing in the hypoxic response pathway: regulation of the hypoxia-inducible transcription factor.// Genes and Development. 2003. — Vol. 17. — N. 21. — P. 2614−2623.
  60. Caplan A.I. The mesengenic process.// Clin Plast Surg. 1994. — Vol. 21. — N. 3. — P. 429−435.
  61. Carmeliet P., Dor Y., Herbert J.M. et al. Role of HIF-1 alpha in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis.// Nature. 1998. — Vol. 394. — N. 6692.-P. 485−490.
  62. Chandel N.S., Maltepe E., Goldwasser E. et al. Mitochondrial reactive oxygen species trigger hypoxia induced transcription.// Proc. Natl. Acad. Sci. USA. 1998. — Vol. 95. -N. 20-P. 11 715- 11 720.
  63. Cheng L., Qasba P., Vanguri P. et al. Human mesenchymal stem cells support megakaryocyte and pro-platelet formation from CD34(+) hematopoietic progenitor cells.// J Cell Physiol. 2000. — Vol. 184. — N. 1. — P. 58 — 69.
  64. Clarke D., Frisen J. Differentiation potential of adult stem cells.// Current opinion in Genetics and Development. 2001. — Vol. 11 — P. 575 — 580.
  65. Colter D.C., Class R., DiGirolamo C.M. et al. Rapid expansion of recycling stem cells in cultures of plastic-adherent cells from human bone marrow.// Proc. Natl. Acad. Sci. USA. 2000. — Vol. 97. — N. 7. — P.3213 — 3218.
  66. Colter D.C., Sekiya I., Prockop D.J. Identification of a subpopulation of rapidly self-renewing and multipotential adult stem cells in colonies of human marrow stromal cells.// Proc. Natl. Acad. Sci. USA. 2001. — Vol. 98. — N. 14. — P. 7841 — 7845.
  67. Conget P.A., Minguell J.J. Phenotypical and functional properties of human bone marrow mesenchymal progenitor cells.// Journal of cellular physiology. 1999. — Vol. 181. — P. 67−73.
  68. Cooper A.L., Beasley D. Hypoxia stimulates proliferation and interleukin-la production in human vascular smooth muscle cells.// Am J Physiol. 1999. — Vol. 277. — P. HI 326 -H1337.
  69. Coyne T.M., Marcus A.J., Woodbuiy D. et al. Marrow stromal cells transplanted to the adult brain are rejected by an inflammatoiy response and transfer donor labels to host neurons and glia.// Stem Cells. Vol. 24. — N. 11. — P. 2483 — 2492.
  70. Covello K.L., Kehler J., Yu H. et al. HIF-2a regulate Oct-4: effect of hypoxia on stem cell function, embryonic development, and tumor growth.// Genes and Development. -2006. Vol. 20. — N. 5. — P. 557 — 570.
  71. Da Silva Meirelles L., Chagastelles P.C., Nardi N.B. Mesenchymal stem cells reside in virtually all post-natal organs and tissues.// Journal of Cell Science. 2006. — Vol. 119.-N. 11.-P. 2204−2213.
  72. Davis R.J. Signal transduction by the JNK group of MAP kinases.// Cell. 2000. — Vol. 103.-P. 239−252.
  73. Deasy B.M., Gharaibeh B.M., Pollett J.B. et al. Long-term self-renewal of postnatal muscle-derived stem cells.// Molecular Biology of the Cell. 2005. — Vol. 16. — P. 3323 -3333.
  74. Deng W., Obrocka M., Fischer I. et al. In vitro differentiation of human marrow stromal cells into early progenitors of neural cells by conditions that increase intracellular cyclic AMP.//BiochemBiophysResCommun.-2001.-Vol.282.-N. l.-P. 148−152.
  75. Dennis J.E., Merriam A., Awadallah A. et al. A quadripotential mesenchymal progenitor cell isolated from the marrow of an adult mouse.// J Bone Miner Res. 1999. — Vol. 14. -N. 5.-P. 700−709.
  76. Dirmeier R., O’Brien K.M., Engle M. et al. Exposure of yeast cells to anoxia induces transient oxidative stress.// The Journal of Biological Chemistry. 2002. — Vol. 277. -N. 38.-P. 34 773−34 784.
