Помощь в написании студенческих работ
Антистрессовый сервис

Влияние вольфрама на нитратредуктазу солетолерантных дрожжей Rhodotorula glutinis

ДиссертацияПомощь в написанииУзнать стоимостьмоей работы

Или преобладании W (Mo:W=0,01:l, в мМ), наблюдается значительная стимуляция роста дрожжей на среде с нитратами по сравнению с одним Мо. Причиной стимуляции, по-видимому, является увеличение HP активности (в 3 раза). Каковы возможные причины повышения активности HP в клетках, растущих в присутствии Mo+W («Mo+W» -клетки)? В настоящей работе показано, что одной из причин может быть существенное… Читать ещё >

Влияние вольфрама на нитратредуктазу солетолерантных дрожжей Rhodotorula glutinis (реферат, курсовая, диплом, контрольная)

Содержание

  • Глава 1. ЛИТЕРАТУРНЫЙ ОБЗОР
    • 1. 1. Нитратредуктпаза: структура, свойства и механизм действия
      • 1. 1. 1. Молибдокофактор, его структура. Различные типы молибдокофактора
    • 1. 2. Ассимиляция нитратов у дрожжей
    • 1. 3. Вольфрам в биологических системах
      • 1. 3. 1. Химическая природа вольфрама и сравнение его с молибденов
      • 1. 3. 2. Биологическое действие вольфрама
      • 1. 3. 3. Вольфрамовые ферменты
      • 1. 3. 4. Активный центр волъфрамсодержащих ферментов
  • Глава 2. МАТЕРИАЛЫ И МЕТОДЫ ИССЛЕДОВАНИЯ
    • 2. 1. Объект исследований
    • 2. 2. Характеристика культуры дрожжей ШойоШиХа glutinis
    • 2. 3. Условия выращивания дрожжей К $иИт$
    • 2. 4. Получение бесклеточного экстракта
      • 2. 4. 1. Разрушение клеток с использованием камеры Любимова
  • Львова
    • 2. 4. 2. Разрушение клеток в гомогенизаторе
    • 2. 4. 3. Разрушение клеток на ультразвуковом дезинтеграторе
    • 2. 4. 4. Сравнение различных методов разрушения
    • 2. 5. Определение нитратредуктазной активности
    • 2. 6. Активирование нитратредуктазы
    • 2. 7. Определение активности молибдокофактора
    • 2. 7. 1. Условия выращивания мутанта Меитярога сгая^ча пи~
    • 2. 7. 2. Приготовление экстракта мутанта N. сгаяяа пИ
    • 2. 7. 3. Проверка чистоты полученного препарата мутанта N. crassa nit
    • 2. 7. 4. Процедура определения активности молибдокофактора
    • 2. 8. Определение белка по методу Бредфорд
    • 2. 9. Определение вольфрама кинетическим методом
    • 2. 9. 1. Оптимизация условий приготовления образцов W-содержащих белков для последующего определения в них вольфрама
    • 2. 10. Определение вольфрама масс-спектрометрическим методом
    • 2. 11. Определение молекулярной массы нитратредуктазы
    • 2. 12. Нативньгй диск-электрофорез
    • 2. 13. Определение субъединичного состава нитратредуктазы
    • 2. 14. Другие методы, использованные в работе
    • 2. 15. Реактивы, используемые в работе
  • Глава 3. ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТ
    • 3. 1. Стимуляция роста и нитратредуктазной активности солетолерантных дрожжей R. glutinis вольфрамом в присутствии молибдена
    • 3. 2. Влияние высоких концентраций вольфрамата в питательной среде на рост дрожжей R. glutinis
    • 3. 3. Гель-хроматография экстракта из «W"-клеток дрожжей
    • R. glutinis на колонке Toyopearl HW-55 (fine)
      • 3. 4. Выделение и очистка нитратредуктазы из дрожжей R. glutinis
      • 5. 5. Характеристика, свойства выделенной нитратредуктазы
      • 3. 6. Влияние содержания аммонийного азота в среде на уровень нитратредуктазной активности у дрожжей R. glutinis
      • 3. 7. Сравнительная характеристика нитратредуктаз из солетолерантных дрожжей R. glutinis, выращенных на среде с
    • 1. мМмолибдата и на среде с 1 мМвольфрамата
      • 3. 8. Защитные механизмы, существующие в дрожжевой клетке и снижающие концентрацию в ней вольфрама

Актуальность темы

В течение 60 лет молибден считался единственным элементом из числа тяжелых металлов и из всех элементов пятого периода, который природа выбрала в качестве важного микрокомпонента для построения живых организмов. Его биологическая роль определяется прежде всего тем, что он входит в состав ферментов (к настоящему времени их насчитывается более 15), участвующих в метаболизме азота, серы, углерода. Наибольшее внимание уделялось молибдену как компоненту активных центров нитрогеназы и нитратредуктазы — ферментов, осуществляющих ассимиляцию молекулярного и нитратного азота.

