Помощь в написании студенческих работ
Антистрессовый сервис

Статистическая термодинамика идеального одноатомного газа

РефератПомощь в написанииУзнать стоимостьмоей работы

Для того чтобы оценить роль межчастичного взаимодействия в поведении реальных газов, рассмотрим модель решеточного газа с притяжением, в котором каждая пара частиц взаимодействует с одинаковым потенциалом, равным -2a/V, где, а — постоянная; V — объем газа. Объем введен в знаменатель, чтобы учесть зависимость общей энергии взаимодействия от среднего расстояния между молекулами. Точно так же зависит… Читать ещё >

Статистическая термодинамика идеального одноатомного газа (реферат, курсовая, диплом, контрольная)

Рассмотрим свойства простейшей статистической системы — идеального газа с учетом квантовых закономерностей. Классическое описание дает не вполне удовлетворительные результаты, в особенности для низких температур. Закон равнораспределения энергий, вытекающий из классической теории идеального газа, имеет лишь ограниченную область применимости. Получить более строгие результаты можно исходя из общих соотношений для квантовых систем.

Для идеального газа потенциал взаимодействия частиц равен нулю. Кроме того, в этой модели частицы не имеют собственного объема, поэтому интегрирование по координатам проводится по всему объему системы и конфигурационный интеграл равен.

Статистическая термодинамика идеального одноатомного газа.

Статистическая сумма имеет вид.

(11.10).

(11.10).

Все термодинамические функции выражаются через логарифм статистической суммы:

Статистическая термодинамика идеального одноатомного газа. (11.11).

Подставляя равенство (11.11) в выражение (11.4), находим термическое уравнение состояния идеального одноатомного газа (зависимость давления от температуры и объема):

Статистическая термодинамика идеального одноатомного газа.

где Статистическая термодинамика идеального одноатомного газа. — число молей; Статистическая термодинамика идеального одноатомного газа. — универсальная газовая постоянная. Калорическое уравнение состояния (зависимость внутренней энергии от температуры и объема) получается при подстановке равенстве (11.11) выражение (11.5):

Статистическая термодинамика идеального одноатомного газа.

Наконец, из выражений (11.10) и (11.3) можно получить уравнение Закура — Тетроде для энтропии 1 моля одноатомного идеального газа:

Статистическая термодинамика идеального одноатомного газа.

где М = m/v — молярная масса газа; v — количество вещества. Значение постоянной в этом уравнении зависит от размерностей величин, стоящих под знаком логарифма.

Таким образом, на примере идеального газа мы реализовали схему, демонстрирующую связь микроскопических свойств (гамильтониана) системы с ее макроскопическими (т.е. термодинамическими) свойствами:

Статистическая термодинамика идеального одноатомного газа.

Модельные представления о реальных газах

Реальные газы отличаются от идеальных тем, что частицы имеют собственный объем, а потенциал взаимодействия отличен от нуля. Рассмотрим две простые модели, которые позволят учесть эти факторы при расчете статистической суммы газа.

Модель решеточного газа

В модели решеточного газа предполагается, что N различимых частиц движутся в объеме V, разделенном на ячейки объемом Ь% при этом число ячеек п = V/b предполагается намного большим, чем число частиц, т. е. большинство ячеек — пустые (рис. 11.1). В каждой ячейке может находиться не более одной частицы (если в одной ячейке находятся две частицы, то потенциальная энергия принимается равной +оо). Частицы, находящиеся в разных ячейках, не взаимодействуют, т. е. потенциальная энергия равна нулю. Фактически, в этой модели объем ячейки — это собственный объем частиц. Найдем уравнение состояния для решеточного газа.

Три из 504 вариантов расположения трех различимых частиц в девяти ячейках.

Рис. 11.1. Три из 504 вариантов расположения трех различимых частиц в девяти ячейках.

Для вычисления конфигурационного интеграла рассмотрим какое-либо конкретное разбиение N частиц, но п ячейкам. Интегрирование по координатам каждой частицы в выражении (11.8) даст объем ячейки b, а таких частиц — N, поэтому вклад данного разбиения частиц по ячейкам в конфигурационный интеграл равен bN. Число разбиений N частиц по п ячейкам равно п (п — 1) … (п — N + 1) = п/(п — N), поскольку первая частица может занимать п ячеек, вторая — (п — 1) ячеек, а N-я частица — (п — N + 1) ячеек. Конфигурационный интеграл решеточного газа равен.

Статистическая термодинамика идеального одноатомного газа. (11.12).