  77. Doege K., Heine S., Jensen I. et al. Inhibition of mitochondrial respiration elevates oxygen concentration but leaves regulation of hypoxia-inducible factor (HIF) intact.// Blood. 2005. — Vol. 106. — N. 7. — P. 2311 — 2317.
  78. Dominici M., Blanc K., Mueller I. et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement.//Cytotherapy. -2006. Vol. 8. -N. 4. — P. 315 -317.
  79. Dougherty C.J., Kubasiak L.A., Frazier D.P. et al. Mitochondrial signals initiate the activation of c-Jun N-terminal kinase (JNK) by hypoxia-reoxygenation.// The FASEB Journal. 2004. — Vol. 18. — P. 1060 -1070.
  80. Ehleben W., Boiling В., Merten E. et al. Cytochromes and oxygen radicals as putative members of the oxygen sensibg pathway.// Respiration Physiology. 1998, — Vol. 114. -N. l.-P.25−36.
  81. Ferrari G., Cusella-De Angelis G., Coletta M. et al. Muscle regeneration by bone marrow-derived myogenic progenitors.// Science. 1998. — Vol. 279. — N. 5356. — P. 1528- 1530.
  82. Fibbe W.E. Mesenchymal stem cells. A potential source for skeletal repair.// Annals of the Rheumatic Diseases. 2002. — Vol. 61. — P. ii29 — ИЗ 1.
  83. Floyd Z.E., Zvonic S., Nuttall M.E. et al. Fine-tuning reception in the bone: PPARy and Company.// PPAR Research. 2006. — Vol. 2006. — P. 1 — 7.
  84. Friedenstein A.I., Gorskaja J.F., Kulagina N.N. Fibroblast precursors in normal and irradiated mouse hematopoietic organs.// Exp Hematol. 1976. — Vol.4. — N. 5. — P. 267 -274.
  85. Galmiche M.C., Koteliansky V.E., Briere J. et al. Stromal cells from human long-term marrow cultures are mesenchymal cells that differentiate following a vascular smooth muscle differentiation pathway.// Blood. Vol. 82. — N. 1. — P. 66 — 76.
  86. Gardner L.B., Li Q., Park M.S. et al. Hypoxia inhibits Gl/S transition through regulation of p27 expression.// The Journal of Biological Chemistry. 2001. — Vol. 276. — N. 11.-P. 7919−7926.
  87. Gardner L.B., Li F., Yang X. et al. Anoxic fibroblasts activate a replication checkpoint that is bypasses by Ela.// Molecular and cellular biology. 2003. — Vol. 23. — N. 24. — P. 9032−9045.
  88. Goda N., Ryan H. E., Khadivi B. et al. Hypoxia-inducible factor la is essential for cell cycle arrest during hypoxia.// Molecular and Cellular Biology. 2003. — Vol.23. — N. l -P. 359−369.
  89. Gojo S., Gojo N., Takeda Y. et al. In vivo cardiovasculogenesis by direct injection of isolated adult mesenchymal stem cells.// Exp Cell Res. 2003. — Vol. 288. — N. 1. — P. 51 -59.
  90. Gozal E., Sachleben L.R., Rane M.J. et al. Mild sustained and intermittent hypoxia induce apoptosis in PC-12 cells via different mechanisms.// Am J Physiol Cell Physiol. -2005. Vol. 288. — P. C535 — C542.
  91. Graeber T.G., Osmanian C., Jacks T. et al. Hypoxia-mediated selection of cells with diminished apoptotic potential in solid tumours.// Nature. 1996. — Vol. 379. -N. 6560. -P. 88−91.
  92. Grayson W.L., Zhao F., Izadpanah R. et al. Effects of hypoxia on human mesenchymal stem cell expansion and plasticity in 3D constructs.// J Cell Physiol. 2006. — Vol. 207. -N. 2.-P. 331 -339.
  93. Greijer A.E., van der Wall E. The role of hypoxia inducible factor 1 (HIF-1) in hypoxia induced apoptosis.//J Clin Pathol. -2004.-Vol. 57.-P. 1009−1014.
  94. Grove J.E., Bruscia E., Krause D.S. Plasticity of bone marrow-derived stem cells.// Stem Cells. 2004. — Vol. 22. — P. 487 — 500.
  95. Heberlein W., Wodopia R., Bartsch P. et al. Possible role of ROS as mediators of hypoxia-induced ion transport inhibition of alveolar epithelial cells.// Am J Physiol Lung Cell Mol Physiol. 2000. — Vol. 278. — N. 4. — P. L640 — L.648.