Вольфрам обладает сходными с молибденом физическими и химическими свойствами. До открытия активных вольфрамсодержащих (Ш-содержащих) ферментов предполагалось, что, в силу этого сходства, вольфрам способен заместить молибден в молибдоферментах, при сохранении ферментативной активности. Данную особенность можно было бы использовать для изучения роли металла в каталитическом процессе. Но все попытки выделить активный Ж-содержащий фермент оканчивались неудачей. Присутствие вольфрама в среде роста (в микромолярных концентрациях) без добавления молибдена приводило к ингибированию роста организма за счет образования малоактивных (или неактивных) вольфрамовых аналогов Мо-содержащих ферментов. Таким образом, несмотря на высокую степень сходства между двумя металлами, молибден оказывался более предпочтительным, чем вольфрам. Поэтому долгое время вольфраму отводилась лишь роль антагониста молибдена.

Наиболее изученным ферментом, с точки зрения ингибирующего влияния вольфрама, является нитратредуктаза. В экспериментах с грибами, водорослями, высшими растениями и бактериями было показано, что в присутствии вольфрама в среде роста с нитратами, как единственного источника азота, при отсутствии (или дефиците) молибдена, происходила замена молибдена на вольфрам в активном центре фермента, при этом рост прекращался, так как вольфрамовый аналог не обладал каталитической активностью. Поэтому рост организма в таких условиях, по-видимому, должен указывать на синтез активной УУ-содержащей нитратредуктазы. В то же время было обнаружено, что одновременное присутствие в среде роста вольфрама и молибдена, стимулирует рост и нитратредуктазную активность у шпината, цветной капусты, белого клевера, у некоторых бактериальных организмов. При этом вольфрам в активный центр Мо-содержащих ферментов не включался, что еще раз подчеркивало предпочтительность молибдена.

Обнаруженные (за последнее десятилетие) активные Ж-содержащие ферменты из гипертермофильных архебактерий послужили основой для доказательства биологической роли вольфрама. У данной группы микроорганизмов как рост, так и каталитическая активность некоторых ферментов облигатно зависела от вольфрама, что дает нам право говорить о «истинных» Ш-содержащих ферментах. Данные, об обнаружении активных вольфрамовых ферментов из эукариот, отсутствуют.

В данной работе были использованы солетолерантные дрожжи Шос1(Ноги1а glutinis, выделенные из эпифитной микрофлоры соль-экскретирующих листьев АМр1ех ЪаИтт, растущего в пустыне Негев (Израиль). Можно было предполагать, что у организма, адаптированного к сравнительно высоким концентрациям соли, процесс нитратредукции может осуществляться ферментом, отличающимся от обычных, описанных в литературе молибденсодержащих нитратредуктаз.

Данная работа посвящена изучению нитратредукции у солетолерантных дрожжей Я. растущих в условиях высокой концентрации вольфрама в среде.

Цель и задачи исследования

Главной целью исследования явилось изучение особенностей ферментативного пути ассимиляции нитратов у солетолерантных дрожжей Шгос1оШги1а glutinis, растущих в условии высокой концентрации вольфрамата натрия.

В работе решались следующие задачи:

1. Изучение влияния совместного присутствия вольфрамата и молибдата натрия на рост и нитратредуктазную активность у дрожжей Я.

2. Выделение и изучение нитратредуктаз из дрожжей, выращенных на 1 мМ вольфрамата при дефиците молибдена, и сравнение ее с нитратредуктазами из тех же клеток, выращенных на 1 мМ молибдата.

Научная новизна.

Обнаружено стимулирующее действие вольфрама на рост и нитратредуктазную активность у дрожжей Я.1иИт8 в присутствии молибдена;

Из клеток дрожжей, растущих на среде, содержащей 1 мМ вольфрама при дефиците молибдена, выделен в гомогенном состоянии препарат нитратредуктазы, обнаруживающий уникальную устойчивость к высокой концентрации этого металла (1 мМ);

Разработана модификация высокочувствительного кинетического метода определения вольфрама в белках.

Практическая ценность работы. Полученные результаты дополняют имеющиеся данные о положительном влиянии вольфрамата натрия на рост и НР активность у некоторых растений и микроорганизмов. 8.

Разработанная модификация высокочувствительного каталитического метода определения вольфрама по окислению рубеановодородной кислоты перекисью водорода, может быть использована для обнаружения-содержащих белков.

