ΠŸΠΎΠΌΠΎΡ‰ΡŒ Π² написании студСнчСских Ρ€Π°Π±ΠΎΡ‚
АнтистрСссовый сСрвис

Π›ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹Π΅ уравнСния ΠΏΠ΅Ρ€Π²ΠΎΠ³ΠΎ порядка

Π Π΅Ρ„Π΅Ρ€Π°Ρ‚ΠŸΠΎΠΌΠΎΡ‰ΡŒ Π² Π½Π°ΠΏΠΈΡΠ°Π½ΠΈΠΈΠ£Π·Π½Π°Ρ‚ΡŒ ΡΡ‚ΠΎΠΈΠΌΠΎΡΡ‚ΡŒΠΌΠΎΠ΅ΠΉ Ρ€Π°Π±ΠΎΡ‚Ρ‹

НСизвСстная функция ΠΈ Π΅Π΅ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ входят Π² ΡƒΠΊΠ°Π·Π°Π½Π½ΠΎΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ Π² ΠΏΠ΅Ρ€Π²ΠΎΠΉ стСпСни — Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎ, Ρ‡Ρ‚ΠΎ ΠΈ ΠΎΠ±ΡŠΡΡΠ½ΡΠ΅Ρ‚ Π½Π°Π·Π²Π°Π½ΠΈΠ΅ уравнСния. Полагая, Ρ‡Ρ‚ΠΎ Π‘= Π‘ (Ρ…), послС подстановки Π² Π½Π΅ΠΎΠ΄Π½ΠΎΡ€ΠΎΠ΄Π½ΠΎΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ ΠΏΠΎΠ»ΡƒΡ‡Π°Π΅ΠΌ: Π‘Ρ‚Π°Π»ΠΎ Π±Ρ‹Ρ‚ΡŒ, ΠΎΠ±Ρ‰Π΅Π΅ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ исходного уравнСния ΠΈΠΌΠ΅Π΅Ρ‚ Π²ΠΈΠ΄: ΠŸΠΎΠ΄ΡΡ‚Π°Π½ΠΎΠ²ΠΊΠ° ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ Π² Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ ΠΎΠ±Ρ‰Π΅Π³ΠΎ Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ (18.11) ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΠΊ ΠΎΠΊΠΎΠ½Ρ‡Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠΌΡƒ Π²ΠΈΠ΄Ρƒ Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ Π½Π΅ΠΎΠ΄Π½ΠΎΡ€ΠΎΠ΄Π½ΠΎΠ³ΠΎ уравнСния (18.9): РСшСниС… Π§ΠΈΡ‚Π°Ρ‚ΡŒ Π΅Ρ‰Ρ‘ >

Π›ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹Π΅ уравнСния ΠΏΠ΅Ρ€Π²ΠΎΠ³ΠΎ порядка (Ρ€Π΅Ρ„Π΅Ρ€Π°Ρ‚, курсовая, Π΄ΠΈΠΏΠ»ΠΎΠΌ, ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½Π°Ρ)

ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ 7. Π£Ρ€Π°Π²Π½Π΅Π½ΠΈΠ΅ Π²ΠΈΠ΄Π°.

Π›ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹Π΅ уравнСния ΠΏΠ΅Ρ€Π²ΠΎΠ³ΠΎ порядка.

Π³Π΄Π΅ Ρ€ (Ρ…) ΠΈ q (x) — Π½Π΅ΠΏΡ€Π΅Ρ€Ρ‹Π²Π½Ρ‹Π΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ, называСтся Π»ΠΈΠ½Π΅ΠΉΠ½Ρ‹ΠΌ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹ΠΌ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ΠΌ ΠΏΠ΅Ρ€Π²ΠΎΠ³ΠΎ порядка.

НСизвСстная функция ΠΈ Π΅Π΅ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ входят Π² ΡƒΠΊΠ°Π·Π°Π½Π½ΠΎΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ Π² ΠΏΠ΅Ρ€Π²ΠΎΠΉ стСпСни — Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎ, Ρ‡Ρ‚ΠΎ ΠΈ ΠΎΠ±ΡŠΡΡΠ½ΡΠ΅Ρ‚ Π½Π°Π·Π²Π°Π½ΠΈΠ΅ уравнСния.