Для оценки давления используем естественные приближения: 1) N> 1, так как число частиц в газе велико (порядка 1023); 2) п > N, так как общий объем газа nb намного больше общего собственного объема частиц Nb. Воспользовавшись формулой Стирлинга.

Статистическая термодинамика идеального одноатомного газа.

при больших х, получим следующее выражение: Статистическая термодинамика идеального одноатомного газа.

Уравнение состояния получаем с помощью выражения (11.9) с учетом того, что V = nb

(11.18).

(11.18).

В принципе, полученная формула решает задачу. Далее, можно представить уравнение состояния (11.13) в вириальном виде, воспользовавшись разложением логарифма по малому параметру (Nb/V):

Статистическая термодинамика идеального одноатомного газа.

откуда следует, что і-й вириальный коэффициент равен.

Статистическая термодинамика идеального одноатомного газа.

В частности, второй вириальный коэффициент равен половине общего собственного объема молекул: Статистическая термодинамика идеального одноатомного газа.

Из уравнения состояния (11.13) следует, что.

Статистическая термодинамика идеального одноатомного газа.

при любых объемах. Эго означает, что решеточный газ без взаимодействия ни при каких условиях не проявляет критического поведения и наличие собственного объема, которое можно рассматривать как существование бесконечного отталкивания на малых расстояниях, само по себе не может приводить к конденсации газа.

Модель решеточного газа с взаимодействием

Для того чтобы оценить роль межчастичного взаимодействия в поведении реальных газов, рассмотрим модель решеточного газа с притяжением, в котором каждая пара частиц взаимодействует с одинаковым потенциалом, равным -2a/V, где а — постоянная; V — объем газа. Объем введен в знаменатель, чтобы учесть зависимость общей энергии взаимодействия от среднего расстояния между молекулами.

Статистическая термодинамика идеального одноатомного газа.

В этом случае общий потенциал взаимодействия всех частиц не зависит от конфигурации (т.е. от распределения частиц по ячейкам) и равен произведению парного потенциала на число пар частиц:

Статистическая термодинамика идеального одноатомного газа.

Этот потенциал приводит к появлению множителя ехр (-V/kT) в конфигурационном интеграле:

Статистическая термодинамика идеального одноатомного газа. (11.14).

Дифференцируя InQ, но объему и учитывая, что N (N — 1) ~ N2, получим термическое уравнение состояния решеточного газа с притяжением:

(11.15).

(11.15).

Второй вириальпый коэффициент для этого газа равен.

Статистическая термодинамика идеального одноатомного газа.

При температуре Статистическая термодинамика идеального одноатомного газа. (температура Бойля) коэффициент В2 обращается в нуль и поведение газа близко к идеальному, так как эффект притяжения при температуре Бойля в некотором смысле уравновешивает эффект отталкивания.

Найдем калорическое уравнение состояния, которое определяется зависимостью статистической суммы от температуры. Для данной модели эта зависимость имеет вид (см. выражения (11.7), (11.8), (11.14)):

Статистическая термодинамика идеального одноатомного газа.

откуда находим внутреннюю энергию.

Статистическая термодинамика идеального одноатомного газа.

Точно так же зависит от температуры и объема внутренняя энергия одноатомного газа Ван-дер-Ваальса. Таким образом, калорические уравнения состояния решеточного Статистическая термодинамика идеального одноатомного газа. газа с взаимодействием и газа Ван-дер-Ваальса совпадают друг с другом. Теплоемкость решеточного газа равна теплоемкости одноатомного идеального газа.

Убедимся в том, что данная модель газа описывает критическое поведение. Критические параметры для этой модели реального газа найдем из соотношений.

Статистическая термодинамика идеального одноатомного газа.

Исключая температуру, находим критический объем.

Статистическая термодинамика идеального одноатомного газа.

Критическая температура равна.

Статистическая термодинамика идеального одноатомного газа.

Критическое давление можно найти из уравнения состояния (11.15):

Статистическая термодинамика идеального одноатомного газа.

Если в этой модели пренебречь собственным объемом частиц, т. е. устремить b к нулю, то критический объем также устремится к нулю, а критические температура и давление — к бесконечности. Это означает, что критического поведения не будет.

Критический фактор сжимаемости равен (не путать обозначение со статистической суммой):

Статистическая термодинамика идеального одноатомного газа.

что очень близко к аналогичному значению 3/8 = 0,375 для газа Ван-дер-Ваальса.

Главный вывод, который следует из рассмотрения двух моделей решеточного газа, состоит в том, что критические явления в реальном газе могут появляться только в том случае, когда потенциал взаимодействия содержит как отталкивающую (на малых, но конечных расстояниях), так и притягивающую часть.

Показать весь текст
Заполнить форму текущей работой