Апробация. Материалы диссертации докладывались на:

На V Международном симпозиуме «Ассимиляция неорганического азота» (Лусо, Португалия, 1998);

На XIII Международной конференции молодых ученых по химии и химической технологии «МКХТ-99» (Москва, 1999);

На школе-конференции «Горизонты физико-химической биологии» (Пущино, 2000).

Публикации. По материалам диссертации опубликовано 6 печатных работ (1 обзор, 3 статьи и 2 тезисов).

Структура и объем диссертации

Диссертационная работа состоит из введения, обзора литературы, описания материалов и методов исследования, изложения результатов и их обсуждения, выводов и списка.

выводы.

1. При эквимолярном соотношении молибдена и вольфрама в среде роста (по 1 мМ), наблюдается как стимуляция роста солетолерантных дрожжей ЯИосЫоги1а glutinis на среде с нитратами по сравнению с одним молибденом, так и увеличение нитратредуктазной активности в 3 раза. При этом вольфрам не включался в состав нитратредуктаз, а процесс нитратредукции осуществлялся молибденсодержащей нитратредуктазой.

2. Несмотря на высокую концентрацию вольфрама в среде роста (1 мМ) при дефиците молибдена, солетолерантные дрожжи Я. фйШя синтезируют молибденсодержащую нитратредуктазу, обладающей уникальной устойчивостью к вольфраму (1 мМ). Фермент, на долю которого приходится 65−86% активности нитратредуктазы, получен в гомогенном состоянии и представляет собой гомодимер с молекулярной массой субъединиц 65 кДаобладает высокой термостабильностью и температурным оптимумом.

3. Разработана модификация высокочувствительного кинетического метода определения вольфрама в белках, основанная на способности этого металла катализировать реакцию окисления рубеановодородной кислоты перекисью водорода.

ЗАКЛЮЧЕНИЕ

.

За последнее десятилетие был достигнут значительный прогресс в изучении W-содержащих ферментов: структурных, биохимических, каталитических и физиологических особенностей. Этот успех мало отразился на решении одного из основных вопросов — влияние W на нитратредукцию у живых организмов и в частности, на ключевой фермент в этом процессе — нитратредуктазу (HP). В литературе отсутствуют данные.

0 выделение активной W-содержащей HP. Но действие W не однозначно и как ранее сообщалось (Hewitt, 1983) W, в определенных условиях, способен стимулировать как рост, так и HP активность у некоторых растений и микроорганизмов, при этом W в активный центр не включался. Этот эффект был отмечен и у изучаемых солетолерантных дрожжей Rhodotorula glutinis. При эквимолярном соотношении Мо и W в среде (по.

1 мМ) или преобладании W (Mo:W=0,01:l, в мМ), наблюдается значительная стимуляция роста дрожжей на среде с нитратами по сравнению с одним Мо. Причиной стимуляции, по-видимому, является увеличение HP активности (в 3 раза). Каковы возможные причины повышения активности HP в клетках, растущих в присутствии Mo+W («Mo+W» -клетки)? В настоящей работе показано, что одной из причин может быть существенное увеличение в «Mo+W» -клетках, по сравнению с «Мо» -клетками количества молибдокофактора (Moco). Другая возможная причина — W, как это было обнаружено ранее у растений, вызывает сверхэкспрессию структурного гена HP табака, в результате чего у растений, выращенных на среде с W, отмечается высокий уровень апобелка HP, который был неактивен и обнаруживался лишь иммунохимически (Deng et al, 1989). В результате одновременного увеличения в клетке Moco и апобелка, возможно, и повышается активность HP.

При росте на среде с 1 мМ W солетолерантные дрожжи Rhodotorula glutinis синтезируют две изоформы HP, одна из которых обладает молекулярной массой больше 700 кДа, другая — 130 кДа. Так как доля НРхзо в общей активности составляла 65−85,6%, было предположено, что она играет основную роль в ассимиляции нитратов в дрожжах. В связи с этим ее решено было выделить в гомогенном состоянии и охарактеризовать. Необычными для НРш свойствами, по сравнению с дрожжевыми нитратредуктазами, являются: высокий tonm (35−45)°, высокая термостабильность и устойчивость к присутствию in vitro 1 мМ вольфрамата. Но самым удивительным оказалось то, что анализ металлов в гомогенном препарате НРш показал наличие одного Мо. Таким образом, солетолерантные дрожжи даже при росте на среде с высоким содержанием W, синтезируют Мо-НР, добывая Мо из ничтожных примесей, содержащиеся в реактивах и воде. Этот факт красноречиво свидетельствует о «предпочтительности» Мо для HP, о чем говорилось в литературном обзоре. При росте на среде с W, дрожжевые клетки вероятно синтезируют новый изофермент, поскольку НРш существенно отличается от НР230, обнаруженной в «Мо «-клетках указанных дрожжей.