Если q (x) s 0, Ρ‚ΠΎ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ (18.9) называСтся Π»ΠΈΠ½Π΅ΠΉΠ½Ρ‹ΠΌ ΠΎΠ΄Π½ΠΎΡ€ΠΎΠ΄Π½Ρ‹ΠΌ; Ссли ΠΆΠ΅ функция q (x) Π½Π΅ Ρ€Π°Π²Π½Π° тоТдСствСнно Π½ΡƒΠ»ΡŽ, Ρ‚ΠΎ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ (18.9) называСтся Π»ΠΈΠ½Π΅ΠΉΠ½Ρ‹ΠΌ Π½Π΅ΠΎΠ΄Π½ΠΎΡ€ΠΎΠ΄Π½Ρ‹ΠΌ.

ΠŸΡƒΡΡ‚ΡŒ Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ΅ ΠΎΠ΄Π½ΠΎΡ€ΠΎΠ΄Π½ΠΎΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅.

Π›ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹Π΅ уравнСния ΠΏΠ΅Ρ€Π²ΠΎΠ³ΠΎ порядка.

соотвСтствуСт Π½Π΅ΠΎΠ΄Π½ΠΎΡ€ΠΎΠ΄Π½ΠΎΠΌΡƒ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ (18.9). ΠœΡ‹ Ρ€Π°ΡΡΠΌΠΎΡ‚Ρ€ΠΈΠΌ Ρ‚Π°ΠΊ Π½Π°Π·Ρ‹Π²Π°Π΅ΠΌΡ‹ΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄ Π²Π°Ρ€ΠΈΠ°Ρ†ΠΈΠΈ постоянной — ΠΌΠ΅Ρ‚ΠΎΠ΄ Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ Π½Π΅ΠΎΠ΄Π½ΠΎΡ€ΠΎΠ΄Π½ΠΎΠ³ΠΎ уравнСния.

  • (18.9), основанный Π½Π° ΠΏΡ€Π΅Π΄Π²Π°Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΌ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΈ ΠΎΠ΄Π½ΠΎΡ€ΠΎΠ΄Π½ΠΎΠ³ΠΎ уравнСния
  • (18.10). Π£Ρ€Π°Π²Π½Π΅Π½ΠΈΠ΅ (18.10) ΠΌΠΎΠΆΠ½ΠΎ Ρ€Π΅ΡˆΠΈΡ‚ΡŒ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ раздСлСния ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹Ρ…:

Π›ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹Π΅ уравнСния ΠΏΠ΅Ρ€Π²ΠΎΠ³ΠΎ порядка.aside class="viderzhka__img" itemscope itemtype="http://schema.org/ImageObject">Π›ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹Π΅ уравнСния ΠΏΠ΅Ρ€Π²ΠΎΠ³ΠΎ порядка.

ΠŸΠΎΡ‚Π΅Π½Ρ†ΠΈΡ€ΡƒΡ, ΠΏΠΎΠ»ΡƒΡ‡Π°Π΅ΠΌ ΠΎΠ±Ρ‰Π΅Π΅ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ уравнСния (18.9): Π³Π΄Π΅ Π‘ = ±Π‘,.

ΠžΠ±Ρ‰Π΅Π΅ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ уравнСния (18.9) ΠΈΡ‰Π΅ΠΌ Π² Π²ΠΈΠ΄Π΅ (18.11), полагая Π‘ Π½ΠΎΠ²ΠΎΠΉ нСизвСстной Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠ΅ΠΉ ΠΎΡ‚ Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚Π° Ρ…:

Π›ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹Π΅ уравнСния ΠΏΠ΅Ρ€Π²ΠΎΠ³ΠΎ порядка.

ΠŸΠΎΠ΄ΡΡ‚Π°Π²ΠΈΠΌ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ (18.11) Π² ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ (18.9) с Ρ‚Π΅ΠΌ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ Π½Π°ΠΉΡ‚ΠΈ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡŽ Π‘ (Ρ…); ΠΈΠΌΠ΅Π΅ΠΌ: Π›ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹Π΅ уравнСния ΠΏΠ΅Ρ€Π²ΠΎΠ³ΠΎ порядка.