  96. Heidbreder M., Frohlich F., Johren O. et al. Hypoxia rapidly activates HIF-3a mRNA expression.// The FASEB Journal. 2003. — Vol. 17. — P. 1541 — 1543.
  97. Herbertson A., Aubin J.E. Cell sorting enriches osteogenic populations in rat bone marrow stromal cell cultures.// Bone. 1997. — Vol. 21. — N. 6. — P. 491 — 500.
  98. Horwitz E.M., Le Blanc K., Dominici M. et al. Clarification of the nomenclature for MSC: The international Society for Cellular Therapy position statement.// Cytotherapy. -2005. Vol. 7. — N. 5. — P. 393 — 395.
  99. Hu C.J., Wang L.Y., Chodosh L.A. et al. Differential roles of hypoxia-inducible factor la (HIF-la) and HIF-2a in hypoxic gene regulation.// Molecular and Cellular Biology. -2003. Vol. 23. — N. 24. — P.9361 — 9374.
  100. Hu C.J., Iyer S., Sataur A. et al. Differential regulation of the transcriptional activities of hypoxia-inducible factor 1 alpha (HIF-la) and HIF-2a in stem cells.// Molecular and Cellular Biology. 2006. — Vol. 26. — N.9. — P. 3514 — 3526.
  101. Huang J.I., Kazmi N., Durbhakula M. et al. Chondrogenic potential of progenitor cells derived from human bone marrow and adipose tissue: a patient-matched comparison.// Journal of Orthopaedic Research. 2005. — Vol. 23. — P.1383 — 1389.
  102. Humar R., Kiefer F.N., Berns H. et al. Hypoxia enhances vascular cell proliferation and angiogenesis in vitro via rapamycin (mTOR)-dependent signaling.// The FASEB Journal. -2002.-Vol. 16.-P. 771 -780.
  103. Ichida F., Nishimura R., Hata K. et al. Reciprocal role of Msx2 in regulation of osteoblast and adipocyte differentiation.// J Biol Chem. 2004. — Vol. 279. — N. 32. — P. 34 015−34 022.
  104. Jacobson M.D., Raff M.C. Programmed cell death and Bcl-2 protection in very low oxygen.// Nature. 1995. — Vol. 374. -N. 6562. — P.814 — 816.
  105. Jaiswal N., Haynesworth S.E., Caplan A.I. et al. Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitro.// J Cell Biochem. 1997. -Vol. 64.-N. 2.-P. 295−312.
  106. Jewell U.R., Kvietikova I., Sched A. et al. Induction of HIF-la in response to hypoxia is instantaneous.//FASEB J.-2001.-Vol. 15.-N. 7.-P. 1312−1314.
  107. Jiang B.H., Semenza G.L., Bauer C. et al. Hypoxia-inducible factor 1 levels vary exponentially over a physiologically relevant range of 02 tension.// Am J Physiol Cell Physiol. -1996. Vol. 271. — N. 4. — P. CI 172 — С1180.
  108. Jiang Y., Jahagirdar B.N., Reinhardt R.L. et al. Pluripotency of mesenchymal stem cells derived from adult marrow.// Nature. 2002. — Vol. 418. — P. 41 — 49.
  109. Ichida F., Nishimura R., Hata K. et al. Reciprocal roles of Msx2 in regulation of osteoblast and adipocyte differentiation.// J. Biol. Chem. 2004. — Vol. 279. — N. 32. — P. 34 015−34 022.
  110. Kadiyala S., Young R.G., Thiede M.A. et al. Culture expanded canine mesenchymal stem cells possess osteochondrogenic potential in vivo and in vitro.// Cell Transplant. -1997. Vol. 6. — N. 2. — P. 125 — 134.
  111. Kaelin W.G. How oxygen makes its presence felt.// Genes and Development. 2002. -Vol. 16.-N. 12.-P. 1441 -1445.
  112. Kashiwakura Y., Katoh Y., Tamayose K. et al. Isolation of bone marrow stromal cell-derived smooth muscle cells by a human SM22a promoter.// Circulation. 2003. — Vol. 107.-P. 2078. .
  113. Kim N.W., Piatyszek M.A., Prowse K.R. et al. Specific association of human telomerase activity with immortal cells and cancer.// Science. 1994. — Vol. 266. — P. 2011−2015.
