ΠŸΠΎΠΌΠΎΡ‰ΡŒ Π² написании студСнчСских Ρ€Π°Π±ΠΎΡ‚
АнтистрСссовый сСрвис

ВычислСниС пСриодичСских Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΉ для Π½Π΅Π»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Ρ… Π°Π²Ρ‚ΠΎΠ½ΠΎΠΌΠ½Ρ‹Ρ… систСм ΠΎΠ±Ρ‹ΠΊΠ½ΠΎΠ²Π΅Π½Π½Ρ‹Ρ… Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ

Π Π΅Ρ„Π΅Ρ€Π°Ρ‚ΠŸΠΎΠΌΠΎΡ‰ΡŒ Π² Π½Π°ΠΏΠΈΡΠ°Π½ΠΈΠΈΠ£Π·Π½Π°Ρ‚ΡŒ ΡΡ‚ΠΎΠΈΠΌΠΎΡΡ‚ΡŒΠΌΠΎΠ΅ΠΉ Ρ€Π°Π±ΠΎΡ‚Ρ‹

Π’Π΅ΠΊΡ‚ΠΎΡ€ Ρ… ΡΠΎΡΡ‚Π°Π²Π»Π΅Π½ ΠΈΠ· Π²Π΅Π»ΠΈΡ‡ΠΈΠ½ Π’, u0, ΠΈΠΈ…, uv_t. Π’Π²ΠΈΠ΄Ρƒ Ρ‚ΠΎΠ³ΠΎ Ρ‡Ρ‚ΠΎ Ρ€Π°Π·ΠΌΠ΅Ρ€Ρ‹ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² Ρ… ΠΈ F Π½Π΅ ΡΠΎΠ²ΠΏΠ°Π΄Π°ΡŽΡ‚, ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Π° Π―ΠΊΠΎΠ±ΠΈ систСмы являСтся ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ, ΠΈ ΠΎΠ±Ρ€Π°Ρ‚ная ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Π° ΠΊ Π½Π΅ΠΉ, Π²ΠΎΠΎΠ±Ρ‰Π΅ говоря, Π½Π΅ ΡΡƒΡ‰Π΅ΡΡ‚Π²ΡƒΠ΅Ρ‚. ПослСдняя Ρ„ΠΎΡ€ΠΌΡƒΠ»Π° Ρ‚Π΅ΠΌ Π½Π΅ ΠΌΠ΅Π½Π΅Π΅ ΠΈΠΌΠ΅Π΅Ρ‚ ΠΏΡ€Π°Π²ΠΎ Π½Π° ΡΡƒΡ‰Π΅ΡΡ‚Π²ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΈ ΡΠ²Π»ΡΠ΅Ρ‚ся Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΌ ΠΎΠ±ΠΎΠ±Ρ‰Π΅Π½ΠΈΠ΅ΠΌ Π»ΠΌΠ΅Ρ‚ΠΎΠ΄Π° ΠŸΡ‹ΠΎΡ‚ΠΎΠ½Π°, Ссли ΠΏΠΎΠ½ΠΈΠΌΠ°Ρ‚ΡŒ ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Ρƒ Π² ΠΏΡ€ΠΈΠ²Π΅Π΄Π΅Π½Π½ΠΎΠΉ Π²Ρ‹ΡˆΠ΅ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΊΠ°ΠΊ ΠΏΡΠ΅Π²Π΄ΠΎΠΎΠ±Ρ€Π°Ρ‚Π½ΡƒΡŽ3 4. Для… Π§ΠΈΡ‚Π°Ρ‚ΡŒ Π΅Ρ‰Ρ‘ >

ВычислСниС пСриодичСских Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΉ для Π½Π΅Π»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Ρ… Π°Π²Ρ‚ΠΎΠ½ΠΎΠΌΠ½Ρ‹Ρ… систСм ΠΎΠ±Ρ‹ΠΊΠ½ΠΎΠ²Π΅Π½Π½Ρ‹Ρ… Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ (Ρ€Π΅Ρ„Π΅Ρ€Π°Ρ‚, курсовая, Π΄ΠΈΠΏΠ»ΠΎΠΌ, ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½Π°Ρ)

ЧСловСчСскоС врСмя Π½Π΅ ΠΎΠ±Ρ€Π°Ρ‰Π°Π΅Ρ‚ся, Π½ΠΎ ΠΊΡ€ΡƒΠ³Ρƒ, Π° Π±Π΅ΠΆΠΈΡ‚ ΠΏΠΎ ΠΏΡ€ΡΠΌΠΎΠΉ. И Π² ΡΡ‚ΠΎΠΌ ΠΏΡ€ΠΈΡ‡ΠΈΠ½Π°, ΠΏΠΎ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊ Π½Π΅ ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ счастлив, ΠΈΠ±ΠΎ ΡΡ‡Π°ΡΡ‚ΡŒΠ΅ Π΅ΡΡ‚ΡŒ ΠΆΠ°ΠΆΠ΄Π° повторСния.

Милан ΠšΡƒΠ½Π΄Π΅Ρ€Π°.

НСвыносимая Π»Π΅Π³ΠΊΠΎΡΡ‚ΡŒ бытия Как ΠΏΡ€Π°Π²ΠΈΠ»ΠΎ, ΠΏΡ€ΠΈ исслСдовании пСриодичСского Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ Π°Π²Ρ‚ΠΎΠ½ΠΎΠΌΠ½ΠΎΠΉ систСмы ΠžΠ”Π£ сам ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ нСизвСстСн ΠΈ ΠΏΠΎΠ΄Π»Π΅ΠΆΠΈΡ‚ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΡŽ ΠΎΠ΄Π½ΠΎΠ²Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎ с Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ΠΌ систСмы ΠžΠ”Π£. Рассмотрим Π²ΠΊΡ€Π°Ρ‚Ρ†Π΅ основныС ΠΈΠ΄Π΅ΠΈ построСния числСнных ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ², ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‰ΠΈΠ΅ Π½Π°ΠΉΡ‚ΠΈ пСриодичСскоС Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ Π½Π΅Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Π·Π°Π΄Π°Ρ‡ΠΈ. Как ΠΈ Ρ€Π°Π½Π΅Π΅, рассмотрим Π°Π²Ρ‚ΠΎΠ½ΠΎΠΌΠ½ΡƒΡŽ систСму Π²ΠΈΠ΄Π°.