ΠΎΡ‚ΠΊΡƒΠ΄Π° послС привСдСния ΠΏΠΎΠ΄ΠΎΠ±Π½Ρ‹Ρ… ΠΏΠΎΠ»ΡƒΡ‡Π°Π΅ΠΌ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ для Π‘ (Ρ…):

Π›ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹Π΅ уравнСния ΠΏΠ΅Ρ€Π²ΠΎΠ³ΠΎ порядка.

Π˜Π½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ уравнСния (18.12) Π΄Π°Π΅Ρ‚ Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ для Π‘ (Ρ…):

Π›ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹Π΅ уравнСния ΠΏΠ΅Ρ€Π²ΠΎΠ³ΠΎ порядка.

подстановка ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ Π² Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ ΠΎΠ±Ρ‰Π΅Π³ΠΎ Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ (18.11) ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΠΊ ΠΎΠΊΠΎΠ½Ρ‡Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠΌΡƒ Π²ΠΈΠ΄Ρƒ Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ Π½Π΅ΠΎΠ΄Π½ΠΎΡ€ΠΎΠ΄Π½ΠΎΠ³ΠΎ уравнСния (18.9):

Π›ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹Π΅ уравнСния ΠΏΠ΅Ρ€Π²ΠΎΠ³ΠΎ порядка.

ΠžΡ‚ΠΌΠ΅Ρ‚ΠΈΠΌ, Ρ‡Ρ‚ΠΎ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Π½Π΅Π»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ уравнСния приводятся ΠΊ Π»ΠΈΠ½Π΅ΠΉΠ½Ρ‹ΠΌ уравнСниям ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΠΌΠΈ Π·Π°ΠΌΠ΅Π½Π°ΠΌΠΈ нСизвСстной Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Ρƒ{Ρ…). К Ρ‚Π°ΠΊΠΎΠ²Ρ‹ΠΌ Π½Π΅Π»ΠΈΠ½Π΅ΠΉΠ½Ρ‹ΠΌ уравнСниям относится ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ Π‘Π΅Ρ€Π½ΡƒΠ»Π»ΠΈ:

Π›ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹Π΅ уравнСния ΠΏΠ΅Ρ€Π²ΠΎΠ³ΠΎ порядка.

Π³Π΄Π΅ Ρ€ ΠΈ q — Π½Π΅ΠΏΡ€Π΅Ρ€Ρ‹Π²Π½Ρ‹Π΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ, Π° ΠΏ — Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ постоянноС число. ΠŸΡ€ΠΈ ΠΏ = 0 ΠΈΠΌΠ΅Π΅ΠΌ Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ΅ Π½Π΅ΠΎΠ΄Π½ΠΎΡ€ΠΎΠ΄Π½ΠΎΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅, Π° ΠΏΡ€ΠΈ ΠΏ = 1 — Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ΅ ΠΎΠ΄Π½ΠΎΡ€ΠΎΠ΄Π½ΠΎΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ Π›ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹Π΅ уравнСния ΠΏΠ΅Ρ€Π²ΠΎΠ³ΠΎ порядка.

ΠŸΡƒΡΡ‚ΡŒ /I * 0, ΠΏ *? 1. Π’Π²Π΅Π΄Π΅ΠΌ Π½ΠΎΠ²ΡƒΡŽ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡŽ.

Π›ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹Π΅ уравнСния ΠΏΠ΅Ρ€Π²ΠΎΠ³ΠΎ порядка.

Ρ‚ΠΎΠ³Π΄Π° ПодСлив ΠΎΠ±Π΅ части уравнСния (18.14) Π½Π° ynt ΠΏΠΎΠ»ΡƒΡ‡Π°Π΅ΠΌ.

Π›ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹Π΅ уравнСния ΠΏΠ΅Ρ€Π²ΠΎΠ³ΠΎ порядка.

