Избегание стресса.
Действие антропогенных стрессоров на развитие растений и животных
Склонные к массовому размножению насекомые-вредители в загрязненных газодымовыми выбросами лесах (преимущественно на елях и соснах), по-видимому, также испытывают воздействие этого стрессора, сказывающееся главным образом на физиологическом состоянии их кормовых растений. Многочисленными исследованиями показано, что существует положительная корреляция между повышенной плотностью популяции… Читать ещё >
Избегание стресса. Действие антропогенных стрессоров на развитие растений и животных (реферат, курсовая, диплом, контрольная)
1. Избегание стресса. Устойчивость к стрессу
2. Воздействие антропогенных стрессоров на морфологическую структуру растений
3. Действие антропогенных стрессоров на характер распространения и динамику популяций беспозвоночных животных
4. Главные антропогенные загрязнители воздуха
5. Тест Список использованной литературы
1. Избегание стресса. Устойчивость к стрессу Понятие «стресс» весьма различно используется во многих областях науки. Впервые в качестве научного термина оно было введено в медицину Селье и вскоре проникло в обиходный язык в первую очередь как обозначение неспецифического психического напряжения. Селье (1976) определяет стресс как состояние критической нагрузки, которая проявляется в виде специфического синдрома, слагающегося из всех неспецифически вызванных изменений внутри биологической системы (Hecht, 1982). Стресс можно разделить на два различно действующих типа. Эустресс характеризуется физиологическими адаптивными реакциями, которые вызываются в организме биоэнергетическими процессами, когда в критических ситуациях живому существу необходимо приспособиться к изменившимся условиям среды.
Дистресс означает патогенные процессы, возникающие, как правило, при постоянных нагрузках или усилиях, которые индивид не в состоянии регулировать короткое или длительное время. В какой мере тот или иной стрессор обусловливает эустресс или дистресс, зависит от многочисленных факторов, например от экзогенного сочетания раздражителей и от внутреннего состояния организма.
Генетическая конституция каждого организма обусловливает его определенную реакционную способность (норму реакции) по отношению к воздействующим стрессорам (Unger, 1982). При возникновении стресса большую роль играет также фактор времени, связанный как с развитием в онтогенезе чувствительности к стрессу, так и с продолжительностью воздействия какого-либо эффективного стрессора на протяжении различных периодов жизни.
В биологии под стрессом понимается реакция биологической системы на экстремальные факторы среды (стрессоры), которые могут в зависимости от силы, интенсивности, момента и продолжительности воздействия, более или менее сильно влиять на систему (Goring, 1982). В естественных условиях организмы часто подвергаются воздействию различных биотических и абиотических стрессоров. К ритмически повторяющимся экстремальным условиям среды, например холоду, жаре, засухе, многие организмы приспособились путем периодического изменения активности (впадая в спячку или криптобиоз), что делает их устойчивыми к влиянию стрессоров (толерантность к стрессу).
Другие организмы могут уклоняться от воздействия экстремальных условий среды при помощи специфических приспособлений (избегание стресса); например, глубокоукореняющиеся растения нечувствительны к поверхностному пересыханию почвы; ряд растений ставит на пути стрессоров химические или физические барьеры. Толерантность и избегание создают устойчивость к стрессу. Рассмотрим варианты такой устойчивости:
Таблица 1. Варианты устойчивости к стрессу.
Устойчивость к стрессу | ||||
__________________________1__________________________ | ||||
1 1 | ||||
Избегание стресса | Толерантность к стрессу | |||
______1_________________ | _______________1_______ | |||
1 1 | 1 1 | |||
Избегание упругой нагрузки | Избегание пластической нагрузки | Толерантность к упругой нагрузке | Толерантность к пластической нагрузке | |
Среди вызываемых стрессорами нагрузок на биологические системы следует различать упругие (обратимые) и пластические (необратимые).
Ход адаптации, т. е. приспособления биологической системы к долго действующим экстремальным условиям среды можно продемонстрировать простой схемой (рис. 1).