ВычислСниС пСриодичСских Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΉ для Π½Π΅Π»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Ρ… Π°Π²Ρ‚ΠΎΠ½ΠΎΠΌΠ½Ρ‹Ρ… систСм ΠΎΠ±Ρ‹ΠΊΠ½ΠΎΠ²Π΅Π½Π½Ρ‹Ρ… Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ.

с ΡƒΡΠ»ΠΎΠ²ΠΈΠ΅ΠΌ u (0) = u(Π’), ΠΏΡ€ΠΈΡ‡Π΅ΠΌ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Π’ ΠΏΠΎΠ΄Π»Π΅ΠΆΠΈΡ‚ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΡŽ. Π‘Π΄Π΅Π»Π°Π΅ΠΌ Π² ΡΠΈΡΡ‚Π΅ΠΌΠ΅ (8.14) Π·Π°ΠΌΠ΅Π½Ρƒ нСзависимой ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ: t = 7 Ρ‚. Π’ΠΎΠ³Π΄Π° систСма (8.14) прСвращаСтся Π² Π°Π²Ρ‚ΠΎΠ½ΠΎΠΌΠ½ΡƒΡŽ систСму Π²ΠΈΠ΄Π°.

ВычислСниС пСриодичСских Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΉ для Π½Π΅Π»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Ρ… Π°Π²Ρ‚ΠΎΠ½ΠΎΠΌΠ½Ρ‹Ρ… систСм ΠΎΠ±Ρ‹ΠΊΠ½ΠΎΠ²Π΅Π½Π½Ρ‹Ρ… Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ.

с ΡƒΡΠ»ΠΎΠ²ΠΈΠ΅ΠΌ пСриодичности, ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°ΡŽΡ‰ΠΈΠΌ Π²ΠΈΠ΄ u (0) = ΠΈ (1). Π’Π΅ΠΏΠ΅Ρ€ΡŒ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄Π°, вошСдшСС Π² ΠΏΡ€Π°Π²ΡƒΡŽ Ρ‡Π°ΡΡ‚ΡŒ систСмы ΠžΠ”Π£, ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠ±ΡŠΡΠ²ΠΈΡ‚ΡŒ ΠΎΠ΄Π½ΠΎΠΉ ΠΈΠ· ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹Ρ… Π·Π°Π΄Π°Ρ‡ΠΈ. ΠŸΠΎΠ»ΡƒΡ‡ΠΈΡ‚ΡŒ разностныС Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ ΠΌΠΎΠΆΠ½ΠΎ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ. Π—Π°ΠΌΠ΅Π½ΠΈΠΌ Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ (8.15) Π½Π° Ρ€Π°Π·Π½ΠΎΡΡ‚Π½ΠΎΠ΅ ΡΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€, ΠΏΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΉ:

ВычислСниС пСриодичСских Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΉ для Π½Π΅Π»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Ρ… Π°Π²Ρ‚ΠΎΠ½ΠΎΠΌΠ½Ρ‹Ρ… систСм ΠΎΠ±Ρ‹ΠΊΠ½ΠΎΠ²Π΅Π½Π½Ρ‹Ρ… Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ.

Из ΡƒΡΠ»ΠΎΠ²ΠΈΠΉ пСриодичности, ΠΊΡ€ΠΎΠΌΠ΅ Ρ‚ΠΎΠ³ΠΎ, ΠΈΠΌΠ΅Π΅ΠΌ u0 = uv. УравнСния (8.16) вмСстС с Π³Ρ€Π°Π½ΠΈΡ‡Π½Ρ‹ΠΌ условиСм (пСриодичности) ΠΎΠ±Ρ€Π°Π·ΡƒΡŽΡ‚ систСму: имССтся К Ρ… (N + 1) Π½Π΅Π»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Ρ… ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ Π²ΠΈΠ΄Π° (8.16) ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ К Ρ… (JV + 1) + 1 нСизвСстных. НСизвСстными систСмы ΡΠ²Π»ΡΡŽΡ‚ΡΡ Π“, u0, Uj, …, Uv_iΠ—Π΄Π΅ΡΡŒ К — число ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ Π² Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ систСмС (8.14). Π’ΠΎΠ·ΠΌΠΎΠΆΠ½Ρ‹Π΅ ΠΏΠΎΠ΄Ρ…ΠΎΠ΄Ρ‹ ΠΊ Ρ€Π΅ΡˆΠ΅Π½ΠΈΡŽ Ρ‚Π°ΠΊΠΎΠΉ систСмы Π½Π΅Π»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Ρ… ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ Ρ‚Π°ΠΊΠΎΠ²Ρ‹. ΠŸΡ€Π΅Π΄ΡΡ‚Π°Π²ΠΈΠΌ (8.16) с ΡƒΡ‡Π΅Ρ‚ΠΎΠΌ Π³Ρ€Π°Π½ΠΈΡ‡Π½Ρ‹Ρ… условий Π² Π²ΠΈΠ΄Π΅.

ВычислСниС пСриодичСских Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΉ для Π½Π΅Π»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Ρ… Π°Π²Ρ‚ΠΎΠ½ΠΎΠΌΠ½Ρ‹Ρ… систСм ΠΎΠ±Ρ‹ΠΊΠ½ΠΎΠ²Π΅Π½Π½Ρ‹Ρ… Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ.