  114. Kolf C.M., Cho E., Tuan R.S. Biology of adult mesenchymal stem cells: regulation of nich, self-renewal and differentiation.// Arthritis Research and Therapy. 2007. — Vol. 9. -N. 204.-P.
  115. Kunz M., Ibrahim S.M. Molecular responses to hypoxia in tumor cells.// Mol Cancer. -2003.-Vol. 2.-N. 23.-P.
  116. Kuznetsov S.A., Mankani M.H., Gronthos S. et al. Circulating skeletal stem cells.// The Journal of Cell Biology. 2001. — Vol. 153. — N. 5. — P. 1133 — 1139.
  117. Laderoute K.R., Webster К.A. Hypoxia/Reoxygenation stimulates Jun kinase activity through redox signaling in cardiac myocytes.// Circulation Research. 1997. — Vol. 80. -P. 336−344.
  118. LaBarge M.A., Blau H.M. Biological progression from adult bone marrow to mononucleate muscle stem cell to multinucleate muscle fiber in response to injury.// Cell. -2002.-Vol. lll.-N.4.-P.589−601.
  119. Lahiri S. Historical perspectives of cellular oxygen sensing and responses to hypoxia.// J Appl Physiol. 2000. — Vol. 88. — N. 4. — P. 1467 — 1473.
  120. R. (editor). Essentials of stem cell biology.// Elsevier Inc. 2006. — 548 pp.
  121. Lee H.S., Huang G.T., Chiang H. et al. Multipotential mesenchymal stem cells from femoral bone marrow near the site of osteoporosis.// Stem Cells. 2003. — Vol. 21. — P. 190−199.
  122. Lee R.H., Hsu S.C., Munoz J. et al. A subset of human rapidly self-renewing marrow stromal cells preferentially engraft in mice.// Bllod. 2006. — Vol. 107. — N. 5. — P. 2153 -2161.
  123. Lee J.H., Kemp D.M. Human adipose-derived stem cells display myogenic potential and perturbed function in hypoxic conditions.// Biochem Biophys Res Commun. 2006. -Vol. 341.-N. 3. -P. 882−888.
  124. Leist M., Single В., Castoldi A.F. et al. Intracellular adenosine triphosphate (ATP) concentration: a switch in the decision between apoptosis and necrosis.// J. Exp. Med. -1997.-Vol. 185.-N. 8.-P. 1481 -1486.
  125. Lennon D.P., Edmison J.M., Caplan A.I. Cultivation of rat marrow-derived mesenchymal stem cells in reduced oxygen tension: effects on in vitro and in vivo osteochondrogenesis.// J Cell Physiol. 2001. — Vol. 187. -N.3. — P. 345 — 355.
  126. Lin Q., Lee Y. J., Yun Z. Differentiation arrest by hypoxia.// The Journal of Biological Chemistry. 2006. — Vol. 281. — N. 31. — P. 30 678 — 30 683.
  127. Lopez-Barneo J., del Того R., Levitsky K.L. et al. Regulation of oxygen sensing by ion channels.// J Appl Physiol. 2004. — Vol. 96. -N. 3. — P. 1187 -1195.
  128. Louboutin J.P., Liu В., Reyes B.A. et al. Rat bone marrow progenitor cells transduced in situ by rSV40 vectors differentiate into multiple central nervous system cell lineages.// Stem Cells. 2006. — Vol. 24. — N. 12. — P. 2801 — 2809.
  129. Lu D., Mahmood A., Wang L. et al. Adult bone marrow stromal cells administered intravenously to rats after traumatic brain injury migrate into brain and improve neurological outcome.// Neuroreport. 2001. — Vol. 12. — N. 3. — P. 559 — 563.
  130. Majumdar M.K., Thiede M.A., Mosca J.D. et al. Phenotypic and functional comparison of cultures of marrow-derived mesenchymal stem cells (MSCs) and stromal cells.// J Cell Physiol.-1998.-Vol. 176.-N. 1,-P. 57−66.
  131. Makino S., Fukuda K., Miyoshi S. et al. Cardiomyocytes can be generated from marrow stromal cells in vitro.// J Clin Invest. 1999. — Vol. 103. — N. 5. — P. 697 — 705.