Рис. 1. Тренд реакции биосистемы на длительно воздействующий фактор окружающей среды (по Schiewer, 1982).
За исходным состоянием в ответ не воздействие стрессора (если его доза не превышает летальный уровень) прежде всего, следует избыточная реакция, которая через стабилизированное состояние ведет к состоянию приспособленности (новое состояние адаптированности).
2. Воздействие антропогенных стрессоров на морфологическую структуру растений Опасность антропогенных стрессоров состоит, прежде всего, в том, что биологические системы — будь то организмы, популяции или биогеоценозы — недостаточно адаптированы к ним. Антропогенные стрессоры создаются с такой скоростью, что эти системы часто не успевают активизировать соответствующие адаптационные процессы.
антропогенный загрязнитель животное растение Таблица 2. Некоторые антропогенные стрессоры и их нарушающее воздействие на организмы
Стрессор | Нарушающее воздействие | ||
упругая нагрузка | пластическая нагрузка | ||
Температура Холод (мороз) Жара | Затвердевание липидов, денатурация белков, замедление метаболических процессов (затвердевание и расширение воды). Разжижение липидов, денатурация белков | Потеря полупроницаемости. Агрегация белков, потеря полупроницаемости. | |
Вода Сухость Затопление | Дегидратация, концентрация растворенных веществ Гидратация. Недостаток кислорода. | грегация белков, потеря полупроницаемости, сжатие клеток. Потеря полупроницаемости. Сжатие клеток. | |
Облучение Инфракрасное и видимое излучение Ультрафиолетовое излучение Ионизирующее излучение | Фотосенсибилизация Сенсибилизация к действию излучения. То же | Фотохимическая реакция Радиохимическая реакция Радиохимическая реакция, агрегация белков, потеря полупроницаемости. | |
Химические в-в Соли Ионы Недостаток кислорода SO2 Окислители Пероксиацетил-нитрат NH3 | Дисбаланс ионов Ионообмен Снижение редокс-потенциала Образование сульфитов, снижение редокс-потенциала. Повышение редокс-потенциала. Образование NH4+, повышение рН | Потеря полупроницаемости Образование связи с SH-группой белка, потеря полуполупроницаемости Образование токсичных промежуточных продуктов, потеря полупроницаемости Расщепление S — S-связей белка Окисление SH-группы белка до S — S-группы, потеря полупроницаемости. Образование амидов, изменения в зависимости от степени повышения рН | |
Физические факторы Давление Шум Скашивание, скусывание (травы) Ветер Электричество Магнетизм | Изменение тургора, прекращение роста клеток Механические повреждения клеток. То же То же Воздействие такое же как при жаре Дезориентация ионов | Сжатие клеток То же То же То же Агрегация белков, потеря полупроницаемости. Потеря полупроницаемости | |
Многие антропогенные факторы среды потому и становятся опасными для живого (стрессорами), что они крайне отличны по величине, интенсивности, продолжительности и моменту воздействия от той обычно существующей в природе нормы, к которой адаптированы биологические системы. В результате они часто влияют на диапазон толерантности, что нередко приводит к превышению допустимой нагрузки на организмы и к распаду биологической системы (Tesche, 1982).
Кроме того, следует обратить внимание на то, что в природе на организм воздействует не один какой-нибудь стрессор, а всегда наблюдается целый комплекс нарушающих факторов (комплексное стрессовое воздействие среды). При этом, разумеется, какой-либо отдельный фактор может временно или постоянно доминировать. В связи с этим понятно, что реакции организмов на стрессоры в лабораторном эксперименте не всегда совпадают с наблюдающимися в естественных условиях. Поэтому исследования комбинированного воздействия средовых нагрузок, т. е. комплексного стрессового воздействия среды, являются принципиально важными для установления допустимой нагрузки и стабильности биологических систем в нарушенной среде со многими антропогенными стрессорами.