В клетках дрожжей был обнаружен высокомолекулярный белок, по-видимому, являющийся фрагментом клеточной мембраны, содержащий W (W-содержащий белок). Синтез данного белка не зависел от присутствия нитратов в среде и поэтому не связан с HP активностью. По нашим данным, этот компонент является липопротеидом. Одной из его возможных функций в клетке является — создание защитного барьера против W, поскольку концентрация W внутри дрожжевой клетки во много раз ниже, чем в среде роста. Обнаружение W-содержащего белка в солетолерантных дрожжах при выращивании их на среде с W, интересно с точки зрения выяснения функционирования защитных механизмов и адаптации живых организмов к неблагоприятным условиям среды.

Показать весь текст

Список литературы

  1. С.А., Гвоздев Р. И., Кильдибеков H.A., Львов Н. П. Высокочувствительный кинетический микрометод определения молибдена в растительном материале // Прикладная биохимия и микробиология, 1987, Т. 23, С. 284−287.
  2. К.Л., Львов Н. П., Заболотный А. И. Белки семян люпина, связывающие молибден, вольфрам и радионуклиды выбросов Чернобыльской АЭС II Биохимия, 1991, Т. 56, № 7, С. 1220−1227.
  3. H.A., Омаров Р. Т., Львов Н. П. // Успехи биол. химии, 1996, Т. 36, С. 136−186.
  4. Н. П. Молекулярные механизмы усвоения азота растениями // М.: Наука, 1983, 127−150.
  5. Н.П. Молибден в ассимиляции азота у растений и микроорганизмов // 43-е Баховское чтение, М.: Наука, 1989, С. 63.
  6. Н. П., Аликулов 3. А., Кильдибеков Н. А., Кретович В. Л. Молибдокофакторы молибденсодержащих ферментов (обзор) // Изв. АН СССР, сер. биол., 1981, Т. 2, С. 219−236.
  7. В.И., Львов Н. П. Улучшенная камера для разрушения клеток микроорганизмов // Прикладная биохимия и микробиология, 1968, Т. 4, С. 592−593.
  8. А.Н., Чичикало Е. В., Голубева Л. И., Звягильская P.A., Львов Н. П. Стимуляция нитратредуктазной активности в солетолерантных дрожжах Rhodotorula glutinis вольфрамом в присутствии молибдена // Биохимия, 2000, Т. 65, № 2, С. 245−249.
  9. А.Н., Чичикало Е. В., Львов Н. П. Кинетический метод определения вольфрама в вольфрам-содержащих ферментах // Прикладная биохимия и микробиология, 2001, Т. 37, № 6. (в печати).
  10. Р.П. Кинетический метод определения следов вольфрама и молибдена // Аналит. химия, 1963, Т. 18, С. 603−609.
  11. Afshar S., Kim С., Monbouquette Н. G., Schroder I. Effect of tungstate on nitrate reduction by the hyperthermophilic archaeon Pyrobaculum aerophilum // Appl Environ. Microbiol., 1998, V. 64, № 8, P. 3004−3008.
  12. Ali A.H. and Hipkin C.R. Nitrate assimilation in the basidiomycete yeast Sporobolomyces roseus H J. General Microbiol., 1985, V. 131, P. 18 671 874.
  13. Ali A.H. and Hipkin C.R. Nitrate assimilation in Candida nitratophila and other yeasts I I Arch. Microbiol., 1986, V. 144, P. 263−267.
  14. Amy N.K., Rajagopalan K.V. Characterization of molybdenum cofactor from Escherichia coli /I J. Bacrteriol., 1979, V. 140, P. 114−124.
  15. Antipov A.N., Lyalikova N.N. and L’vov. Vanadium-binding protein excreted by vanadate-reducing bacteria // Life, 2000, V. 49, P.137−141.
  16. Benemann J.R., Smith G.M., Kostel P.J. and McKenna C.E. Tungsten incorporation into Azotobacter vinelandii nitrogenase I IFEBS Lett., 1973, V. 29, P. 219−221.
  17. Bradford M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding II Anal. Biochem., 1976, V. 72, P. 248−254.
  18. Buc J., Santini C.L., Giordani R., Czjzek M., Wu L.F., Giordano G. Enzymatic and physiological properties of the tungsten-substituted molybdenum TMAO reductase from Escherichia coli // Molecular. Microbiol., 1999, V. 32, № 1, p. 159−168.
  19. Caboche M. and Rouse P. Nitrate reductase: a target for molecular and cellular studies in higher plants // Trends in Genetics, 1990, V. 6, P. 187 192.