  132. Malladi P., Xu Y., Chiou M. et al. Effect of reduced oxygen tension on chondrogenesis and osteogenesis in adipose-derived mesenchymal cells.// Am J Physiol Cell Physiol. -2006. Vol. 290. — N. 4. — P. 1139 — 1146.
  133. Maxwell P.H., Pugh C.W., Ratcliffe P.J. Inducible operation of the erythropoietin 3' enhancer in multiple cell lines: evidence for widespread oxygen-sensing mechanism.// Proc Natl Acad Sci USA. 1993. — Vol. 90. — N. 6. — P. 2423 — 2427.
  134. Minguell J.J., Erices A., Conget P. Mesenchymal stem cells.// Experimental Biology and Medicine. 2001. — Vol. 226. — N. 6. — P. 507 — 520.
  135. Miura M., Miura Y., Padilla-Nash H. et al. Accumulated chromosomal instability in muribe bone marrow mesenchymal stem cells leads to malignant transformation.// Stem Cells. 2006. — Vol. 24. — N. 4. — P. 1095 — 1103.
  136. Munoz-Elias G., Woodbury D., Black I.B. Marrow Stromal Cells, mitosis and neuronal differentiation: stem cell and precursor functions.// Stem Cells. 2003. — Vol. 21. — N.4. -P. 437−448.
  137. Munoz-Elias G., Marcus A.J., Coyne T.M. et al. Adult bone marrow stromal cells in the embryonic brain: engraftment, migration, differentiation, and long-term survival.// The Journal of Neuroscience. 2004. — Vol. 24. — N. 19. — P. 4585 — 4595.
  138. Muraglia A., Cancedda R., Quarto R. Clonal mesenchymal progenitors from human bine marrow differentiate in vitro according to a hierarchical model.// Journal of Cell Science.-2000. Vol. 113.-N. 7.-P. 1161−1166.
  139. Oldershaw R., Hardingham T. Low-oxygen tension affects the chondrogenic potential of human mesenchymal stem cells.// International Journal of Experimental Pathology. -2006.-Vol. 87.-P.A1-A58.
  140. Orlic D., Kajstura J., Chimenti S. et al. Bone marrow cells regenerate infracted myocardium.// Nature. Vol. 410. — P. 701 — 705.
  141. Oswald J., Boxberger S., Jorgensen B. et al. Mesenchymal stem cells can be differentiated into endothelial cells in vitro.// Stem Cells. 2004. — Vol. 22. — P. 377 -384.
  142. Pacary E., Legros H., Valable S. et al. Synergistic effects of CoC12 and ROCK inhibition on mesenchymal stem cell differentiation into neuron-like cells.// Journal of Cell Science. 2006. — Vol. 119. -N. 3. — P.2667 — 2678.
  143. Pereira R.F., Halford K.W., O’Hara M.D. et al. Cultured adherent cells from marrow can serve as long-lasting precursor cells for bone, cartilage and lung in irradiated mice.// Proc Natl Acad Sci USA. 1995. — Vol. 92. — N. 11. — P. 4857 — 4861.
  144. Petersen B.E., Bowen W.C., Patrene K.D. et al. Bone marrow as a potential source of hepatic oval cells.// Science. 1999. — Vol. 284. -N. 5417. — P. 1168 — 1170.
  145. Phinney D.G., Kopen G., Isaacson R.L. et al. Plastic adherent stromal cells from the bone marrow of commonly used strains of inbred mice: variations in yield, growth and differentiation.// J Cell Biochem. 1999. — Vol. 72. -N. 4. — P. 570 — 585.
  146. Pittenger M.F., Mackay A.M., Beck S.C. et al. Multilineage potential of adult human mesenchymal stem cells.// Science. 1999. — Vol. 284. — P. 143 — 147.
  147. Prockop D.J. Marrow stromal cells as stem cells for nonhematopoietic tissues.// Science. 1997. — Vol. 276. -N. 5309. — P. 71 — 74.
  148. Prockop D.J. Further proof of the plasticity of adult stem cells and their role in tissue repair.// The Journal of Cell Biology. 2003. — Vol. 160. -N.6. — P. 807 — 809.
  149. Prockop D.J., Sekiya I., Colter D.C. Isolation and characterization of rapidly self-renewing stem cells from cultures of human marrow stromal cells.// Cytotherapy. 2001. -Vol.3.-N. 5.-P. 393−396.
