Помощь в написании студенческих работ
Антистрессовый сервис

Заполнители неорганические. 
Строительное материаловедение

РефератПомощь в написанииУзнать стоимостьмоей работы

Прочность щебня характеризуется маркой и определяется по его дробимости при сжатии (раздавливании) в металлическом цилиндре. Значительное содержание в гравии выветрелых обломков осадочных и других пород (иногда до 40—60%) ухудшает их механические свойства; присутствие же обломков магматических пород (гранитных валунов) и песчаников повышает его качество. При разработке гравийных отложений… Читать ещё >

Заполнители неорганические. Строительное материаловедение (реферат, курсовая, диплом, контрольная)

Наибольший объем в ИСК занимает заполняющий компонент (заполнитель). В бетонах и растворах, например, его содержание может быть до 95% по объему. Поэтому выбору качества и разновидности заполнителей всегда уделяется большое внимание. Применяют заполнители неорганические и органические; преимущественное применение имеют неорганические, особенно при производстве бетона, железобетона и асфальтобетона.

Заполнители неорганические, или минеральные, получают путем разработки месторождений рыхлых горных пород в виде песка или гравия, природного щебня. Широко используют дробленые горные породы — щебень, высевки, песок. Кроме природных, в качестве заполнителей применяют также искусственные, получаемые путем обжига глинистого сырья, других видов минерального сырья, дроблением металлургических шлаков.

Заполнители разделяются на мелкие и крупные. Отнесение к этим разновидностям по крупности зависит от размера наиболее крупного зерна. У мелкого заполнителя зерна не больше 5 мм, причем при просеивании остаток на сите с отверстиями 5 мм должен быть не более 5% по массе. Типичным представителем мелкого заполнителя является песок. У крупного заполнителя все зерна крупнее 5 мм. Размер наиболее крупных зерен в заполнителе также ограничивается: в зависимости от разновидности ИСК в пределах 70−80 мм. Крупный заполнитель называют щебнем при угловатых зернах или гравием — при округлых зернах.

Заполнители характеризуют зерновым (гранулометрическим) составом. С целью определения зернового состава производят рассев пробы заполнителя через стандартный набор сит. Наименьшее отверстие в сите 0,14 мм, наибольшее — 70 мм. При лабораторном рассеве пробы заполнителя на ситах между двумя соседними ситами, например 10 и 20 мм или 1,25 и 2,5 мм, задержатся зерна различной крупности в указанных пределах, что составляет соответственно фракцию 10—20 мм или фракцию 1,25 мм. Нередко зерновой состав называют фракционным.

Фракционный состав заполнителя является непрерывным, если содержатся все фракции, на которые рассеивается заполнитель с помощью сит. Фракционный состав — прерывистый, если в заполнителе отсутствует одна или две фракции.

Плотную смесь заполнителя получают путем смешивания различных отдельно взятых фракций заполнителя, количество которых рассчитывают по соответствующим формулам или подбирают по графикам, иногда — опытным путем.

Зерновые составы плотных смесей приводятся в ГОСТе с указанием колебаний в содержании фракций, допустимых без снижения качества готовых материалов. При окончательном выборе зернового состава учитывают не только насыпную плотность смеси или ее пустотность, но и удельную поверхность. Желательно уменьшать удельную поверхность в плотной смеси, с тем чтобы сэкономить на расходе вяжущего вещества.

Кроме фракционного состава, насыпной плотности и пустотности заполнителей при оценке качества определяют показатели прочности, морозостойкости (в отношении щебня), степень загрязненности посторонними примесями, форму частиц. Учитывают также состояние поверхности зерен заполнителя, так как чем более гладкая поверхность у зерен заполнителя, тем ниже, как правило, сцепление зерен с вяжущим веществом. При необходимости оценивают химическую стойкость, водостойкость и др.

Важной характеристикой заполнителя, особенно крупного, является величина насыпной плотности. Тяжелые заполнители показывают в россыпи насыпную плотность свыше 1000 кг/м3. Легкие заполнители облегчают конструкции и поэтому широко применяются в жилищном строительстве; их насыпная плотность составляет около 500 кг/м3.

Поскольку, как отмечалось выше, заполнители в ИСК занимают большую часть объема и поэтому их расход очень большой, то имеет значение стоимость заполнителей. В этом смысле всегда остаются предпочтительными заполнители из местных сравнительно дешевых материалов, в том числе из побочных продуктов местной промышленности. Однако требуется повышенное внимание к оценке их качества.