ЗафиксируСм Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΎΠ΄Π½ΠΎΠΉ ΠΈΠ· ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹Ρ… Π·Π°Π΄Π°Ρ‡ΠΈ. Π’Π°ΠΊΠΎΠΉ ΠΏΠΎΠ΄Ρ…ΠΎΠ΄ связан с Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΌ риском, Ρ‚Π°ΠΊ ΠΊΠ°ΠΊ Π½Π΅ Π²ΡΠ΅Π³Π΄Π° Π°ΠΏΡ€ΠΈΠΎΡ€ΠΈ Π±Ρ‹Π²Π°Π΅Ρ‚ ясно, соотвСтствуСт Π»ΠΈ Ρ‚Π°ΠΊΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠ°ΠΊΠΎΠΌΡƒ-Π»ΠΈΠ±ΠΎ пСриодичСскому Ρ€Π΅ΡˆΠ΅Π½ΠΈΡŽ. Иногда сущСствованиС Ρ‚Π°ΠΊΠΎΠ³ΠΎ фиксированного значСния Π½Π° Π³Ρ€Π°Π½ΠΈΡ†Π΅ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄Π° Π±Ρ‹Π²Π°Π΅Ρ‚ ΠΎΡ‡Π΅Π²ΠΈΠ΄Π½Ρ‹ΠΌ ΠΈΠ· Ρ„изичСских сообраТСний. Π’Π°ΠΊ, производная пСриодичСской Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π½Π° ΠΏΠ΅Ρ€ΠΈΠΎΠ΄Π΅ обязана ΠΎΠ±Ρ€Π°Ρ‰Π°Ρ‚ΡŒΡΡ Π² Π½ΡƒΠ»ΡŒ ΠΈ Ρ‚. ΠΏ. Иногда Π²Ρ‹Π±ΠΎΡ€ Ρ‚Π°ΠΊΠΎΠ³ΠΎ фиксированного значСния сопряТСн с ΠΈΠ·Π²Π΅ΡΡ‚Π½Ρ‹ΠΌ риском — Π²Ρ‹Π±Ρ€Π°Π½Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Π½Π΅ Π±ΡƒΠ΄Π΅Ρ‚ ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΠΎΠ²Π°Ρ‚ΡŒ ΠΊΠ°ΠΊΠΎΠΌΡƒ-Π»ΠΈΠ±ΠΎ пСриодичСскому Ρ€Π΅ΡˆΠ΅Π½ΠΈΡŽ Π·Π°Π΄Π°Ρ‡ΠΈ. Как ΠΏΡ€Π°Π²ΠΈΠ»ΠΎ, поиску пСриодичСского Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ соотвСтствуСт рассмотрСниС свойств Π·Π°Π΄Π°Ρ‡ΠΈ Коши, ΠΈ Π½Π΅ΠΊΠΎΡ‚орая априорная информация Ρƒ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Сля ΡƒΠΆΠ΅ имССтся.

ΠžΡ‡Π΅Π²ΠΈΠ΄Π½ΠΎ, Ρ‡Ρ‚ΠΎ срСди фиксированных ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹Ρ… Π½Π΅ ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ значСния ΠΏΠ΅Ρ€ΠΈΠΎΠ΄Π° Π’. Как ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ Π²Ρ‹ΡˆΠ΅, Π² Π»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Ρ… Π·Π°Π΄Π°Ρ‡Π°Ρ… поиск ΠΏΠ΅Ρ€ΠΈΠΎΠ΄Π° связан с Π·Π°Π΄Π°Ρ‡Π΅ΠΉ Π½Π° ΡΠΎΠ±ΡΡ‚Π²Π΅Π½Π½Ρ‹Π΅ значСния, ΠΈ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΈΡ‡Π΅ΡΠΊΠΎΠ΅ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ сущСствуСт лишь ΠΏΡ€ΠΈ дискрСтном Π½Π°Π±ΠΎΡ€Π΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄Π°. Как ΠΏΡ€Π°Π²ΠΈΠ»ΠΎ, такая ΠΆΠ΅ ситуация ΠΈΠΌΠ΅Π΅Ρ‚ мСсто ΠΈ Π² Π½Π΅Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΌ случаС (ΠΏΡ€ΠΈΠΌΠ΅Ρ€, ΠΊΠΎΠ³Π΄Π° это Π½Π΅ Ρ‚Π°ΠΊ, приводится Π² ΠΊΠΎΠ½Ρ†Π΅ ΠΏΠ°Ρ€Π°Π³Ρ€Π°Ρ„Π°).