  20. Campbell W.H. Structure and synthesis of higher plant nitrate reductase // In: Molecular and Genetic Aspects of Nitrate Assimilation (Wray J. and Kinghorn J., ed.), Oxford Univ. Press, New York, 1989, P. 123−154.
  21. Campbell W.H. Nitrate reductase structure, function and regulation: bridging the gap between biochemistry and physiology II Annu. Rev. Plant Physiol. Plant Mol. Biol., 1999, V. 50, P. 277−303.
  22. Cannons A., Ali A.H. and Hipkin C.R. Regulation of nitrate reductase synthesis in the yeast Candida nitratophila II J. General Microbiol., 1986, V. 132, P. 2005−2011.
  23. Chan M.K., Mukund S., Kletzin A., Adams M. W. W., Rees D. C. Structure of a hyperthermophilic tungstopterin enzyme, aldehyde ferredoxin oxidoreductase I I Science, 1995, V. 267, P. 1463−1469.
  24. Choudaiy P.V., Deobagkar D.N. and Rao G.R. Partial purification and properties of assimilatory nitrate reductase of the food yeast Candida utilis IIMicrobios, 1986, V. 47, P. 135−147.
  25. Conzalez C. and Siverio J.M. Effect of nitrogen source on the levels or nitrate reductase in the yeast Hansenula anomala II J. General Microbiol., 1992, V. 138, P. 1445−1451.
  26. Crame S.P., Liu C.L., Mortenson L.E., Spence J.T., Liu S.-M., Yamamoto I., Ljungdahl L.G. Formate dehydrogenase molybdenum and tungsten sites: observation by EXAFS of structural differences // J. of Inorg. Biochem., 1985, V. 23, P. 119−124.
  27. Crawford N.M. Nitrate: nutrient and signal for plant growth I I Plant Cell, 1995, V. 7, P. 859−868.
  28. Davis B.J. Disk electrophoresis: Method and application to human serum protein II Ann. NY Acad. Sci., 1964, V. 121, P. 119−124.
  29. Deaton J.C., Solomon E.J., Durfor C.N., Wetherbee P.J., Burgess B.K. and Jacobs D.B. Activation of nit-1 nitrate reductase by W-formate dehydrogenase // Biochem. Biophys. Res. Commun., 1984, V. 121, P. 1042−1047.
  30. Deng M., Moureaux T. and Caboche M. Tungstate, a molybdate analog inactivating nitrate reductase, deregulates the expression of the nitrate reductase structural gene // Plant Physiol, 1989, V. 91, P. 304−309.
  31. Enoch H.G. and Lester R.L. Effects of molybdate, tungstate, and selenium compounds on formate dehydrogenase and other enzyme systems in Escherichia coli II J. Bacteriol, 1972, V. 110, P. 1032−1040.
  32. Fischer B., Enemark J.H., Basu P. A chemical approach to systematically designate the pyranopterin centers of molybdenum and tungsten enzymes and synthetic models // J. of Inorg. Biochem., 1998, V. 72, P. 13−24.
  33. Flynn K.J. and Hipkin C.R. I I New Phytol, V. 114, P. 435−440.
  34. Frausto da Silva J.J.R. and Williams R.J.P. Molybdenum, vanadium and tungsten // The Biological Chemistry of the Elements, Clarendon Press, Oxford, 1991, P. 441−432.
  35. George G.N., Prince R.C., Mukimd S. and Adams M.W.W. Aldehyde ferredoxin oxidoreductase from the hyperthermophilic archaebacterium Pyrococcus furiosus contains a tungsten oxo-thiolate center 11 J. Am. Chem. Soc., 1992, V. 114, P. 3521−3523.
  36. Girio F.M., Marcos J.C. and Amaral-Collaco M.T. Transition metal requirement to express high level NAD±dependent formate dehydrogenase from a serine-type methylotrophic bacterium // FEMS Microbiol. Lett., 1992, V. 97, P. 161−166.
  37. Girio F.M., Roseiro J.C., Silva A.I. The effect of the simultaneous addition of molybdenum and tungsten to the culture medium on the formate dehydrogenase activity from Methylobacterium sp. RXM // Current Microbiol, 1998, V. 36, № 6, P. 337−340.
  38. Greenwood N.N. and Earnshaw A. Chromium, molybdenum and tungsten // In Chemistry of the elements, Pergamon Press, Oxford, 1984, P. 1167−1168.
  39. Gromes R., Schwartz H., Heinrich M. and Johannssen W. Nitrate reductase from yeast: partial purification and characterization // Appl. Microbiol, andBiotechnol., 1991, V. 35, P. 491−495.
  40. Guerrero M.G. and Gutierrez M. Purification and properties of the NAD (P)H: nitrate reductase of the yeast Rhodotorula glutinis // Biochim. Biophys. Acta, 1977, V. 482, P. 271−285.