В теории ИСК предусмотрен показатель качества заполнителя, определяемый непосредственно в конгломерате по интенсивности изменения его свойств, например, прочности, определяемой по формуле (3.3). В последней этот комплексный показатель выражен величиной п. Его числовое значение зависит от плотности зерновой смеси, формы и размера частиц, состояния поверхности зерен, их прочности, способности к адгезии с вяжущим веществом и других качественных характеристик заполнителя. Числовые значения комплексного структурного показателя п стремятся уменьшить путем промывки заполнителя, фракционирования, обогащения, обработкой ПАВ или другими технологическими приемами. Из формулы (3.3) очевидно, что чём меньше числовое значение л, тем выше положительная роль заполнителя в ИСК как структурного элемента.

Мелкие заполнители. К мелким заполнителям относится природный или искусственный песок. Как правило, наилучшими песками в ИСК являются кварцевые. Однако при производстве безобжиговых материалов (бетонов, асфальтобетонов и т. п.) их заменяют и другими природными песками. Во всех песках ограничивается содержание вредных примесей, к которым относятся глинистые и пылеватые фракции, сернистые и сернокислые соединения (пирит, гипс и др.), а также слюды, органические примеси (остатки неразложившихся растений, гумус, ил и пр.). Для разных конгломератных материалов устанавливают конкретные пределы допустимого содержания вредных примесей, которые учитываются в качестве обязательных условий при применении местных песков, и приводятся специальные методики определения различных вредных примесей.

Среди природных песков встречаются горные (овражные), речные, морские, барханные, дюнные и другие разновидности. Каждая из них имеет положительные и отрицательные показатели, проявляющиеся при использовании их в качестве мелких заполнителей: горные пески содержат повышенное количество глинистых и органических примесей; морские кроме кварцевых зерен могут иметь обломки раковин, снижающие прочность некоторых конгломератов (цементных бетонов и др.); речные и морские имеют излишне отполированную поверхность зерен, не обеспечивающую достаточного сцепления их с вяжущим веществом; дюнные и барханные пески сложены весьма мелкими частицами, не отвечающими требованиям стандарта. При тщательной проверке качества песков выбирают наилучшую разновидность и рекомендуют к применению в данном ИСК с учетом ее стоимости и требуемого расхода вяжущего вещества.

Особое внимание уделяется зерновому составу песка. Важно, чтобы содержание фракций в пределах 0,16—5,0 мм было таким, при котором обеспечиваются минимальные значения пустотности и удельной поверхности.

В зависимости от зернового состава песок разделяют на крупный, средний, мелкий и очень мелкий. Крупность оценивается по величине модуля крупности:

Заполнители неорганические. Строительное материаловедение.

Модуль выражает частное от деления на 100 суммы полных остатков (в %) песка на ситах, начиная с сита с размером отверстий 2,5 мм и кончая ситом с отверстиями 0,16 мм. Полным остатком песка А, на каждом сите называют сумму частных остатков а, на данном сите (в %). Частный остаток д, песка на каждом сите — это отношение массы т остатка на данном сите к массе т просеиваемой навески (в %): д, = т!т.

После предварительного отсева от природного песка зерен крупнее 5 мм модуль крупности песка М* и полный остаток на сите с сеткой 0,63 мм должны соответствовать величинам, указанным в табл. 9.4.

Таблица 9.4. Классификация песков по крупности.

Группа песка.

Полный остаток на сите № 063 по массе,%.

Модуль крупности Мк.

Крупный.

Более 45.

Более 2,5.

Средний.

От 30 до 45.

2,0−2,5.

Мелкий.

От 10 До 30.

1,5—2,0.

Очень мелкий.

_Д°ш_.

1,0—1,5.

Для повышения однородности зернового состава песок иногда фракционируют, чаще всего на две фракции — крупную и мелкую: крупная — с размером зерен 1,25—5,0 мм, мелкая — от 0,63 до 0,16 мм. В необходимых случаях зерновой состав подбирают таким образом, чтобы он соответствовал кривым просеивания плотных песчаных смесей (рис. 9.5). В правильно назначенном зерновом составе пустотность песка не превышает 38%. Всегда учитывают содержание воды, так как фактическая масса фракции в сухом песке уменьшится, а при дозировании или приемке по объему учитывают, что самый большой объем песок занимает при 5—7% влажности (по массе). Косвенной характеристикой пустотности служит его насыпная плотность, которая у сухого кварцевого песка в рыхлом состоянии колеблется в пределах 1500— 1550 кг/м3, а в уплотненном встряхиванием состоянии — в пределах 1600—1700 кг/м3.