В истории биоиндикации морфологические изменения растений в ответ на антропогенные воздействия привлекли к себе внимание очень рано. В середине XIX в. были отмечены повреждения растений дымом вокруг бельгийских и английских содовых фабрик, а уже в 1850 г. Штекхардт (Stockhardt) опубликовал свои наблюдения о повреждениях дымом елей. Позднее сообщалось о характерных изменениях окраски растений во время военного применения ядовитых газов или их утечек. Сегодня во всех промышленно развитых странах известно о видимых поражениях растительности дымом или уличных деревьев солью. В полевых условиях, гидропонной культуре и камерах для окуривания было проведено множество исследований, посвященных связи морфологических изменений с антропогенными стрессорами.
И сейчас наиболее часто применяемые на практике методы биоиндикации наряду с картографированием споровых учитывают морфологические изменения высших растений. Основой для этого являются в первую очередь незначительные затраты труда при наблюдении и оценке наблюдаемых явлений. Измерения чаще всего могут проводиться без специальных лабораторий и обученного персонала. Для некоторых стрессовых факторов уже испытаны и иногда специально подобраны различные морфологические индикаторы, с помощью которых возможна краткоили долговременная индикация, как при низких, так и при высоких дозах воздействия. Современные исследования уделяют главное внимание стандартизации тест-материала и условий его применения.
В ряде стран морфологические индикаторы используются в национальной системе мониторинга, в том числе в Нидерландах. Уже более 10 лет (Posthumus, 1982). С помощью методов биоиндикации, основанных на морфологии растений, получена большая часть картосхем антропогенного влияния. Морфологические методы индикации находят также применение при селекции устойчивых линий лесных, плодовых и декоративных деревьев (Николаевский, 1979; Dassler, 1981 а).
3. Действие антропогенных стрессоров на характер распространения и динамику популяций беспозвоночных животных Количество исследований по воздействию газообразных промышленных выбросов на животных резко возросло именно в последнее десятилетие, после того как была установлена четкая корреляция между распространением растений и атмосферным загрязнением. Однако накопленные в этой области данные еще недостаточны и большей частью имеют модельный характер. Во многих исследованиях с ловушками животные выступают в роли косвенных индикаторов. На их встречаемость влияет изменение всей совокупности фитофизиологических, фитосоциологических, микроклиматических и структурных факторов микроэкотопа. Соответствие условий среды свойствам видов животных определяет их присутствие или отсутствие, а также плотность заселения конкретного местообитания.
Имеются данные о прямой индикации путем испытания на животных различных воздействий.
Отловленные в природе населяющие кору деревьев клещи-орибатиды, чувствительность которых к SO2 определялась заранее, в течение недели выдерживались в клетках в различных частях городской зоны Брюсселя; при этом была установлена корреляция между загрязнением SO2; и процентом их смертности. Имеются также результаты аналогичных опытов с 3-й личиночной стадией красноголовой синей мухи в промышленной зоне Галле-Лейпциг-Биттерфельд (Klapperstuck, 1980), говорящие о возможности использования животных в качестве объектов активного мониторинга. Индикаторными параметрами могут являться смертность, процент окукливания, процент вылета здоровых имаго и продолжительность жизни имаго. Эти показатели обнаруживают значимые различия в зависимости от степени загрязнения.
Биоиндикационные свойства насекомых, поедающих лишайники, возможно, связаны с влиянием, как стрессоров, так и кормовых растений.
Наблюдалась зависимость плотности заселения от газодымовых выбросов у населяющего кору и питающегося в основном растущими здесь грибами и водорослями сеноеда Loensia fascia-ta.
Этот анемофобный и гигрофильный сеноед, обитающий главным образом в сомкнутых прибрежных насаждениях, будучи насекомым с неполным превращением, в течение всего своего жизненного цикла подвергается постоянному воздействию газообразных стрессоров. Прямая биоиндикация возможна в связи с незначительной его толерантностью к SO2. He исключено и непрямое влияние через пищевую цепь, так как водоросли и грибы, пожалуй, не менее чувствительны к загрязнению воздуха, чем лишайники.