  150. Qanungo S., Wang M., Nieminen A.L. N-acetyl-L-cysteine enhances apoptosis through inhibition of nuclear factor-кВ in hypoxic murine embryonic fibroblasts.// The Journal of Biological Chemistry. 2004. — Vol. 279. — N. 48. — P. 50 455 — 50 464.
  151. Ren H., Cao Y., Zhao Q. et al. Proliferation and differentiation of bone marrow stromal cells under hypoxic conditions.// Biochemical and Biophysical Research Communications. 2006. — Vol. 347. — N. 1. — P. 12 — 21.
  152. Reyes M., Verfaillie C.M. Characterization of multipotent adult progenitor cells, a subpopulation of mesenchymal stem cells.// Annals of the New York Academy of Sciences. 2001. — Vol. 938. — P. 231 — 235.
  153. Richards M., Huibregtse B.A., Caplan A.I. et al. Marrow-derived progenitor cell injections enhance new bone formation during distraction.// J Orthop Res. 1999. — Vol. 17.-N. 6.-P. 900−908.
  154. Risbud M.V., Albert T.J., Guttapalli A. et al. Differentiation of mesenchymal stem cells towards a nucleus pulposus-like phenotype in vitro: implications for cell-based transplantation therapy.// Spine. 2004. — Vol. 29. — N. 23. — P. 2627 — 2632.
  155. Robins J.C., Akeno N., Mukherjee A. et al. Hypoxia induces chondrocyte-specific gene expression in mesenchymal cells in association with transcriptional activation of Sox9.// Bone. 2005. — Vol. 37. — P. 313 — 322.
  156. Rochefort G.Y., Delorme В., Lopez A. et al. Multipotential mesenchymal stem cells are mobilized into peripheral blood by hypoxia.// Stem Cells. 2006. — Vol. 24. — N. 10. — P. 2202−2208.
  157. Rose F., Grimminger F., Appel J. et al. Hypoxic pulmonary artery fibroblasts trigger proliferation of vascular smooth muscle cells: role of hypoxia-inducible transcription factors.//The FASEB Journal.-2002. Vol. I6.-N.12.-P. 1660−1661.
  158. Ross J.J., Hong Z., Willenbring B. et al. Cytokine-induced differentiation of multipotent adult progenitor cells into functional smooth muscle cells.// The Journal of Clinical investigation. Vol. 116.-N. 12.-P. 3139−3149.
  159. Roufosse C.A., Direkze N.C., Otto W.R. et al. Circulating mesenchymal stem cells.// The international Journal of Biochemistry and Cell Biology. 2004. — Vol. 36. — P. 585 -597.
  160. Sabatini F., Petecchia L., Tavian M. et al. Human bronchial fibroblasts exhibit a mesenchymal stem cell phenotype and multilineage differentiating potentialities.// Lab Invest. 2005. — Vol. 85. — N. 8. — P. 962 — 971.
  161. Sahai A., Mei C., Pattison T.A. et al. Chronic hypoxia induces proliferation of cultured mesangial cells: role of calcium and protein kinase C.// Am J Physiol. 1997. — Vol. 273. -P. F954-F960.
  162. Salim A., Nacamuli R.P., Morgan E.F. et al. Transient changes in oxygen tension inhibitosteogenic differentiation and Runx2 expression in osteoblasts.// The Journal of Biological Chemistry. 2004. — Vol. 279. — N. 38. — P. 40 007 — 40 016.
  163. Sanchez-Ramos J., Song S., Cardozo-Pelaez F. et al. Adult bone marrow stromal cells differentiate into neural cells in vitro.// Exp Neurol. 2000. — Vol. 164. — N. 2. — P. 247 -256.
  164. Sato Y., Araki H., Kato J. et al. Human mesenchymal stem cells xenografted directly to rat liver are differentiated into human hepatocytes without fusion.// Blood. Vol. 106. -N. 2.-P. 756−763.
  165. Scherer K., Schunke M., Sellckau R. et al. The influence of oxygen and hydrostatic pressure on articular chondrocytes and adherent bone marrow cells in vitro.// Biorheology. 2004. — Vol. 41. — N. 3−4. — P. 323−333.
  166. Schmaltz C., Hardenbergh P.H., Wells A. et al. Regulation of proliferation-survival decisions during tumor cell hypoxia.// Molecular and Cellular Biology. Vol. 18. -N. 5. -P. 2845−2854.