  41. Guerrero M.G. and Vega J.M. Molybdenum and iron as functional constituents of the enzymes of the nitrate-reducing system of Azotobacter chroococcum II Arch. Microbiol, 1975, V. 102, P. 91−94.
  42. Heimer Y.N., Wray J.L. and Filner P. The effect of tungstate on nitrate assimilation in higher plants tissues // Plant Physiol., 1969, V. 44, 11 971 199.
  43. Hensgens C.M.H., Hagen W.R. and Hansen T.H. Purification and characterization of a benzyl viologen-linked, tungsten-containing aldehyde oxidoreductase from Desulfovibrio gigas II J. Bacteriol., 1995, V. 177, № 21, P. 6195−6200.
  44. Hewitt E.J. A perspective of mineral nutrition: essential and functional metals in plants // In: Metals and micronutrients: uptake and utilization by plants (D.A. Robb and W.S. Pierpoint ed.), 1983, P. 277−323.
  45. Hipkin C.R. Nitrate assimilation in yeast // In: Molecular and Genetic Aspects of Nitrate Assimilation (J.L. Wray and J.R. Kinghorn, ed.), Oxford: Oxford University Press, 1989, P. 51−68.
  46. Hipkin C.R., Kau D.A. and Cannons A.C. Evidence that the glutamine-stimulated loss of nitrate reductase protein from the yeast Candida nitratophila is not the result of inducer exclusion // Biochem. J., 1993, V. 295, P. 611−615.
  47. Johnson J.L., Cohen H.J. and Rajagopalan K.V. Molecular basis of the biological function of molybdenum: effect of tungsten on xanthineoxidase and sulfite oxidase in the rat I I J. Biol. Chem., 1974, V. 249, № 3, P. 259−266.
  48. Johnson J.L., Rajagopalan R.V., Muknnd S. and Adams M.W.W. Identification of molybdopterin as the organic component of the tungsten cofactor in four enzymes from hyperthermophiles II J. Biol. Chem., 1993, V. 268, P. 4848−4852.
  49. Johnson J.L., Jones H.P. and Rajagopalan K.V. In vitro reconstitution of demolybdosulfite oxidase by molybdate // J. Biol. Chem., 1977, V. 252, № 14, P. 4988−4993.
  50. Johnson J.L., Bastian N.R. and Rajagopalan K.V. Molybdopterin guanin dinucleotide a modified from Rhodobacter sphaeroides I I Proc. Natl. Acad. Set USA, 1990, V. 87, P. 3190−3194.
  51. Johnson J.L., Cohen H.J. and Rajagopalan K.V. Molecular basis of the biological function of molybdenum. Molybdenum-free sulfite oxidase from livers of tungsten-treated rats II J. Biol Chem., 1974, V. 249, № 16, P. 5046−5055.
  52. Johnson J.L., Wand W.R., Cohen H.J., Rajagopalan K.V. Molecular basis of the biological function of molybdenum. Molybdenum-free xanthine-oxidase from livers of tungsten-treated rats // J. Biol. Chem., 1977, V. 249, № 16, P. 5056−5061.
  53. Johnson M.K., Rees D.C., Adams M.W.W. Tungstoenzymes // Chem. Rev., 1996, V. 96, P. 2817−2839.
  54. Jones J.B. and Stadtman T.C. Selenium-dependent and selenium-independent formate dehydrogenases of Methanococcus vannielii // J. Biol. Chem., 1981, V. 256, № 2, P. 656−663.
  55. Jones C.P., Wray J.L. and Kinghorn J.R. The role of nitrogen sources in the regulation or nitrate reductase and nitrite reductase levels in the yeast Hansenula wingei II J. General Microbiol., 1989, V. 133, P. 2767−2772.
  56. Kildibekov N.A., Omarov R.T., Antipov A.N., Shvetsov A.A., Mironov E.A. and L’vov N.P. Purification of a molybdocofactor-containing protein from pea seeds and identification of molybdopterin // Plant Physiol. Biochem., 1996, V. 34, № 5, P. 677−682.
  57. Kletzin A. and Adams M.W.W. Tungsten in biological systems // FEMS Microbiol. Rev., 1996, V. 18, P. 5−63.
  58. Kruger B. and Meyer O. The pterin (bactopterin) of carbon monoxide dehydrogenase from Pseudomonas carboxidoflava II Eur. J. Biochem., 1986, V. 157, P. 121−128.
  59. Kruger B. and Meyer O. Structural elements of bactopterin from Pseudomonas carboxidoflava carbon monoxide dehydrogenase // Biochim. Biophys. Acta, 1987, V. 912, P. 357−364.