С недавнего времени все больше внимания привлекает косвенное воздействие промышленных газообразных выбросов и в первую очередь SO2 на ареалы и динамику популяций животных. С этой точки зрения изучалась, например, эпигейная и атмобионтная фауна. Разнообразие наблюдавшихся биологических реакций очень велико и не дает оснований для каких-либо общих выводов, поскольку, как известно, возможны самые различные и на сегодняшний день практически невыясненные косвенные воздействия.
Склонные к массовому размножению насекомые-вредители в загрязненных газодымовыми выбросами лесах (преимущественно на елях и соснах), по-видимому, также испытывают воздействие этого стрессора, сказывающееся главным образом на физиологическом состоянии их кормовых растений. Многочисленными исследованиями показано, что существует положительная корреляция между повышенной плотностью популяции вредителей и степенью загрязнения. В частности, в результате физиологического ослабления деревьев, страдающих от газодымовых выбросов, может произойти возрастание плотности сосущих и минирующих насекомых в почках и камбии, приводящее к их массовому размножению на крупных территориях. В зависимости от географического положения к этому предрасположены различные автохтонные виды тлей, клопов-подкорников, молей-пестрянок, листоверток, златок и короедов. В фазе изреживания и отмирания старых деревьев за ними следуют короеды и долгоносики. Загрязнение газодымовыми выбросами и засуха ускоряют массовое размножение короеда-типографа.
Газодымовые выбросы и явления популяционной адаптации Популяции реагируют на изменяющиеся условия среды посредством адаптивных процессов. Эти биологические реакции могут положительно или отрицательно сказываться на величине ареала и структуре популяции, а в худшем случае приводить к ее вымиранию. В частности, при резких антропогенных изменениях среды виды животных с высокой генетической изменчивостью, высокой скоростью размножения и быстрой сменой поколений обладают селекционным преимуществом и соответственно большими шансами на выживание. Показано существование значимых корреляций между внутривидовой географической изменчивостью полиморфизма (распределением частот аллей, степенью гетерозиготности, степенью полиморфизма, генетической идентичностью популяций или генетическим расстоянием между ними) и уровнем загрязнения местообитаний. В зависимости от видоспецифичной способности к адаптации при изменении свойств местообитания наблюдается высокий генетический полиморфизм, высокая доля гетерозигот или сбалансированность частот аллелей.
Выхлопные газы и плотность популяций членистоногих
Без каких-либо выводов относительно того, какие вредные компоненты или косвенные воздействия выхлопных газов являются в данном случае основными причинами, некоторые авторы (Maurer, 1974; Przybylski, 1976) показали, что у эннгейных и обитающих на травянистых растениях членистоногих существуют значимые корреляции между плотностью заселения и воздействием данного загрязнения, причем в целом чем ближе к трассам с интенсивным движением, тем ниже плотность популяций и число видов. Одновременно видовое разнообразие становится явно меньше, чем в сравнимых ненарушенных биоценозах. Однако у отдельных видов абсолютная плотность может возрасти, и таким образом сильно изменится структура доминирования. Сосущие растительноядные насекомые, прежде всего тли, также предрасположены при воздействии выхлопных газов к повышению плотности популяции (Klausnitzer et al., 1978; Braun et al., 1981). По-видимому, можно считать доказанным, что причиной ее возрастания могут быть как уменьшение численности врагов (личинок галлиц, златоглазок и журчалок, майских жуков и их личинок, наездников и др.), так и физиолого-биохимические изменения растений-хозяев под действием многочисленных стрессоров (Fluckiger et al., 1978).