График зернового состава песка для бетона.

Рис. 9.5. График зернового состава песка для бетона.

Дробленый, или искусственный, песок получают путем дробления свежих невыветрелых магматических, метаморфических или плотных карбонатных осадочных пород, предел прочности которых свыше 50 МПа. При дроблении стремятся получить угловатую и кубовидную форму зерен, что в большой степени зависит от выбранного механического оборудования. Кроме горных пород для получения дробленых песков могут оказаться пригодными некоторые разновидности шлаков, кирпичного боя, шамотного легковеса (боя) и других побочных продуктов производства. Однако при использовании последних важно предотвратить попадание в получаемые пески всех тех вредных примесей, которые указаны выше в отношении природных песков. Весьма ценятся облегченные искусственные пески, получаемые измельчением природных и особенно искусственных легких заполнителей. Стоимость дробленого песка выше природного, поэтому его обычно применяют для улучшения природных мелкозернистых песков при ответственных строительных работах. Облегченные пески предназначены для керамзитобетона, вакулитобетона и других легких и особо легких конгломератов.

Крупные заполнители. В искусственных строительных конгломератах различного назначения в качестве крупного неорганического заполнителя применяют гравий и щебень. Тот и другой могут быть природными, добываемыми в соответствующих месторождениях, однако обычно под щебнем понимают не природный, а получаемый специальным дроблением материал.

Природный гравий представляет собой рыхлую смесь скатанных обломков размером от 5 до 70 мм. Горный гравий по сравнению с речным, морским и ледниковым обладает более угловатыми с шероховатой поверхностью обломками и большим количеством пылевато-глинистых примесей. Обломки гравия, обработанные водой, имеют гладкую поверхность, что ухудшает ее сцепление с вяжущим веществом. Лучшей разновидностью гравия считается ледниковый, который менее окатан и имеет более равномерный зерновой состав. Все разновидности гравия (а также природного щебня и дресвы) характеризуются неоднородным петрографическим и минеральным составом, так как в их образовании участвуют разнообразные горные породы и минералы. Поэтому оценка их прочности производится на образцах средних проб с отбором из них зерен слабых и неморозостойких пород и определением их содержания в процентах по массе.

Прочность щебня характеризуется маркой и определяется по его дробимости при сжатии (раздавливании) в металлическом цилиндре. Значительное содержание в гравии выветрелых обломков осадочных и других пород (иногда до 40—60%) ухудшает их механические свойства; присутствие же обломков магматических пород (гранитных валунов) и песчаников повышает его качество. При разработке гравийных отложений производится разделение их по зерновому составу, поскольку другие виды обогащения затруднительны. Встречающиеся в них отдельные крупные глыбы и гальку подвергают дроблению, что хотя и увеличивает стоимость, но при этом повышает качество гравийного материала. Аналогичным путем поступают и при разработке отложений природного щебня, сложенного преимущественно остроугольными обломками размером до 100—150 мм. При содержании в гравии природного песка от 25 до 40% материал называют песчано-гравийной смесью. Применение гравия и песчано-гравийной смеси в производстве строительных материалов производится после предварительных лабораторных проверок прочности, морозостойкости и других показателей качества в зависимости от конструктивных особенностей сооружения.

Щебень — материал, получаемый дроблением горных пород, валунов, гальки или искусственных камней. Для этого применяют различные по конструкции и мощности камнедробильные машины (рис. 9.6), от которых зависит качество получаемой продукции. Лучшей формой щебенок считается кубовидная или тетраэдрическая, размером 5—70 мм. Содержание щебенок лещадной и игловатой форм не должно превышать 10—15% по массе. Одновременно со щебнем в камнедробильных машинах получают более мелкие песчаные (высевки) и пылеватые фракции, которые отделяются от него в процессе грохочения.

На качество щебня установлены требования в соответствующих ГОСТах в зависимости от его назначения (для бетона, асфальтобетона, легкого бетона и др.). Эти требования в основном сходны: по дробимости щебня в металлических цилиндрах при сжатии, морозостойкости, истираемости и сопротивлению удару, зерновому составу, прочности исходной породы (обычно в водонасыщенном состоянии).