  60. Lee K.Y., Erickson R., Pan S.S., Jones G., May F. and Nason A. Effect of tungsten and vanadium on the in vitro assembly of assimilatory nitrate reductase utilizing Neurospora mutant nit-1 I I J. Biol. Chem., 1974, V. 249, № 12, P. 3953−3959.
  61. Ljungdahl L.G. Tungsten, a biologically active metal // Trends Biochem. Sci. (TIBS), 1976, V. 1, P. 63−65.
  62. LosadaM. II J. Molecular Catalysis., 1975/76, P. 245−254.
  63. McCleverty, J.A. Molybdenum: inorganic and coordination chemistry // In: Encyclopedia of Inorganic Chemistry (King, R.B., ed.), John Wiley and Sons, New York, 1994, P. 2304−2330.
  64. McMaster J., Enemark J.H. The active sites of molybdenum- and tungsten-containing enzymes // Curr. Opin. Chem. Biol., 1998, V. 2, № 2, P. 201−207.
  65. Meckenstock R.V., Krieger R., Ensigh S., Kroneck P.M.H., Schink B. Acetylene hydratase of Pelobacter acetylenicus. Molecular and spectroscopic properties of the tungsten iron-sulfur enzyme // Eur. J. Biochem., 1999, V. 264, P. 176−182.
  66. Moreno-Vivian C., Cabello P., Martinez-Luque M., Blasco R. and Castillo F. Prokaryotic nitrate reduction: molecular properties and functional distinction among bacterial nitrate reductases // J. Bacteriol., 1999, V. 181, № 21, P. 6573−6584.
  67. Mukund S. and Adams M.W.W. Tungsten in the three tungstoenzymes of the hyperthermophilic Archaeon, Pyrococcus furiosus, is not replaced by cell growth in the presence of vanadium or molybdenum I I J. Bacteriol 1996, V. 178, P. 163−167.
  68. Mukund S. and Adams M.W.W. Characterization of a tungsten-iron-sulfur protein exhibiting novel spectroscopic and redox properties from hyperthermophilic archaebacterium Pyrococcus furiosus II J. Biol. Chem., 1990, V. 265, P. 11 508−11 516.
  69. Mukund S. and Adams M.W.W. The novel tungsten-iron-sulfur protein of the hyperthermophilic archaebacterium Pyrococcus furiosus, is an aldehyde ferredoxin oxidoreductase // J. Biol. Chem., 1991, V. 266, P. 14 208−14 216.
  70. Mukund S. and Adams M.W.W. Glyceraldehyde-3-phosphate ferredoxin oxidoreductase, a novel tungsten-containing enzyme with a potential glycolytic role in the hyperthermophilic archaeon Pyrococcus furiosus II J. Biol.Chem., 1995, V. 270, P. 8389−8392.
  71. Nason A., Antoine A.D., Ketchum P.A., Frazier W.A., Lee D.K. Formation of assimilatory nitrate reductase by in vitro inter cistonic complementation in Neurospora crassa I I Proc. Natl. Acad. Sci. USA., 1970, V. 65, № 1, P. 137−144.
  72. Nesterenko M.V., Tilley M. and Upton S.J. A simple modification of Blum’s silver stain method allows for 30 minute detection of proteins in polyacrylamide gels H J. Biochem. Biol., 1994, V. 28, № 3, P. 239−242.
  73. Notion B.A. Micronutrients and nitrate reductase I I In: Metals and micronutrients: uptake and utilization by plants (D.A. Robb and W.S. Pierpoint, ed.), Academic Press, London, 1983, P. 219−239.
  74. Notton B.A. and Hewitt E.J. The role of tungsten in the inhibition of nitrate reductase activity in spinach (Spinacea oleracea L.) leaves // Biochem. Biophys. Res. Commun., 1971, V. 44, № 3, P. 702−710.
  75. Oaks A., Poulie M., Goodfellow V.J., Cass L.A. and Deising H. The role of nitrate and ammonium ions and light on the induction of nitrate reductase in maize leaves H Plant Physiol, 1988, V. 88, P. 1067−1072.
  76. Orastein L. Disc electrophoresis-I: Background and theory // Ann. NY Acad. Sci., 1964, V. 121, P. 321−349.
  77. Paneque A., Vega J.M., Cardenas J., Herrera J., Aparicio P.J. and Losada M. W-labelled nitrate reductase from CMorella // Plant Cell Physiol., 1972, V. 13, P. 175−178.
  78. Pope, M.T. Isopolyanions and heteropolyanions // In: Comprehensive Coordination Chemistry (Wilkinson, Sir G., ed.), Pergamon Press, Oxford, New York, 1987, P. 1023−1060.
  79. Rajagopalan K.V. Novel aspects of the biochemistry of the molybdenum cofactor // Adv. in Enzymol. and Related Areas ofMol. Biol., 1991, V. 64, P. 215−290.