Π‘Π΅Π· ограничСния общности ΠΌΠΎΠΆΠ½ΠΎ ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚ΡŒ =0. Π’ΠΎΠ³Π΄Π° число нСизвСстных, ΠΏΠΎΠ΄Π»Π΅ΠΆΠ°Ρ‰ΠΈΡ… ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΡŽ, Ρ€Π°Π²Π½ΠΎ числу ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ. Π”Π°Π»ΡŒΠ½Π΅ΠΉΡˆΠ΅Π΅ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ систСмы связано с ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ ΠΊΠ²Π°Π·ΠΈΠ»ΠΈΠ½Π΅Π°Ρ€ΠΈΠ·Π°Ρ†ΠΈΠΈ (ΠΏΠΎ ΠΡŒΡŽΡ‚ΠΎΠ½Ρƒ)1 ΠΈ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ΠΌ Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ систСмы. ΠžΡ‚ΠΌΠ΅Ρ‚ΠΈΠΌ, Ρ‡Ρ‚ΠΎ Π²ΠΈΠ΄ ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Ρ‹ Π―ΠΊΠΎΠ±ΠΈ ΠΏΠΎΡ…ΠΎΠΆ Π½Π° Ρ‚ΠΎΡ‚, Ρ‡Ρ‚ΠΎ получаСтся ΠΏΡ€ΠΈ ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠΈ описанного Π² ΠΏΡ€Π΅Π΄Ρ‹Π΄ΡƒΡ‰Π΅ΠΌ ΠΏΠ°Ρ€Π°Π³Ρ€Π°Ρ„Π΅ ΠΌΠ΅Ρ‚ΠΎΠ΄Π° ΠΏΡ€ΠΎΠ³ΠΎΠ½ΠΊΠΈ. ЕдинствСнноС ΠΎΡ‚Π»ΠΈΡ‡ΠΈΠ΅ — ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Π° Π»ΠΈΠ½Π΅Π°Ρ€ΠΈΠ·ΠΎΠ²Π°Π½Π½ΠΎΠΉ систСмы получаСтся ΠΏΠΎΡ‡Ρ‚ΠΈ Π±Π»ΠΎΡ‡Π½ΠΎ-диагональной (ΠΎΡ‚ Π½ΡƒΠ»Π΅Π²Ρ‹Ρ… ΠΎΡ‚Π»ΠΈΡ‡Π°ΡŽΡ‚ΡΡ лишь Π±Π»ΠΎΠΊΠΈ Π½Π° Π³Π»Π°Π²Π½ΠΎΠΉ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ ΠΈ Π½Π°Π΄ Π½Π΅ΠΉ, Π±Π»ΠΎΠΊ Π² Π»Π΅Π²ΠΎΠΌ Π½ΠΈΠΆΠ½Π΅ΠΌ ΡƒΠ³Π»Ρƒ ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Ρ‹ ΠΈ Π·Π°ΠΏΠΎΠ»Π½Π΅Π½Π½Ρ‹ΠΉ послСдний столбСц). ΠŸΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΡŽ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠΎΠ² Ρ€Π°Π±ΠΎΡ‚Ρ‹ с Π±Π»ΠΎΡ‡Π½Ρ‹ΠΌΠΈ ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Π°ΠΌΠΈ прСпятствуСт структура Π±Π»ΠΎΠΊΠΎΠ² Π² ΠΏΠ΅Ρ€Π²ΠΎΠΌ столбцС: ΠΈΡ… Ρ€Π°Π·ΠΌΠ΅Ρ€ получаСтся (К — 1) Ρ… К. Π’Π΅ΠΌ нс ΠΌΠ΅Π½Π΅Π΅ для ΠΌΠ°Ρ‚Ρ€ΠΈΡ† ΠΏΠΎΠ΄ΠΎΠ±Π½ΠΎΠΉ структуры ΠΌΠΎΠΆΠ½ΠΎ ΠΏΠΎΡΡ‚Ρ€ΠΎΠΈΡ‚ΡŒ эффСктивно Ρ€Π°Π±ΠΎΡ‚Π°ΡŽΡ‰ΠΈΠ΅ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΡ‹, основанныС Π½Π° ΠΌΠ΅Ρ‚ΠΎΠ΄Π΅ Гаусса[1][2][3][4].

Π’ ΡΠ²ΡΠ·ΠΈ с Π±Ρ‹ΡΡ‚Ρ€Ρ‹ΠΌ Ρ€Π°Π·Π²ΠΈΡ‚ΠΈΠ΅ΠΌ Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ Ρ‚Π΅Ρ…Π½ΠΈΠΊΠΈ ΠΌΠ½ΠΎΠ³ΠΈΠ΅ ограничСния Π½Π° Ρ€Π°Π·ΠΌΠ΅Ρ€Ρ‹ памяти ΠΈ Π±Ρ‹ΡΡ‚родСйствиС ΠΊΠΎΠΌΠΏΡŒΡŽΡ‚Π΅Ρ€ΠΎΠ² становятся нСсущСствСнными ΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡ€ΠΈΠΌΠ΅Π½ΠΈΡ‚ΡŒ Π±ΠΎΠ»Π΅Π΅ «Ρ‡Π΅ΡΡ‚Π½Ρ‹ΠΉ» Π²Π°Ρ€ΠΈΠ°Π½Ρ‚ Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ Π·Π°Π΄Π°Ρ‡ΠΈ. Π—Π°Π΄Π°Π²Π°ΡΡΡŒ ΠΊΠ°ΠΊΠΈΠΌ-Π»ΠΈΠ±ΠΎ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΌ ΠΏΡ€ΠΈΠ±Π»ΠΈΠΆΠ΅Π½ΠΈΠ΅ΠΌ (ΠΎΠ±Ρ‹Ρ‡Π½ΠΎ Π΅Π³ΠΎ ΠΏΠΎΠ»ΡƒΡ‡Π°ΡŽΡ‚ ΠΈΠ· Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ Π·Π°Π΄Π°Ρ‡ΠΈ Коши), запишСм Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ ΠΈΡ‚Π΅Ρ€Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ процСсса:

ВычислСниС пСриодичСских Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΉ для Π½Π΅Π»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Ρ… Π°Π²Ρ‚ΠΎΠ½ΠΎΠΌΠ½Ρ‹Ρ… систСм ΠΎΠ±Ρ‹ΠΊΠ½ΠΎΠ²Π΅Π½Π½Ρ‹Ρ… Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ.

Π’Π΅ΠΊΡ‚ΠΎΡ€ Ρ… ΡΠΎΡΡ‚Π°Π²Π»Π΅Π½ ΠΈΠ· Π²Π΅Π»ΠΈΡ‡ΠΈΠ½ Π’, u0, ΠΈΠΈ…, uv_t. Π’Π²ΠΈΠ΄Ρƒ Ρ‚ΠΎΠ³ΠΎ Ρ‡Ρ‚ΠΎ Ρ€Π°Π·ΠΌΠ΅Ρ€Ρ‹ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² Ρ… ΠΈ F Π½Π΅ ΡΠΎΠ²ΠΏΠ°Π΄Π°ΡŽΡ‚, ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Π° Π―ΠΊΠΎΠ±ΠΈ систСмы являСтся ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ, ΠΈ ΠΎΠ±Ρ€Π°Ρ‚ная ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Π° ΠΊ Π½Π΅ΠΉ, Π²ΠΎΠΎΠ±Ρ‰Π΅ говоря, Π½Π΅ ΡΡƒΡ‰Π΅ΡΡ‚Π²ΡƒΠ΅Ρ‚. ПослСдняя Ρ„ΠΎΡ€ΠΌΡƒΠ»Π° Ρ‚Π΅ΠΌ Π½Π΅ ΠΌΠ΅Π½Π΅Π΅ ΠΈΠΌΠ΅Π΅Ρ‚ ΠΏΡ€Π°Π²ΠΎ Π½Π° ΡΡƒΡ‰Π΅ΡΡ‚Π²ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΈ ΡΠ²Π»ΡΠ΅Ρ‚ся Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΌ ΠΎΠ±ΠΎΠ±Ρ‰Π΅Π½ΠΈΠ΅ΠΌ Π»ΠΌΠ΅Ρ‚ΠΎΠ΄Π° ΠŸΡ‹ΠΎΡ‚ΠΎΠ½Π°, Ссли ΠΏΠΎΠ½ΠΈΠΌΠ°Ρ‚ΡŒ ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Ρƒ Π² ΠΏΡ€ΠΈΠ²Π΅Π΄Π΅Π½Π½ΠΎΠΉ Π²Ρ‹ΡˆΠ΅ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΊΠ°ΠΊ ΠΏΡΠ΅Π²Π΄ΠΎΠΎΠ±Ρ€Π°Ρ‚Π½ΡƒΡŽ3 4. Для ΠΏΠ΅Ρ€Π΅ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π½Ρ‹Ρ… Π»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Ρ… систСм пссвдообратная ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Π° Π΄Π°Π΅Ρ‚ Π½Π°ΠΈΠ»ΡƒΡ‡ΡˆΠ΅Π΅ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ Π² ΡΠΌΡ‹ΡΠ»Π΅ Π½Π°ΠΈΠΌΠ΅Π½ΡŒΡˆΠΈΡ… ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΎΠ².