Тяжелые металлы в беспозвоночных животных
Для биоиндикационной оценки загрязнения природной среды тяжелыми металлами неоднократно обращались к исследованию беспозвоночных. Основным объектом при этом являются водные виды, не рассматриваемые нами. В наземных экосистемах подходящими аккумулятивными индикаторами тяжелых металлов оказались представители различных жизненных форм, стратегий питания и консументных уровней. Поглощение металлов происходит как с пищей, так и в зависимости от вида через дыхательные пути и (или) покровы. Способ поглощения, положение в пищевой цепи и продолжительность пребывания в организме в значительной степени определяют количество накопленных чужеродных веществ и тем самым биоиндикаторное значение вида. Было испытано (на ряде видов двукрылых-саркосапрофагов, у которых в гниющем мясе происходит все эмбриональное и личиночное развитие, большое количество образцов мяса рыб и млекопитающих с различным содержанием ртути, и прослежена судьба этого металла в организме насекомых. Показано, что в личинках, куколках и короткое время также в имаго концентрация ртути в 4−5 раз выше, чем в кормовом субстрате.
В то время как по физиологическому действию тяжелых металлов на позвоночных животных и на человека имеется обильная литература, благодаря чему наши знания в этой области, по крайней мере при острых интоксикациях, достаточно обширны, почти ничего не известно о влиянии этих веществ на здоровье, плодовитость, смертность и т. д. и тем самым на популяционную динамику и сохранение видов беспозвоночных.
Гербициды как стрессоры
Прямое действие большинства гербицидов на животных, по-видимому, незначительно и, по крайней мере, весьма неодинаково в зависимости от применяемого средства и вида животного.
Правда, относительно 2,4,5-Т (трихлорфеноксиуксусная кислота) известно, что образующийся в качестве побочного продукта его производства ТХДД (2,3,7,8-тетрахлордибензо-п-диоксин) при недостаточной очистке обычно попадает в биоценозы вместе с этим средством, являясь уже в минимальных концентрациях тератогенным (в первую очередь для плода млекопитающих) и канцерогенным, вызывая раздражение кожных покровов. Кстати, в 1961;1971 гг. такие неочищенные партии 2,4,5-Т в количестве более 40 млн. кг были сброшены армией США на территорию Южного Вьетнама. Вследствие этого свыше 10% территории (в равной степени сельскохозяйственные и лесные площади) было отравлено дозой десятикратно превышающей количества, обычно употребляемые при защите растений (Odum, 1980; Stohr, Goedicke, 1982).
При использовании нормальных рабочих концентраций гербицидов неоднократно отмечалось их инсектицидное действие, весьма различное у разных веществ. Оно колеблется от сублетальных поражений до уровней смертности, известных у общепринятых инсектицидов. Компенсационные колебания популяционной динамики после понижения плотности, обусловленной инсектицидным действием гербицидов, являются правилом и пригодны для биоиндикации. С другой стороны, видоспецифичная реакция может выразиться в значительной стимуляции размножения (например, у тли при действии 2,4-Д) или в ускорении развития.
Однако наиболее глубокие последствия применения гербицидов заключаются в их косвенном влиянии на уровне всей экосистемы и обусловлены структурным изменением фитоценозов.
Заметно снижается число видов фитофагов, питающихся сорняками или находящихся с ними в облигатном биоценотическом коннексе. Это относится также к следующим за ними в пищевой цепи зоофагам и хищникам, которые по различным биологическим причинам не в состоянии использовать другие типы пищи для собственного выживания.
Популяционная плотность или число видов снижается также вследствие происходящих изменений свойств местообитания, в первую очередь его структуры и микроклиматических условий. Многие членистоногие любого консументного уровня привязаны к своему местообитанию в значительной степени за счет абиотических условий окружающей среды. Стенойкные виды большей частью не в состоянии переносить новые сочетания факторов после применения гербицидов, в частности временное повышение освещенности, пересыхание поверхности почвы, увеличение амплитуды температур и т. п. Их смертность увеличивается прежде всего на наиболее чувствительных фазах эмбрионального и личиночного развития, что приводит к падению плотности популяции или в конце концов к гибели вида. Обычно остается небольшое число эвриойкных, эврипотентных видов, которые способны устоять против стрессоров в условиях интенсивного сельского хозяйства.