УмноТая ΠΎΠ±Π΅ части этого уравнСния Π½Π° (I — я), с ΡƒΡ‡Π΅Ρ‚ΠΎΠΌ Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠΉ для Π½ΠΎΠ²ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ z ΠΈ Π΅Π΅ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ ΠΏΠΎΠ»ΡƒΡ‡Π°Π΅ΠΌ Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½ΠΎΠ΅ Π½Π΅ΠΎΠ΄Π½ΠΎΡ€ΠΎΠ΄Π½ΠΎΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ нСизвСстной Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ z (x):

Π›ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹Π΅ уравнСния ΠΏΠ΅Ρ€Π²ΠΎΠ³ΠΎ порядка.

Π’ ΡΡ‚ΠΎΠΌ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΈ, ΠΌΠ΅Ρ‚ΠΎΠ΄ Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ Π½Π°ΠΌ извСстСн, функция z (x) связана с ΠΈΡΠΊΠΎΠΌΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠ΅ΠΉ Ρƒ (Ρ…) ΡΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ΠΌ (18.15).

Рассмотрим Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ Π½Π΅ΠΎΠ΄Π½ΠΎΡ€ΠΎΠ΄Π½Ρ‹Ρ… ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ ΠΏΠ΅Ρ€Π²ΠΎΠ³ΠΎ порядка Π½Π° ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π°Ρ….

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ 8. Найти ΠΎΠ±Ρ‰Π΅Π΅ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ уравнСния Ρƒ' + Ρ…2Ρƒ = Ρ…2.

РСшСниС. Π­Ρ‚ΠΎ Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ΅ Π½Π΅ΠΎΠ΄Π½ΠΎΡ€ΠΎΠ΄Π½ΠΎΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ ΠΏΠ΅Ρ€Π²ΠΎΠ³ΠΎ порядка. Π‘Π½Π°Ρ‡Π°Π»Π° Ρ€Π΅ΡˆΠΈΠΌ ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰Π΅Π΅ Π΅ΠΌΡƒ ΠΎΠ΄Π½ΠΎΠΎΠΎΠ΄Π½ΠΎΠ΅ ΡƒΠΎΠ°Π²Π½Π΅Π½ΠΈΠ΅.

Π›ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹Π΅ уравнСния ΠΏΠ΅Ρ€Π²ΠΎΠ³ΠΎ порядка.

РаздСляя ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹Π΅, ΠΏΠΎΠ»ΡƒΡ‡Π°Π΅ΠΌ:

Π£.

Π£.

Π˜Π½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Π»Π΅Π²ΠΎΠΉ части этого уравнСния ΠΏΠΎ Ρƒ ΠΈ ΠΏΡ€Π°Π²ΠΎΠΉ — ΠΏΠΎ Ρ… даст Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ ΠΎΠ΄Π½ΠΎΡ€ΠΎΠ΄Π½ΠΎΠ³ΠΎ уравнСния:

Π›ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹Π΅ уравнСния ΠΏΠ΅Ρ€Π²ΠΎΠ³ΠΎ порядка.

Полагая Π‘ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠ΅ΠΉ ΠΎΡ‚Ρ… ΠΈ ΠΏΠΎΠ΄ΡΡ‚авляя Π½Π°ΠΉΠ΄Π΅Π½Π½ΠΎΠ΅ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ Π² ΠΈΡΡ…ΠΎΠ΄Π½ΠΎΠ΅ Π½Π΅ΠΎΠ΄Π½ΠΎΡ€ΠΎΠ΄Π½ΠΎΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅, ΠΏΠΎΠ»ΡƒΡ‡Π°Π΅ΠΌ послС привСдСния ΠΏΠΎΠ΄ΠΎΠ±Π½Ρ‹Ρ… Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½ΠΎΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ для Π‘ (Ρ…):

Π›ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹Π΅ уравнСния ΠΏΠ΅Ρ€Π²ΠΎΠ³ΠΎ порядка.

ПослС интСгрирования этого уравнСния ΠΈ ΠΏΠΎΠ΄ΡΡ‚Π°Π½ΠΎΠ²ΠΊΠΈ Π² ΡƒΠΆΠ΅ Π½Π°ΠΉΠ΄Π΅Π½Π½ΠΎΠ΅ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ ΠΎΠ΄Π½ΠΎΡ€ΠΎΠ΄Π½ΠΎΠ³ΠΎ уравнСния ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠΌ искомоС Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ исходного уравнСния:

Π›ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹Π΅ уравнСния ΠΏΠ΅Ρ€Π²ΠΎΠ³ΠΎ порядка.