  167. Schroedl C., McClintock D.S., Budinger G.R. et al. Hypoxic but not anoxic stabilization of HIF-la requires mitochondrial reactive oxygen species.// Am J Physiol Lung Cell Mol Physiol. 2002. — Vol. 283. — P. L922 — L933.
  168. Schumacker P.T. Hypoxia, anoxia, and 02 sensing: the search continues.// Am J Physiol Lung Cell Mol Physiol. 2002. — Vol. 283. — P. 918 — 921.
  169. Scott P.H., Paul A., Belham C.M. et al. Hypoxic stimulation of the stress-activated protein kinases in pulmonary artery fibroblasts.// Am J Respir Crit Care Med. 1998. -Vol. 158.-P. 958−962.
  170. Sekiya I., Larson B.L., Smith J.R. et al. Expansion of human adult stem cells from bone marrow stroma: conditions that maximize the yields of early progenitors and evaluate their quality.// Stem Cells. 2002. — Vol. 20. — N. 6. — P. 530 — 541.
  171. Semenza G.L. Perspectives on oxygen sensing.// Cell. 1999. — Vol. 98. — N. 3. — P. 281 -284.
  172. Semenza G. L. HIF-1 and human disease: one highly involved factor.// Genes and development. 2000. — Vol. 14. — P. 1983 — 1991.
  173. Semenza G.L. HIF-1, 02, and 3 PHDs. How animal cells signal hypoxia to the nucleus.//Cell.-2001.-Vol. 107.-N.1.-P. 1−3.
  174. Semenza G.L. Hydroxylation of HIF-1: oxygen sensing at the molecular level.// Physiology.-2004.-Vol. 19.-N.4.-P. 176- 182.
  175. Sodhi C.P., Batlle D., Sahai A. Osteopontin mediates hypoxia-induced proliferation of cultured mesangial cells: role of PKC and p38 МАРК.// Kidney Int. 2000. — Vol. 58. -N.2.-P. 691 -700.
  176. Sodhi C.P., Phadke S.A., Batlle D. et al. Hypoxia stimulates osteopontin expression and proliferation of cultured vascular smooth muscle cells.// Diabetes. 2001. — Vol. 50. — P. 1482−1490.
  177. Sowter H.M., Raval R., Moore J. et al. Predominant role of hypoxia-inducible transcription factor (HIF)-la versus HIF-2a in regulation of the transcriptional response to hypoxia.// Cancer Research. 2003. — Vol. 63. — P. 6130 — 6134.
  178. Srinivas V., Leshchinsky I., Sang N. et al. Oxygen sensing and HIF-1 activation does not require an active mitochondrial respiratory chain electron transfer pathway.// The Journal of Biological Chemistry. 2001. — Vol. 276. — N. 25. — P. 21 995 — 21 998.
  179. Suzuki H., Tomida A., Tsuruo T. Dephosphorylated hypoxia-inducible factor la as a mediator of p53-dependent apoptosis during hypoxia.// Oncogene. 2001. — Vol. 20. -N.41.-P. 5779−5788.
  180. Terada N., Hamazaki Т., Oka M. et al. Bone marrow cells adopt the phenotype of other cells by spontaneous cell fusion.// Nature. 2002. — Vol. 416. — N. 6880. — P. 542 — 545.
  181. Theise N.D., Badve S., Saxena R. et al. Derivation of hepatocytes from bone marrow cells in mice after radiation-induced myeloablation.// Hepatology. 2000. — Vol. 31. — P. 235−240.
  182. Tobiume K., Matsuzawa A., Takahashi T. et al. ASK1 is required for sustained activations of JNK/p38 MAP kinases and apoptosis.// EMBO reports. 2001. — Vol. 2. -N.3.-P. 222−228.
  183. Tuncay O.C., Barker M.K. Oxygen tension regulates osteoblast function.// Am J Orthod Dentofacial Orthop. -1994. Vol. 105. — N. 5. — P. 457 — 463.
  184. Vaux E.C., Metzen E., Kay M. et al. Regulation of hypoxia-inducible factor is preserved in the absence of a functioning mitochondrial respiratory chain.// Blood. 2001. — Vol. 98.-N. 2.-P. 296−302.
  185. Wagner W., Wein F., Seckinger A. et al. Comparative characteristics of mesenchymal stem cells from human bone marrow, adipose tissue, and umbilical cord blood.// Experimental Hematology. 2005. — Vol. 33. — P. 1402 — 1416.