Изменения в структуре доминирования фитофагов, зоофагов, сапрофагов и детритофагов равным образом возникают в результате нарушения равновесия в доступности пищи и временного повышения доли мертвого растительного вещества.
Изменение влажности почвы, как стрессор для насекомых Антропогенно обусловленные изменения режима грунтовых и почвенных вод усиливались в течение столетий параллельно увеличению производительных сил человека и сейчас достигли таких масштабов, что вызывают глубокие экологические последствия. Размах мелиоративных мероприятий ведет к утрате влажных биотопов. Процессы, в результате которых происходит общеизвестное и для каждого очевидное сокращение ареалов позвоночных животных, обитающих во влажных биотопах (особенно в популяциях птиц и амфибий), протекают и у тысяч видов беспозвоночных. Правда, сокращение численности или даже вымирание этих животных не вызывало и не вызывает тех же эмоций, однако их индикаторное значение по меньшей мере такое же.
При всех различиях изученных местообитаний и таксонов большинство данных говорит о том, что после проведения мероприятий, понижающих уровень грунтовых вод, в ценозах наступает фаза неустойчивости. Разрушается существующая структура доминирования фауны. Стенойкные, особенно стенополигидрические виды, не только сокращают свой ареал, но и совершенно исчезают; эвриойкпые становятся доминантами. Кроме того, можно постулировать относительное и абсолютное снижение доминирования видов с высоким обилием особей. Небольшие виды, очевидно, в большей степени способны пережить пессимальпые периоды в микроместообитаниях, которые еще сохраняют сносные условия существования. В распределении типов питания следует отметить тенденцию к возрастанию доминирования особей и видов сапрофагов. Изменение структуры фауны в связи с новыми отношениями доминирования далеко не всегда сопровождается утратой разнообразия. Удалось даже установить (Pospischil, 1982) в одной мелиорированной экосистеме пойменного леса, что за 20 лет разнообразие жесткокрылых повысилось, правда, главным образом у эвриойкных н за счет стеноикных видов. С другой стороны, в интенсивно эксплуатируемой луговой экосистеме разнообразие жужелиц упало при одновременном снижении уровня грунтовых вод, эвтрофизации вследствие внесения больших количеств навозной жижи и в условиях ротации типа покос-покос-выпас (Tietze, 1985).
4. Главные антропогенные загрязнители воздуха Антропогенное загрязнение воздуха отмечалось еще в средние века: уже тогда использование в качестве топлива каменного угля приводило к образованию вредных газов. В результате расширения и концентрации промышленных объектов и жилищных комплексов, а также с развитием транспорта во всех современных промышленно развитых странах загрязнение воздуха достигло таких масштабов, которые требуют принятия мер противодействия загрязнению и контроля за состоянием воздуха.
Согласно определению ВОЗ, загрязнение воздуха имеет место, когда одно или несколько загрязняющих воздух веществ или их смеси содержатся в воздухе в таких количествах и так длительно, что создают опасность для человека, животных, растений или имущества, способствуют нанесению ущерба или тем или иным образом отрицательно сказываются на самочувствии человека и состоянии его имущества. Для некоторых из этих веществ установлены предельно допустимые концентрации (ПДК) кратковременного (до 30 мин) и долговременного загрязнения (24 ч). Набор следовых веществ, загрязняющих воздух, очень широк. Следует назвать в первую очередь:
— газообразные неорганические вещества, такие, как SO2, H2S, NО2, Cl2, СО, SiF4;
— минеральные кислоты, такие, как НС1, HF, Н2SO4, НNО3;
— радионуклиды, например стронций-90, цезий-137, иод-129, плутоний-240, радий-226, америций-241;
— простые органические вещества: альдегиды, эфиры, углеводороды, кетоны, фенолы, крезолы и т. д.;
— вещества с сильным запахом, например меркаптаны и амины;
— полициклические углеводороды, например 3,4-бензпирен и 1,12-бензперилен;
— пылевидные вещества и смеси веществ: сажа, летучая зола, угольная пыль, цементная пыль, токсичная пыль, обогащенная оксидами металлов, свинцом, мышьяком.