ΠŸΡ€ΠΈΠ²Π΅Π΄Π΅ΠΌ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌ вычислСния псСвдообратной ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Ρ‹ — ΠΌΠ΅Ρ‚ΠΎΠ΄ ГрСвилля*. ΠŸΡƒΡΡ‚ΡŒ А — (Ρ‚ Ρ… /Π³)-ΠΌΠ°Π³Ρ€ΠΈΡ†Π°, аА, — Π΅Π΅ k-i столбСц. Π’Π²Π΅Π΄Π΅ΠΌ ΠΎΠ±ΠΎΠ·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Afi = (ajt …, Π°/Π³) — ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Π°, образованная ΠΏΠ΅Ρ€Π²Ρ‹ΠΌΠΈ k столбцами ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Ρ‹ А. ΠŸΡƒΡΡ‚ΡŒ пссвдообратная ΠΊ, А ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Π° Π΅ΡΡ‚ΡŒ А+, Π° Π¬ΠΊ, — послСдняя строка Π² ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Π΅ А?. ИндСкс k Π² ΠΏΡ€ΠΈΠ²Π΅Π΄Π΅Π½Π½Ρ‹Ρ… Ρ„ΠΎΡ€ΠΌΡƒΠ»Π°Ρ… ΠΏΡ€ΠΎΠ±Π΅Π³Π°Π΅Ρ‚ всС значСния ΠΎΡ‚ 1 Π΄ΠΎ ΠΏ. Π’ ΡΠΎΠΎΡ‚вСтствии с Π²Π²Π΅Π΄Π΅Π½Π½Ρ‹ΠΌΠΈ обозначСниями Aj = Π°1? Ап = А. Π’ΠΎΠ³Π΄Π° Ссли А, = at = 0, Ρ‚ΠΎ А[ = 0, ΠΈΠ½Π°Ρ‡Π΅.

ВычислСниС пСриодичСских Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΉ для Π½Π΅Π»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Ρ… Π°Π²Ρ‚ΠΎΠ½ΠΎΠΌΠ½Ρ‹Ρ… систСм ΠΎΠ±Ρ‹ΠΊΠ½ΠΎΠ²Π΅Π½Π½Ρ‹Ρ… Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ.
ВычислСниС пСриодичСских Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΉ для Π½Π΅Π»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Ρ… Π°Π²Ρ‚ΠΎΠ½ΠΎΠΌΠ½Ρ‹Ρ… систСм ΠΎΠ±Ρ‹ΠΊΠ½ΠΎΠ²Π΅Π½Π½Ρ‹Ρ… Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ.

Для опрСдСлСния строки ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅Ρ‚ΡΡ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΉ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌ:

  • 1) Ссли ck = ak — Ак_^АкЀ 0, Ρ‚ΠΎ bfi = с? =(Π°^ - A^_1d/(,)+, Π·Π½Π°ΠΊ «+» (Π²Π΅Ρ€Ρ…Π½ΠΈΠΉ индСкс Π² ΠΏΠΎΡΠ»Π΅Π΄Π½Π΅ΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅) ΠΎΠ·Π½Π°Ρ‡Π°Π΅Ρ‚ псСвдообращСниС (см. Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ для aj-);
  • 2) Ссли ск = Π°ΠΊ- A*_, d* = 0, Ρ‚ΠΎ b* =(l + d[dA)d[A^.

ΠœΠ΅Ρ‚ΠΎΠ΄ ГрСвилля Π½Π΅ Ρ‚Ρ€Π΅Π±ΡƒΠ΅Ρ‚ вычислСния ΠΎΠ±Ρ€Π°Ρ‚Π½Ρ‹Ρ… ΠΌΠ°Ρ‚Ρ€ΠΈΡ†, поэтому ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ ΠΈ Π΄Π»Ρ обращСния ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹Ρ… ΠΌΠ°Ρ‚Ρ€ΠΈΡ†.

