Помощь в написании студенческих работ
Антистрессовый сервис

К расчету эффективных магнитных полей в магнитных жидкостях

ДокладПомощь в написанииУзнать стоимостьмоей работы

Гогосов В. В., Налетова В. А., Шапошникова Г. А. Гидродинамика дисперсных систем, взаимодействующих с электромагнитным полем.// Механика жидкости и газа.- № 3.-1977. С.62−70. Проверим справедливость полученной формулы (12) для некоторых известных функциональных форм зависимости магнитной восприимчивости от температуры. Диканский Ю. И. Экспериментальное исследование эффективных полей в магнитной… Читать ещё >

К расчету эффективных магнитных полей в магнитных жидкостях (реферат, курсовая, диплом, контрольная)

К РАСЧЕТУ ЭФФЕКТИВНЫХ МАГНИТНЫХ ПОЛЕЙ В МАГНИТНЫХ ЖИДКОСТЯХ

Диканский Ю.И.

Один из подходов к определению эффективных полей связан с анализом действующих на дипольную частицу сил. В работе на основании такого анализа получена формула для расчета эффективных электрических полей в жидких диэлектриках. Механический перенос подхода, используемого при ее выводе, возможный благодаря глубокой аналогии между законами электрической поляризации и намагничивания позволяет получить аналогичную формулу для расчета эффективных магнитных полей в магнитных жидкостях в приближении однородности среды:

(1)

где — напряженность внешнего поля, — магнитная восприимчивость магнитной жидкости, — объемная концентрация ее дисперсной фазы.

Как следует из [3], полученное выражение для эффективного поля согласуется с формулой Лоренц-Лоренца при выполнении условия

(2)

которое непосредственно следует из того, что функция Клаузиса-Моссоти не зависит от плотности (концентрации диполей):

(3)

Выражение (1) для эффективного поля может быть представлено в виде, т. е., откуда для параметра эффективного поля следует:

. (4)

Полученная формула позволяет рассчитать параметр эффективного поля по экспериментально полученной зависимости .

Изучение диполь-дипольного взаимодействия однодоменных дисперсных частиц возможно также с помощью анализа температурных зависимостей магнитной восприимчивости магнитных жидкостей. Выражение для расчета эффективного поля можно получить, воспользовавшись подходом, предложенным в [2], возможным благодаря непосредственной связи эффективного поля с действующей на частицу среды силой. При этом, естественно воспользоваться результатами макроскопической теории для объемной плотности сил в магнитном поле. Ранее, выражение для таких сил выводилось во многих работах [3−5] путем приравнивания вариации свободной энергии (при постоянной температуре и векторном потенциале магнитного поля) работе внутренних сил. Вместе с тем авторами работы было показано, что в более общем случае, при вычислении вариации полной (или внутренней) энергии необходимоучитывать вариации температур или энтропий. Если осуществить некоторое виртуальное перемещение элемента магнитной жидкости, находящейся в магнитном поле Н (например, в поле соленоида) так, что часть жидкости вытиснится из пространства, занимаемого полем, то изменение энергии поля, соответствующее изотермическому процессу может быть записано в виде, аналогичном выведенного в для жидкого диэлектрика:

(5)

где — концентрация дипольных частиц.

Можно предположить, что в общем случае, с учетом изменения температуры это выражение должно быть дополнено слагаемым, т. е.. Изменение температуры определится выражением для магнетокалорического эффекта:

. (6)

Тогда, с учетом предложенного характера виртуального перемещения и выражения для изменения температуры можно получить:

(7)

Наложим ограничение на процесс виртуального перемещения, предположив, что оно не сопровождается изменением концентрации дипольных частиц. В этом случае, второй член в выражении (5) можно положить равным нулю. Тогда, окончательно, для изменения полной энергии с учетом получим:

. (8)

Приравняем полученное выражение для работе пондеромоторных сил, взятой с обратным знаком, т. е.. С учетом этого, нетрудно получить:

.

Используя соотношения векторного анализа

. (9)

С учетом того, что, получим:

. (10)

В работе для плотности сил в дипольном приближении найдено следующее выражение:

(11)

Приравнивая (10) и (11), с учетом отсутствия в МЖ пространственной дисперсии и токов проводимости, получим:

(12)

Из формулы (12) видно, что величина эффективного поля связана с магнитной восприимчивостью и ее производной по температуре и может быть рассчитана при использовании зависимости магнитной восприимчивости от температуры. По-видимому, впервые (12) было приведено нами в работе без вывода.

Условие согласуемости (12) с формулой Лоренц-Лоренца для эффективного поля имеет вид:

(13)

Соотношение (13) может быть использовано для оценки в случае применимости формулы Лоренц-Лоренца.

Проверим справедливость полученной формулы (12) для некоторых известных функциональных форм зависимости магнитной восприимчивости от температуры.

В случае парамагнитной жидкости для температурной зависимости магнитной восприимчивости справедлив закон Кюри:

и (14)

Подставив эти выражения в формулу (12), получим:, что и следовало ожидать для системы с невзаимодействующими частицами.

Для парамагнитной жидкости, с магнитной восприимчивостью, подчиняющейся закону Кюри-Вейсса,

, (15)

где — температура Кюри. Формула (12) в этом случае дает:

(16)

Приравняв (16) к выражению для эффективного поля, записанного в виде и учитывая, что, получим:

(17)

Последнее соотношение, с учетом выражения (15) для дает, что, как известно, следует также непосредственно из закона Кюри-Вейсса. Проведенные оценки позволяют предположить возможность применения формулы (12) для расчета эффективных полей и при других формах зависимости, в том случае, когда выполняется поставленное при ее выводе требование однородности среды.

1. Де Грот С., и Мазур П. Неравновесная термодинамика.- М.: Мир, 1964.-456 с.

2. Бараш Ю. С. О макроскопическом описании действующего поля в некоторых диэлектриках.// ЖЭТФ.-Т.79, вып.6.-С.2271−2281.

3. Ландау Л. Д., Лифшиц Е. М. Электродинамика сплошных сред. -М.: Наука.-1982.-623 с.

4. 4. Стреттон Д. Теория электромагнетизма.- М.-Л.: Гостехиздат, 1948.-312 с.

5. Пановский В., Филипс М. Классическая электродинамика.- М.: Гостехиздат, 1957.

6. Гогосов В. В., Налетова В. А., Шапошникова Г. А. Гидродинамика дисперсных систем, взаимодействующих с электромагнитным полем.// Механика жидкости и газа.- № 3.-1977. С.62−70.

7. Диканский Ю. И. Экспериментальное исследование эффективных полей в магнитной жидкости.// Магнитная гидродинамика.- 1982. № 3. — С.33−36.

Показать весь текст
Заполнить форму текущей работой