  186. Wakitani S., Saito Т., Caplan A.I. Myogenic cells derived from rat bone marrow mesenchymal stem cells exposed to 5-azacytidine.// Muscle Nerve. 1995. — Vol. 18. -N. 12.-P. 1417- 1426.
  187. Wang J., Shum-Tim D., Galipeau J. et al. Marrow stromal cells for cellular cardiomyoplasty: Feasibility and potential clinical advantages.// J Thorac Cardiovasc Surg. 2000. — Vol. 120. — P. 999 — 1006.
  188. Wang G., Bunnell B.A., Painter R.G. et al. Adult stem cells from bone marrow stroma differentiate into airway epithelial cells: potential therapy for cystic fibrosis.// Proc Natl AcadSciUSA.-2005.-Vol. 102.-N. l.-P. 186−191.
  189. Wang Z., Song J., Taichman R.S. et al. Ablation of proliferating marrow with 5-fluorouracil allows partial purification of mesenchymal stem cells.// Stem Cells. 2006.- Vol. 24. N. 6. — P. 1573 — 1582.
  190. Wenger R.H. Mammalian oxygen sensing, signaling and gene regulation.// The Journal of Experimental Biology. 2000. — Vol. 203. — N. 8. — P. 1253 — 1263.
  191. Wenger R.H. Cellular adaptation to hypoxia: 02-sensing protein hydroxylases, hypoxia-inducible transcription factors, and 02-regulated gene expression.// The FASEB Journal.- 2002. Vol.16. — N. 10. — P. 1151 — 1162.
  192. Wexler S.A., Donaldson C., Denning-Kendall P. et al. Adult bone marrow is a rich source of human mesenchymal stem cells but umbilical cord and mobilized adult blood are not.// 2003. Vol. 121. — P. 368 — 374.
  193. Wislet-Gendebien S., Leprince P., Moonen G. et al. Regulation of neural markers nestin and GFAP expression by cultivated bone marrow stromal cells.// Journal of Cell Science. -2003.-Vol. 116.-N. 16-P. 3295−3302.
  194. Woodbury D., Schwarz E.J., Prockop D.J. et al. Adult rat and human marrow stromal cells differentiate into neurons.// J Neurosci Res. 2000. — Vol.61. — N. 4. — P. 363 -370.
  195. Woodbury D., Reynolds K., Black I.B. Adult bone marrow stromal cells express germline, ectodermal, endodermal, and mesodermal genes prior to neurogenesis.// Journal of Neuroscience Research. 2002. — Vol. 96. — P. 908 — 917.
  196. Ying Q.L., Nichols J., Evans E.P. et al. Changing potency by spontaneous fusion.// Nature. 2002. — Vol. 416. — N. 6880. — P. 545 — 548.
  197. Yun Z., Maecker H.L., Johnson R.S. et al. Inhibition of PPAR gamma 2 gene expression by the HIF-1-regulated gene DEC1/Stral3: a mechanism for regulation of adipogenesis by hypoxia.// Dev Cell. 2002. — Vol. 2. — N. 3. — P. 331 — 341.
  198. Zelko I.N., Folz R.J. Extracellular superoxide dismutase functions as a major repressor of hypoxia-induced erythropoietin gene expression.// Endocrinology. 2005. — Vol. 146. -N. 1.-P. 332−340.
  199. Zhou S., Lechpammer S., Greenberger J.S. et al. Hypoxia inhibition of adipocytogenesis in human bone marrow stromal cells requires transforming growth factor-p/Smad3 signaling.// J Biol Chem. 2005. — Vol. 280. — N. 24. — P. 22 688 — 22 696.
  200. Zuk P.A., Zhu M., Mizuno H. et al. Multilineage cells from human adipose tissue: implications for cell-based therapies.// Tissue Engineering. 2001. — Vol. 7. — N. 2. — P. 211 -228.
  201. Zuk P.A., Zhu M., Ashjian P. et al. Human adipose tissue is a source of multipotent stem cells.// Molecular Biology of the Cell. 2002. — Vol. 13. — P. 4279 — 4295.
  202. Zvaifler N.J., Marinova-Mutafchieva L., Adams G. et al. Mesenchymal precursor cells in the blood of normal individuals.// Arthritis Res. 2000. — Vol. 2. — P. 477 — 488.
Заполнить форму текущей работой