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ 9. Ρ…Ρƒ' + Ρƒ = с*.

РСшСниС. ΠžΠΏΡΡ‚ΡŒ Π½Π°Ρ‡ΠΈΠ½Π°Π΅ΠΌ с ΠΎΠ΄Π½ΠΎΡ€ΠΎΠ΄Π½ΠΎΠ³ΠΎ уравнСния.

Π›ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹Π΅ уравнСния ΠΏΠ΅Ρ€Π²ΠΎΠ³ΠΎ порядка.

РаздСляя ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹Π΅, ΠΏΠΎΠ»ΡƒΡ‡Π°Π΅ΠΌ послС интСгрирования Π΅Π³ΠΎ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅:

Π›ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹Π΅ уравнСния ΠΏΠ΅Ρ€Π²ΠΎΠ³ΠΎ порядка.

Полагая, Ρ‡Ρ‚ΠΎ Π‘= Π‘ (Ρ…), послС подстановки Π² Π½Π΅ΠΎΠ΄Π½ΠΎΡ€ΠΎΠ΄Π½ΠΎΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ ΠΏΠΎΠ»ΡƒΡ‡Π°Π΅ΠΌ: Π›ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹Π΅ уравнСния ΠΏΠ΅Ρ€Π²ΠΎΠ³ΠΎ порядка. Π‘Ρ‚Π°Π»ΠΎ Π±Ρ‹Ρ‚ΡŒ, ΠΎΠ±Ρ‰Π΅Π΅ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ исходного уравнСния ΠΈΠΌΠ΅Π΅Ρ‚ Π²ΠΈΠ΄:

Π›ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹Π΅ уравнСния ΠΏΠ΅Ρ€Π²ΠΎΠ³ΠΎ порядка.

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ 10. Ρƒ'+ Ρ…Ρƒ = Ρ…Ρƒ*.

РСшСниС. Π”Π°Π½Π½ΠΎΠ΅ Π½Π΅Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ прСдставляСт собой ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ Π‘Π΅Ρ€Π½ΡƒΠ»Π»ΠΈ ΠΏΡ€ΠΈ ΠΏ- 3. Π—Π°ΠΌΠ΅Π½ΠΎΠΉ искомой Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ z = y~2 согласно ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ (18.16) ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠΌ Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ΅ Π½Π΅ΠΎΠ΄Π½ΠΎΡ€ΠΎΠ΄Π½ΠΎΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ Π³ (*):

Π›ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹Π΅ уравнСния ΠΏΠ΅Ρ€Π²ΠΎΠ³ΠΎ порядка.

По Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ (18.12) ΠΏΠΎΠ»ΡƒΡ‡Π°Π΅ΠΌ ΠΎΠ±Ρ‰Π΅Π΅ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ этого уравнСния:

Π›ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹Π΅ уравнСния ΠΏΠ΅Ρ€Π²ΠΎΠ³ΠΎ порядка.

Π’Π΅ΠΏΠ΅Ρ€ΡŒ, выполняя ΠΎΠ±Ρ€Π°Ρ‚Π½ΡƒΡŽ Π·Π°ΠΌΠ΅Π½Ρƒ Ρƒ = ±/yfz, ΠΏΠΎΠ»ΡƒΡ‡Π°Π΅ΠΌ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ исходного Π½Π΅Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ³ΠΎ уравнСния:

Π›ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹Π΅ уравнСния ΠΏΠ΅Ρ€Π²ΠΎΠ³ΠΎ порядка.
ΠŸΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ вСсь тСкст
Π—Π°ΠΏΠΎΠ»Π½ΠΈΡ‚ΡŒ Ρ„ΠΎΡ€ΠΌΡƒ Ρ‚Π΅ΠΊΡƒΡ‰Π΅ΠΉ Ρ€Π°Π±ΠΎΡ‚ΠΎΠΉ