Распространение загрязняющих воздух веществ в атмосфере зависит от очень многих факторов, в особенности от метеоусловий. Между концентрацией вредных веществ на поверхности почвы или в организмах и эмиссией, под которой подразумевается концентрация поступивших в атмосферу вредных веществ за единицу времени, существуют очень сложные взаимоотношения. Они лишь в незначительной части подвластны воздействиям со стороны человека и трудно поддаются количественному определению. Поэтому жизненное пространство организмов зависит от этих сложных условий загрязнения воздуха, очень различающегося по виду и количеству даже при постоянной эмиссии. Биоиндикация вредных веществ в воздухе основана, естественно, только на их проникновении в живые организмы.
Если слишком высокое или весьма незначительное наличие обычных содержащихся в «чистом» воздухе составных частей приводит к замедлению или даже остановке определенных процессов обмена веществ и тем самым к задержке роста (например, слишком высокое содержание СО2 или О2), то наличие в воздухе чужеродных веществ, токсически действующих уже в малых дозах (гербициды, пестициды, HF, SO2), быстро вызывает биохимические и физиологические нарушения, повреждение цитоплазмы или отмирание клеток, органов, иногда всего организма.
Хотя действие ксенобионтных соединений, например хлорорганических инсектицидов, сказывается вначале на уровне популяции, выражаясь в снижении плодовитости, первичные его механизмы проявляются на молекулярном и клеточном уровнях и хорошо объяснимы. Действие хлорорганических препаратов (ДДТ, ДДЭ — дихлордифенилэтан, диэлдрин, линдан) оказалось связанным с женскими стероидными гормонами в ткани-мишени. Изомеры ДДТ конкурируют с естественными эстрогенами за рецепторы, расположенные в ядрах клеток яйцеводов, и это взаимодействие приводит к изменениям, как было установлено и при обработке природными гормонами (Holmes et al., 1980). Намного лучше, чем прямое воздействие на яйцеобразующую ткань в результате конкуренции за рецепторы, известно влияние этих веществ на мембраны митохондрий печени. С помощью электронной оптики уже спустя несколько часов после применения ДДТ отмечается набухание митохондрий, разрыхление их крист и, наконец, полное растворение внутреннего содержимого (Rutschke, Brozio 1975; Holmes et al., 1980). Изменения на уровне ультраструктуры сопровождаются потерей активности митохондриальных ферментов, особенно связанных с образованием стероидов. Главным образом это сказывается на отдельных стадиях биосинтеза холестерина и предшественников кортикостероидов. В результате нарушений синтеза стероидных гормонов происходят вторичные изменения определенных функций и органов-мишеней. В случае половых гормонов — это половые органы, в случае гормонов коры надпочечников (адренокортикостероидов) — водный, солевой баланс и обмен питательных веществ.
От загрязнения воздуха страдают животные, растения и сами люди. Следует иметь в виду, что человек и животное адаптированы к содержанию в воздухе примерно 21% (по объему) кислорода, в то время как растения с их ассимиляционным аппаратом приспособлены к значительно более низким концентрациям в атмосфере углекислого газа—порядка 0,03 (по объему), и потому более чувствительны к концентрациям вредных веществ в воздухе. По этой причине растения особенно пригодны для обнаружения начальных вредных изменений в составе воздуха биосферы и им придается особое значение как биоиндикаторам атмосферного загрязнения. Соответствующие индексы действия дают количественное представление об их токсичном эффекте, о котором невозможно судить только по виду и концентрации загрязнений (Dassler, 1981 а).
5. Тест Если биоиндикатор реагирует значительными отклонениями жизненных проявлений от нормы то он является:
Ответ:
3. Чувствительным биоиндикатором.