Щековая дробилка для изготовления щебня.

Рис. 9.6. Щековая дробилка для изготовления щебня:

Р — маховик; Н — подвижная щека; G — неподвижная щека; А — станина При производстве щебня из горных пород отдают предпочтение магматическим, особенно гранитам, габбро, диабазам, базальтам, а из осадочных — иззестнякам, доломитам, из побочных продуктов производства — шлакам доменного процесса, отходам керамического производства.

Широкое использование имеют легкие крупные заполнители. Природные заполнители получают дроблением пористых известняков, известняков-ракушечников, вулканических и известковых туфов и некоторых других пористых пород; искусственные — путем термической обработки в основном алюмосиликатного сырья с получением керамзитового, аглопоритового гравия или щебня, а также шунгизита, вакулита, вспученного перлита, термозита (шлаковой пемзы) и других пористых материалов с насыпной плотностью от 250 до 1100 кг/м3. Керамзитовый гравий и песок получают путем вспучивания в процессе ускоренного обжига (до 1200°С) гранул из легкоплавкой глины. Вспучивание происходит вследствие выделения газообразных соединений (СО2 и др.) внутри каждой гранулы. Аглопоритовый щебень и песок — путем спекания глинистой породы и отходов от добычи, переработки и сжигания каменных углей на специальных агломерационных металлических решетках с последующим дроблением продуктов обжига. Вакулитовый полый гравий получают путем накатывания слоя малопластичных высокодисперсных пород типа суглинков, супесей, зол ГЭС, сланцевых и других на «ядро» из легкосгораемого органического материала (опилок, торфа, лигнина и др.) и последующего обжига получаемых при этом сырцевых гранул. Сильно поризованные особо легкие щебень и песок получают при нагревании (обжиге) вермикулита, вулканического стекла обсидиана, кремнеземистой горной породы перлита и др. Так, например, при температурах 950—1200°С вода выделяется из перлита и вспученный перлит увеличивается в объеме в 15—20 раз. Получил расширенное применение шунгизит, сырьем для производства которого являются вспучивающиеся шунгитовые сланцы, содержащие до 3% шунгита — углерода особой формы.

Если требуется повышенная прочность, то искусственный заполнитель получают утяжеленный. Для этого из маловспучивающегося глинистого сырья изготовляют керамдор, из регенерированной стекломассы — дорсил и др., качество которых обусловливается специальными требованиями заказчиков-строителей.

Заполнители сильно различаются между собой по прочности. Предел прочности при сжатии образцов, изготовленных из разных заполнителей, изменяется у тяжелых горных пород от 10 до 500 МПа, у легких — от 0,4 до 25 МПа. Принято, чтобы прочность заполнителя превосходила прочность конгломерата на 20—50%, но целесообразнее каждый раз обосновывать минимально допустимую прочность заполнителя по характеристике вяжущего вещества оптимальной структуры.

Для тяжелого бетона марки 300 и выше прочность исходной горной породы в насыщенном водой состоянии должна быть в 2 раза больше этой марки.

В настоящее время прочность крупного заполнителя определяют методом раздавливания его пробы в металлическом цилиндре с вычислением показателя дробимости по формуле Dp =-^-^-100, где.

т 1 — проба щебня (гравия), кг; тг — масса остатка на контрольном сите после просеивания раздробленной в цилиндре пробы щебня (гравия), кг. По дробимости различают щебень (гравий) следующих марок: 1400, 1200, 1000, 800, 600, 400, 300 и 200. В пределах этих марок по дробимости при сжатии в цилиндре установлены допустимые содержания зерен слабых пород, т. е. с прочностью при сжатии в водонасыщенном состоянии образцов менее 20 МПа.

По морозостойкости щебень делится на шесть марок: Мрз 15,25, 100, 150, 200 и 300. Числа марок соответствуют количеству циклов попеременного замораживания и оттаивания образцов, при котором потеря массы крупного заполнителя не превышает 5% (для Мрз 15 и 25 допускается потеря массы до 10%). Следует отметить, что эти требования к качеству щебня относятся в основном при его применении в бетонах. Для других видов ИСК технические требования несколько отличаются. Особое значение придается обоснованию наибольшей крупности зерен и зерновому составу: первое — исходя из размера конструктивного элемента, второе — по предельным значениям, которые даны в табл. 9.5.