Рассмотрим Π°Π»ΡŒΡ‚Π΅Ρ€Π½Π°Ρ‚ΠΈΠ²Π½Ρ‹Π΅ ΠΏΠΎΠ΄Ρ…ΠΎΠ΄Ρ‹ ΠΊ Ρ€Π΅ΡˆΠ΅Π½ΠΈΡŽ пСриодичСской ΠΊΡ€Π°Π΅Π²ΠΎΠΉ Π·Π°Π΄Π°Ρ‡ΠΈ (8.15). ΠŸΡ€ΠΎΡΡ‚Π΅ΠΉΡˆΠΈΠΌ ΠΏΡ€ΠΈΠΌΠ΅Ρ€ΠΎΠΌ Ρ‚Π°ΠΊΠΎΠΉ Π°Π»ΡŒΡ‚Π΅Ρ€Π½Π°Ρ‚ΠΈΠ²Ρ‹ ΠΌΠΎΠΆΠ΅Ρ‚ ΡΠ»ΡƒΠΆΠΈΡ‚ΡŒ ΠΌΠ΅Ρ‚ΠΎΠ΄ пристрСлки (ΡΡ‚Ρ€Π΅Π»ΡŒΠ±Ρ‹) для Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ ΠΊΡ€Π°Π΅Π²Ρ‹Ρ… Π·Π°Π΄Π°Ρ‡. К ΡΠΎΠΆΠ°Π»Π΅Π½ΠΈΡŽ, Π² Π±ΠΎΠ»ΡŒΡˆΠΈΠ½ΡΡ‚Π²Π΅ ΡƒΡ‡Π΅Π±Π½ΠΈΠΊΠΎΠ² ΠΏΠΎ Ρ‡ΠΈΡΠ»Π΅Π½Π½Ρ‹ΠΌ ΠΌΠ΅Ρ‚ΠΎΠ΄Π°ΠΌ содСрТится лишь ΠΊΡ€Π°Ρ‚ΠΊΠΎΠ΅ описаниС основной ΠΈΠ΄Π΅ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Π°. Π˜ΡΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅ здСсь составляСт ΠΊΠ½ΠΈΠ³Π° Π . П. Π€Π΅Π΄ΠΎΡ€Π΅Π½ΠΊΠΎ1, с ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ ΠΎΠ·Π½Π°ΠΊΠΎΠΌΠΈΡ‚ΡŒΡΡ ΠΏΠ΅Ρ€Π΅Π΄ Ρ€Π΅Π°Π»ΠΈΠ·Π°Ρ†ΠΈΠ΅ΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄Π° пристрСлки для ΠΊΡ€ΡƒΠΏΠ½ΠΎΠΉ Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ Π·Π°Π΄Π°Ρ‡ΠΈ. Рассмотрим дальнСйшСС Ρ€Π°Π·Π²ΠΈΡ‚ΠΈΠ΅ ΠΈΠ΄Π΅ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Π° пристрСлки[5][6].

ΠœΠ΅Ρ‚ΠΎΠ΄ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎΠΉ ΡΡ‚Ρ€Π΅Π»ΡŒΠ±Ρ‹. Как ΠΈ Ρ€Π°Π½Π΅Π΅, нас ΠΈΠ½Ρ‚Π΅Ρ€Π΅ΡΡƒΡŽΡ‚ пСриодичСскиС Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ Π°Π²Ρ‚ΠΎΠ½ΠΎΠΌΠ½ΠΎΠΉ Π½Π΅Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ систСмы (8.14). Π’ΠΎΠΎΠ±Ρ‰Π΅ говоря, рассмотрим Ρ‡ΡƒΡ‚ΡŒ Π±ΠΎΠ»Π΅Π΅ слоТный случай систСмы, зависящСй ΠΎΡ‚ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ²:

ВычислСниС пСриодичСских Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΉ для Π½Π΅Π»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Ρ… Π°Π²Ρ‚ΠΎΠ½ΠΎΠΌΠ½Ρ‹Ρ… систСм ΠΎΠ±Ρ‹ΠΊΠ½ΠΎΠ²Π΅Π½Π½Ρ‹Ρ… Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ.

ПослС Π·Π°ΠΌΠ΅Π½Ρ‹ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹Ρ…, ΠΊΠ°ΠΊ ΠΈ Ρ€Π°Π½Π΅Π΅, ΠΈΠΌΠ΅Π΅ΠΌ.

ВычислСниС пСриодичСских Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΉ для Π½Π΅Π»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Ρ… Π°Π²Ρ‚ΠΎΠ½ΠΎΠΌΠ½Ρ‹Ρ… систСм ΠΎΠ±Ρ‹ΠΊΠ½ΠΎΠ²Π΅Π½Π½Ρ‹Ρ… Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ.

Π”Π΅Π»ΠΈΠΌ ΠΎΡ‚Ρ€Π΅Π·ΠΎΠΊ [ 0; 1 ] Π½Π° Π½Π΅ΡΠΊΠΎΠ»ΡŒΠΊΠΎ частСй Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ Ρ‚ΠΊ 0 = Ρ‚0 < Ρ‚{ < … < Ρ…ΠΌ = = 1. Π’ ΠΊΠ°ΠΆΠ΄ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠ΅ Π·Π°Π΄Π°Π΅ΠΌ Π²Π΅ΠΊΡ‚ΠΎΡ€ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹Ρ… условий ΠΈ (Π’/) = V/ = (vib Π°/2, …, vjN) ΠΈ Ρ€Π΅ΡˆΠ°Π΅ΠΌ числСнно Π·Π°Π΄Π°Ρ‡Ρƒ Коши с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ ΠΊΠ°ΠΊΠΎΠ³ΠΎ-Π»ΠΈΠ±ΠΎ ΠΌΠ΅Ρ‚ΠΎΠ΄Π°, описанного Π² Π³Π». 5, Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅ |Ρ‚^; Ρ‚*+1]. ΠŸΠΎΡ‚Ρ€Π΅Π±ΡƒΠ΅ΠΌ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ Π±Ρ‹Π»ΠΎ Π½Π΅ΠΏΡ€Π΅Ρ€Ρ‹Π²Π½Ρ‹ΠΌ. Π’ΠΎΠ³Π΄Π° Π΄ΠΎΠ»ΠΆΠ½ΠΎ Π²Ρ‹ΠΏΠΎΠ»Π½ΡΡ‚ΡŒΡΡ равСнство.

ВычислСниС пСриодичСских Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΉ для Π½Π΅Π»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Ρ… Π°Π²Ρ‚ΠΎΠ½ΠΎΠΌΠ½Ρ‹Ρ… систСм ΠΎΠ±Ρ‹ΠΊΠ½ΠΎΠ²Π΅Π½Π½Ρ‹Ρ… Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ.