  80. Rivas J., Guerrero M.G., Panaque A. and Losada M. Characterization of the nitrate reducing system of the yeast Torulopsis nitratophila II Plant Sci. Lett., 1973, V. 1, P. 105−113.
  81. Rouze P. and Caboche M. Nitrate reduction in higher plants: molecular approaches to function and regulation // In: Inducible Plant Proteins (J.L. Wray, ed.), Cambridge Univ. Press, Cambridge MA, 1992, P. 45−77.
  82. Saracino L., Violet M., Boxer D.H. and Giordano G. Activation in vitro of respiratory nitrate reductase of Escherichia coli K12 grown in thepresence of tungsten. Involvement of molybdenum cofactor // Eur. J. Biochem., 1986, V. 158, P. 483−490.
  83. Selvoraj K., Anita S. and Minie G. Effect of low tungsten concentration and amino acid on nitrate reductase activity of leaf and nodule tissue of legumes II Indian J. Exp. Biol., 1998, V. 36, P. 506−509.
  84. Sengupta S., Shaila M.S. and Rao G.R. Purification and characterization of assimilatory nitrite reductase from Candida utilis II Biochem. J., 1996, V. 317, P. 147−155.
  85. Schmitz R.A., Albracht S.P.J, and Thauer R.K. A molybdenum and a tungsten isoenzyme of formylmethanofuran dehydrogenase in the thermophilic archaeon Methanobacterium wolfei I I Eur. J. Biochem., 1992, V. 209, P. 1013−1018.
  86. Schmitz R.A., Richter M., Linder D. and Thauer R.K. Properties of the tungsten-substituted molybdenum formylmethanofuran dehydrogenase from Methanobacterium wolfei 11FEBS Lett., 1992, V. 309, P. 78−81.
  87. Schmitz R.A., Richter M., Linder D. and Thauer R.K. A tungsten-containing active formylmethanofuran dehydrogenase in the thermophilic archaeon Methanobacterium wolfei H Eur. J. Biochem., 1992, V. 207, P. 559−565.
  88. Solomonson L.P. and Barber M.J. Assimilatory nitrate reductase: functional properties and regulation // Annu. Rev. Plant Physiol. Plant Mol. Biol, 1990, V. 41, P. 225−253.
  89. Strobl G., Feicht R., White H., Lottspeich F. and Simon H. The tungsten-containing aldehyde oxidoreductase from Clostridium thermoaceticum and its complex with viologen-accepting NADPH oxidoreductase II J. Biol Chem., 1992, V. 373, P. 123−132.
  90. Vorholt J.A., Vaupel M. and Thauer R.K. A selenium-dependent and a selenium-independent formylmethanofuran dehydrogenase and theirtranscriptional regulation in the hypertermophilic Methanopyrus kandleri HMol. Microbiol., 1997, V. 23, P. 1033−1042.
  91. White H., Feicht R., Huber C., Lottspeich F. and Simon H. Purification and some properties of the tungsten-containing carboxylic acid reductase from Clostridium formicoaceticum II J. Biol. Chem., 1991, V. 372, P. 9 991 005.
  92. White H., Strobl G., Feicht R., Simon H. Carboxylic acid reductase: a new tungsten enzyme catalyses the reduction of non-activate carboxylic acid to aldehydes I I Eur. J. Biochem., 1989, V. 184, P. 89−96.
  93. White H. and Simon H. The role of tungsten and/or molybdate in the formation of aldehyde oxidoreductase in Clostridium thermoaceticum and other acetogens: immunological distances of such enzymes I I Arch. Microbiol., 1992, V. 158, P. 81−84.
  94. White H., Huber C., Feicht R., Simon H. On a reversible molybdenum-containing aldehyde oxidoreductase from Clostridium formicoaceticum I I Arch. Microbiol, 1993, V. 159, P. 244−249.
  95. Wray J.L., Filner P. Structural and functional relationships of enzyme activities induced by nitrate in barley // Biochem. J. 1970, V. 119, P. 715 725.
  96. Yamamoto I., Saiki T., Liu S.-M. and Ljungdahl L.G. Purification and properties of NADP-dependent formate dehydrogenase from Clostridium thermoaceticum, a tungsten-selenium-iron protein I I J. Biol. Chem., 1983, V. 258, P. 1826−1832.
  97. Zauner E. and Dellweg H. Purification and properties of the assimilatory nitrate reductase from yeast Hansenula anomala // Appl Microbiol Biotechnol, 1983, V. 17, P. 90−95.
Заполнить форму текущей работой