Таблица 9.5. Пределы зернового состава крупного заполнителя.

Размер отверстий контрольных сит, мм.

Лтип для фракций с наименьшим размером зерен, мм.

0,5(Д,"" + 0™").

Drmx

1,250™,.

5(3).

10 и более.

ОДНОЙ фракции.

смеси фракций.

Полный остаток на ситах по массе, %.

95—100.

90—100.

40—80.

50—70.

0—10.

Из таблицы следует, что зерновой состав крупного заполнителя зависит от Dmax — наибольшей крупности зерен щебня или гравия и от Anin — наименьшего размера зерен щебня или гравия. При назначении DmM исходят не только из фактического состава материала (размера отверстия сита, на котором полный остаток не превышает 10% навески), но и из характера конструкции или изделия, для которого изготовляют конгломерат с применением крупного заполнителя. Так, например, в случае железобетона наибольшая крупность зерен не должна превышать lU наименьшего расстояния между стержнями арматуры и не более Чг толщины плиты. Аналогичными соображениями руководствуются и в других конструкциях. В общем случае размер заполнителей не должен превышать 0,25—0,35 минимального размера конструкции и не больше 0,65—0,75 минимального расстояния между стержнями арматуры.

По крупности плотный гравий и щебень разделяют на фракции 5—10, 10—20, 20—40 и 40—70 мм просеиванием сухой пробы в количестве 10 кг через стандартный набор сит с размерами отверстий 70, 40, 20, 10 и 5 мм. По крупности пористый гравий и щебень применяют трех фракций: от 5 до 10 мм, от 10 до 20 мм и от 20 до 40 мм. Вместо фракций 5—10 мм в легких бетонах допускается применять фракции 3—10 мм, а вместо фракций 10—20 мм использовать фракции 10—15 мм.

Для всех разновидностей заполнителей имеет важное значение коэффициент размягчения — отношение предела прочности породы в водо-насыщенном состоянии к прочности при сжатии в сухом состоянии, поскольку он косвенно характеризует морозостойкость материала. Его величина для плотных заполнителей должна быть не менее 0,85, а при заполнителях пористых — не менее 0,8 и только в конгломератах теплотехнического назначения этот показатель должен быть не менее 0,7. Во всех случаях требуется учитывать требования последних стандартов на соответствующие разновидности тяжелых и легких заполнителей по показателям их качества.

Кроме зернистых используют заполнители иной формы. Большое распространение в технологии различных ИСК получают волокнистые заполнители, выполняющие в структуре функции армирующего компонента. Волокнистые заполнители направленного (ориентированного) или хаотического расположения увеличивают способность конгломератов к сопротивлению изгибающим и растягивающим нагрузкам. С этой целью используют короткие стальные волокна длиной до 25 мм и диаметром 0,005—0,015 мм, называемые фиброй, стекловолокно, волокна из расплава шлака, керамики, горных пород (например, асбеста, базальтов), которые имеют гораздо большие значения упругости по сравнению с ИСК, например бетоном. Внесение в состав волокнистого заполнителя несколько усложняет технологию ИСК, но приносит эффект в упрочнении конструкций, если только была обоснованно выбрана разновидность волокна. Так, например, обычное стекловолокно сравнительно быстро разрушается в щелочной среде цементного камня, поэтому у нас и за рубежом предложены составы щелочестойких стекловолокон.

В составе некоторых конгломератов, особенно на основе полимерных вяжущих веществ, нередко используют заполнители с частицами пластинчатой формы с образованием своеобразных композиционных материалов. Своеобразным видом «активного заполнителя» может быть и металлическая арматура, например стальная в железобетоне, часто выполняющая функции каркаса в ИСК, если ей придана форма сетки. Направленное расположение арматуры повышает анизотропность получаемого материала (подобно анизотропии кристаллов), что может благоприятствовать механическому упрочнению конструкции. Однако наблюдаются случаи, когда в эксплуатационный период нарушается сцепление вяжущего с арматурой. Тогда такой «заполнитель» становится мало активным, что отрицательно отразится на надежности конструкции в здании или сооружении. Определение разновидности и количества арматуры в теории железобетона производится специальным расчетом.

Во всех случаях необходима периодическая оценка заполнителей на содержание естественных радионуклидов.

Показать весь текст
Заполнить форму текущей работой