ΠŸΠΎΠΌΠΎΡ‰ΡŒ Π² написании студСнчСских Ρ€Π°Π±ΠΎΡ‚
АнтистрСссовый сСрвис

УравнСния ΠΈ способы задания двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ

Π Π΅Ρ„Π΅Ρ€Π°Ρ‚ΠŸΠΎΠΌΠΎΡ‰ΡŒ Π² Π½Π°ΠΏΠΈΡΠ°Π½ΠΈΠΈΠ£Π·Π½Π°Ρ‚ΡŒ ΡΡ‚ΠΎΠΈΠΌΠΎΡΡ‚ΡŒΠΌΠΎΠ΅ΠΉ Ρ€Π°Π±ΠΎΡ‚Ρ‹

ΠšΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½Ρ‹ΠΉ способ Π·Π°ΠΊΠ»ΡŽΡ‡Π°Π΅Ρ‚ΡΡ Π² Ρ‚ΠΎΠΌ, Ρ‡Ρ‚ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ задаётся Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ΠΌ Π΅Ρ‘ ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΉ вдоль осСй ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚. УравнСния плоского двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΡΡ‚ΠΎΠΌ случаС Π·Π°ΠΏΠΈΡΡ‹Π²Π°ΡŽΡ‚ΡΡ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ: Зная уравнСния двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΌΠΎΠΆΠ½ΠΎ, подставив Π² ΡΡ‚ΠΈ уравнСния врСмя, ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΉ, Π° ΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, ΠΈ ΡΠ°ΠΌΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠΈ Π² Π»ΡŽΠ±ΠΎΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ (рис. 23). Зная Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ Ρ‚ΠΎΡ‡ΠΊΠΈ… Π§ΠΈΡ‚Π°Ρ‚ΡŒ Π΅Ρ‰Ρ‘ >

УравнСния ΠΈ способы задания двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ (Ρ€Π΅Ρ„Π΅Ρ€Π°Ρ‚, курсовая, Π΄ΠΈΠΏΠ»ΠΎΠΌ, ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½Π°Ρ)

Π—Π½Π°Π½ΠΈΠ΅ Π·Π°ΠΊΠΎΠ½ΠΎΠ² двиТСния Ρ‚Π΅Π»Π° ΠΎΠ·Π½Π°Ρ‡Π°Π΅Ρ‚ Π·Π½Π°Π½ΠΈΠ΅ Π·Π°ΠΊΠΎΠ½ΠΎΠ² двиТСния ΠΊΠ°ΠΆΠ΄ΠΎΠΉ Π΅Π³ΠΎ Ρ‚ΠΎΡ‡ΠΊΠΈ, поэтому ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΠ΅ ΠΊΠΈΠ½Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠΈ слСдуСт Π½Π°Ρ‡ΠΈΠ½Π°Ρ‚ΡŒ с ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΡ двиТСния гСомСтричСской Ρ‚ΠΎΡ‡ΠΊΠΈ. Для этого Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ ΡƒΠΌΠ΅Ρ‚ΡŒ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΡΡ‚ΡŒ Π΅Ρ‘ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Π² Π½Π°Π·Π½Π°Ρ‡Π΅Π½Π½ΠΎΠΉ систСмС отсчёта Π² Π»ΡŽΠ±ΠΎΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ.

УравнСния, ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΡΡŽΡ‰ΠΈΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ двиТущСйся Ρ‚ΠΎΡ‡ΠΊΠΈ Π² Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡ‚ΠΈ ΠΎΡ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ, Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ΡΡ уравнСниями двиТСния.

Для задания двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡŽΡ‚ΡΡ Π΄Π²Π° способа: СстСствСнный ΠΈ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½Ρ‹ΠΉ.

ЕстСствСнный способ Π·Π°ΠΊΠ»ΡŽΡ‡Π°Π΅Ρ‚ΡΡ Π² Ρ‚ΠΎΠΌ, Ρ‡Ρ‚ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ задаСтся Π΅Ρ‘ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠ΅ΠΉ ΠΈ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ΠΌ двиТСния ΠΏΠΎ ΡΡ‚ΠΎΠΉ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠΈ (Π·Π°ΠΊΠΎΠ½ΠΎΠΌ двиТСния). Π£Ρ€Π°Π²Π½Π΅Π½ΠΈΠ΅ двиТСния Π² ΠΎΠ±Ρ‰Π΅ΠΌ Π²ΠΈΠ΄Π΅ записываСтся ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ: УравнСния ΠΈ способы задания двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ.

Π³Π΄Π΅ S — расстояниС Ρ‚ΠΎΡ‡ΠΊΠΈ ΠΎΡ‚ Π½Π°Ρ‡Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ полоТСния, ΡΠ²Π»ΡΡŽΡ‰Π΅Π΅ΡΡ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠ΅ΠΉ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ;

I — врСмя двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ ΠΎΡ‚ Π½Π°Ρ‡Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ ΠΌΠΎΠΌΠ΅Π½Ρ‚Π°.

Зная Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ Ρ‚ΠΎΡ‡ΠΊΠΈ ΠΈ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ двиТСния ΠΏΠΎ ΡΡ‚ΠΎΠΉ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠΈ, ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ Π² Π»ΡŽΠ±ΠΎΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ, для Ρ‡Π΅Π³ΠΎ слСдуСт Π² Ρ€Π°Π²Π΅Π½ΡΡ‚Π²ΠΎ S =/(/) ΠΏΠΎΠ΄ΡΡ‚Π°Π²ΠΈΡ‚ΡŒ врСмя.

ΠšΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½Ρ‹ΠΉ способ Π·Π°ΠΊΠ»ΡŽΡ‡Π°Π΅Ρ‚ΡΡ Π² Ρ‚ΠΎΠΌ, Ρ‡Ρ‚ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ задаётся Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ΠΌ Π΅Ρ‘ ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΉ вдоль осСй ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚. УравнСния плоского двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΡΡ‚ΠΎΠΌ случаС Π·Π°ΠΏΠΈΡΡ‹Π²Π°ΡŽΡ‚ΡΡ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ:

ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ полоТСния Ρ‚ΠΎΡ‡ΠΊΠΈ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½Ρ‹ΠΌ способом.aside class="viderzhka__img" itemscope itemtype="http://schema.org/ImageObject">Рис. 23. ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ полоТСния Ρ‚ΠΎΡ‡ΠΊΠΈ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½Ρ‹ΠΌ способом.

Рис. 23. ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ полоТСния Ρ‚ΠΎΡ‡ΠΊΠΈ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½Ρ‹ΠΌ способом.

Зная уравнСния двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΌΠΎΠΆΠ½ΠΎ, подставив Π² ΡΡ‚ΠΈ уравнСния врСмя, ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΉ, Π° ΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, ΠΈ ΡΠ°ΠΌΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠΈ Π² Π»ΡŽΠ±ΠΎΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ (рис. 23).

Для Ρ‚ΠΎΠ³ΠΎ Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΏΡ€ΠΈ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΌ способС задания двиТСния Ρ‚ΠΎΡ‡ΠΊΠΈ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠΈ Ρƒ = / (Ρ…), Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ ΠΈΠ· ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ двиТСния ΠΈΡΠΊΠ»ΡŽΡ‡ΠΈΡ‚ΡŒ врСмя.

ΠŸΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ вСсь тСкст
Π—Π°ΠΏΠΎΠ»Π½ΠΈΡ‚ΡŒ Ρ„ΠΎΡ€ΠΌΡƒ Ρ‚Π΅ΠΊΡƒΡ‰Π΅ΠΉ Ρ€Π°Π±ΠΎΡ‚ΠΎΠΉ