Π’ Ρ€Π°Π²Π΅Π½ΡΡ‚Π²Π΅ (8.17) Ρ‡Π΅Ρ€Π΅Π· ΠΈ (Π’/ | V/ v Π“, Π°) ΠΎΠ±ΠΎΠ·Π½Π°Ρ‡Π΅Π½ΠΎ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ числСнного Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ Π·Π°Π΄Π°Ρ‡ΠΈ Коши Π½Π° ΠΏΡ€Π°Π²ΠΎΠΌ ΠΊΠΎΠ½Ρ†Π΅ ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ° [Π’/ t; Ρ‚/]. Π­Ρ‚ΠΎ равСнство выполняСтся ΠΏΡ€ΠΈ 1 < /< М — 1. ΠšΡ€ΠΎΠΌΠ΅ Ρ‚ΠΎΠ³ΠΎ, Π² ΡΠΈΠ»Ρƒ пСриодичности ΠΈΠΌΠ΅Π΅ΠΌ.

ВычислСниС пСриодичСских Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΉ для Π½Π΅Π»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Ρ… Π°Π²Ρ‚ΠΎΠ½ΠΎΠΌΠ½Ρ‹Ρ… систСм ΠΎΠ±Ρ‹ΠΊΠ½ΠΎΠ²Π΅Π½Π½Ρ‹Ρ… Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ.

РавСнства (8.17) ΠΈ (8.18) ΠΎΠ±Ρ€Π°Π·ΡƒΡŽΡ‚ Π½Π΅Π»ΠΈΠ½Π΅ΠΉΠ½ΡƒΡŽ систСму, Π²ΠΊΠ»ΡŽΡ‡Π°ΡŽΡ‰ΡƒΡŽ N Ρ… М скалярных ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ для опрСдСлСния М Ρ… N + 1 нСизвСстного.

Напомним, Ρ‡Ρ‚ΠΎ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Π½Π°ΠΌ ΠΏΠΎΠΊΠ° нСизвСстСн ΠΈ ΠΏΠΎΠ΄Π»Π΅ΠΆΠΈΡ‚ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΡŽ ΠΎΠ΄Π½ΠΎΠ²Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎ с Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ΠΌ.

Π”Π°Π»ΡŒΠ½Π΅ΠΉΡˆΠ°Ρ ΠΏΡ€ΠΎΡ†Π΅Π΄ΡƒΡ€Π° поиска Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ ΠΏΠΎΡ…ΠΎΠΆΠ° Π½Π° Ρ€Π°ΡΡΠΌΠΎΡ‚Ρ€Π΅Π½Π½ΡƒΡŽ Π²Ρ‹ΡˆΠ΅. Π›ΠΈΠ±ΠΎ ΠΏΡ€ΠΈ Ρ‚ = 0 фиксируСтся ΠΎΠ΄Π½Π° ΠΈΠ· ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° v0, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€ полагаСтся Π½ΡƒΠ»Π΅ΠΌ ΠΈΠ· Ρ„изичСских сообраТСний, Π»ΠΈΠ±ΠΎ примСняСтся ΠΎΠ±ΠΎΠ±Ρ‰Π΅Π½ΠΈΠ΅ ΠΌΠ΅Ρ‚ΠΎΠ΄Π° ΠΡŒΡŽΡ‚ΠΎΠ½Π° с Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠΎΠΌ ГрСвилля.

ΠŸΡ€Π΅ΠΈΠΌΡƒΡ‰Π΅ΡΡ‚Π²ΠΎ описанного Π²ΠΊΡ€Π°Ρ‚Ρ†Π΅ Π²Ρ‹ΡˆΠ΅ ΠΌΠ΅Ρ‚ΠΎΠ΄Π° ΠΏΠ΅Ρ€Π΅Π΄ ΠΌΠ΅Ρ‚ΠΎΠ΄Π°ΠΌΠΈ Π»ΠΈΠ½Π΅Π°Ρ€ΠΈΠ·Π°Ρ†ΠΈΠΈ — мСньшая Ρ€Π°Π·ΠΌΠ΅Ρ€Π½ΠΎΡΡ‚ΡŒ ΠΏΠΎΠ»ΡƒΡ‡Π°ΡŽΡ‰Π΅ΠΉΡΡ Π½Π΅Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ систСмы ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ. Π’ ΠΊΠ°Ρ‡Π΅ΡΡ‚Π²Π° ΠΏΠ»Π°Ρ‚Ρ‹ Π·Π° ΡƒΠΏΡ€ΠΎΡ‰Π΅Π½ΠΈΠ΅ нСсколько возрастаСт объСм Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ Ρ€Π°Π±ΠΎΡ‚Ρ‹. Π”Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ, ΠΊΠ°ΠΊΠΈΠΌ Π±Ρ‹ способом Π½ΠΈ Π½Π°Ρ…ΠΎΠ΄ΠΈΠ»ΠΎΡΡŒ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅, Π½Π°ΠΌ Π½Π°Π΄ΠΎ Π·Π½Π°Ρ‚ΡŒ значСния всСх частных ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Ρ…, входящих Π² ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Ρƒ Π―ΠΊΠΎΠ±ΠΈ,.

ВычислСниС пСриодичСских Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΉ для Π½Π΅Π»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Ρ… Π°Π²Ρ‚ΠΎΠ½ΠΎΠΌΠ½Ρ‹Ρ… систСм ΠΎΠ±Ρ‹ΠΊΠ½ΠΎΠ²Π΅Π½Π½Ρ‹Ρ… Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ.

Π­Ρ‚ΠΈ ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Ρ‹ ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ вычислСны ΠΏΡƒΡ‚Π΅ΠΌ интСгрирования Π·Π°Π΄Π°Ρ‡ΠΈ Коши для уравнСния Π² Π²Π°Ρ€ΠΈΠ°Ρ†ΠΈΡΡ….

ВычислСниС пСриодичСских Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΉ для Π½Π΅Π»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Ρ… Π°Π²Ρ‚ΠΎΠ½ΠΎΠΌΠ½Ρ‹Ρ… систСм ΠΎΠ±Ρ‹ΠΊΠ½ΠΎΠ²Π΅Π½Π½Ρ‹Ρ… Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ.

Π³Π΄Π΅ Y — квадратная ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Π° Ρ€Π°Π·ΠΌΠ΅Ρ€ΠΎΠΌ Nx N. Выбирая Π² ΠΊΠ°Ρ‡Π΅ΡΡ‚Π²Π΅ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹Ρ… Π΄Π°Π½Π½Ρ‹Ρ… для Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ Π·Π°Π΄Π°Ρ‡ΠΈ Коши для уравнСния Π² Π²Π°Ρ€ΠΈΠ°Ρ†ΠΈΡΡ… Y (i/) = Π•, Π½Π° Π΄Ρ€ΡƒΠ³ΠΎΠΌ ΠΊΠΎΠ½Ρ†Π΅ ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ° Π² Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅ числСнного Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ Π·Π°Π΄Π°Ρ‡ΠΈ ΠΏΠΎΠ»ΡƒΡ‡Π°Π΅ΠΌ Π½ΡƒΠΆΠ½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Ρ‹ Π―ΠΊΠΎΠ±ΠΈ. Па ΠΏΡ€Π°ΠΊΡ‚ΠΈΠΊΠ΅ систСма Π² Π²Π°Ρ€ΠΈΠ°Ρ†ΠΈΡΡ… ΠΎΠ±Ρ‹Ρ‡Π½ΠΎ Ρ€Π΅ΡˆΠ°Π΅Ρ‚ΡΡ (числСнно) ΠΎΠ΄Π½ΠΎΠ²Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎ с Ρ€Π°ΡΡΠΌΠ°Ρ‚Ρ€ΠΈΠ²Π°Π΅ΠΌΠΎΠΉ Π½Π΅Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ систСмой ΠžΠ”Π£.

Врудности ΠΏΡ€ΠΈ Ρ€Π΅Π°Π»ΠΈΠ·Π°Ρ†ΠΈΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² ΠΌΠΎΠ³ΡƒΡ‚ Π²ΠΎΠ·Π½ΠΈΠΊΠ½ΡƒΡ‚ΡŒ, ΠΊΠΎΠ³Π΄Π° ΠΏΡ€ΠΈ Π΄Π°Π½Π½ΠΎΠΌ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄Π΅ ΠΈΠ»ΠΈ Π΄Π°Π½Π½ΠΎΠΌ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΈ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π° Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ Π·Π°Π΄Π°Ρ‡ΠΈ Π½Π΅ Π΅Π΄ΠΈΠ½ΡΡ‚Π²Π΅Π½Π½ΠΎ.

  • [1] Ко. ΠΈΠ°Π³Π³Ρ‰ Π›. Π£ΠΊΠ°Π·, соч.; Π‘Π΅Π»Π»ΠΌΠ°Π½ Π ., Калаба Π . ΠšΠ²Π°Π·ΠΈΠ»ΠΈΠ½Π΅Π°Ρ€ΠΈΠ·Π°Ρ†ΠΈΡ ΠΈ Π½Π΅Π»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ уравнСния. М.: ΠœΠΈΡ€, 1968.
  • [2] Π’Π°ΠΊΠΈΠ΅ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹ Ρ€Π°ΡΡΠΌΠ°Ρ‚Ρ€ΠΈΠ²Π°ΡŽΡ‚ΡΡ Π² Ρ€Π°Π±ΠΎΡ‚Π΅: Π₯ΠΎΠ»ΠΎΠ΄Π»ΠΈΠΎΠΊ М. ΠΈ Π΄Ρ€. Π£ΠΊΠ°Π·. соч.
  • [3] Π‘ΠΌ.: Π“ΠΎΠ½Ρ‚ΠΌΠ°Ρ…Π΅Ρ€ Π€. Π . Π£ΠΊΠ°Π·. соч.
  • [4] Π‘ΠΌ.: Π’Π°ΠΌ ΠΆΠ΅.
  • [5] Π€Π΅Π΄ΠΎΡ€Π΅Π½ΠΊΠΎ Π . П.

    Π’Π²Π΅Π΄Π΅Π½ΠΈΠ΅

    Π² Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚Π΅Π»ΡŒΠ½ΡƒΡŽ Ρ„ΠΈΠ·ΠΈΠΊΡƒ. Π”ΠΎΠ»Π³ΠΎΠΏΡ€ΡƒΠ΄Π½Ρ‹ΠΉ: Π˜Π½Ρ‚Π΅Π»Π»Π΅ΠΊΡ‚, 2009.

  • [6] ΠŸΠΎΠ΄Ρ€ΠΎΠ±Π½ΠΎ ΠΎΠ½ΠΎ описано Π² Ρ€Π°Π±ΠΎΡ‚Π΅: Π₯ΠΎΠ»ΠΎΠ΄Π½ΠΈΠΎΠΊ М. ΠΈ Π΄Ρ€. Π£ΠΊΠ°Π·. соч. Π’Π°ΠΊΠΆΠ΅ ΠΏΠΎΠ΄Ρ€ΠΎΠ±Π½ΠΎΠ΅ описаниС Π²ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΎ Π² ΠΊΠ½ΠΈΠ³Ρƒ: ΠšΠ°Ρ€ΠΏΠΎΠ² Π’. E. t Π›ΠΎΠ±Π°Π½ΠΎΠ² А. И. ЧислСнныС ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹, Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΡ‹ ΠΈ ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΡ‹.

    Π’Π²Π΅Π΄Π΅Π½ΠΈΠ΅

    Π² Ρ€Π°ΡΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΠΈΠ²Π°Π½ΠΈΠ΅. М.: Π€ΠΈΠ·ΠΌΠ°Ρ‚ΠΊΠ½ΠΈΠ³Π°, 2014.

ΠŸΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ вСсь тСкст
Π—Π°ΠΏΠΎΠ»Π½ΠΈΡ‚ΡŒ Ρ„ΠΎΡ€ΠΌΡƒ Ρ‚Π΅ΠΊΡƒΡ‰Π΅ΠΉ Ρ€Π°Π±ΠΎΡ‚ΠΎΠΉ