Функции варолиева моста
Функционально самостоятельными структурами среднего мозга являются бугры четверохолмия. Верхние из них участвуют в деятельности первичных подкорковых центров зрительного анализатора, нижние — слухового. В них происходит первичное переключение зрительной и слуховой информации. Основная функция бугров четверохолмия — организация реакции настораживания и так называемых старт-рефлексов на внезапные… Читать ещё >
Функции варолиева моста (реферат, курсовая, диплом, контрольная)
Варолиев мост выполняет двигательные, сенсорные, интегративные и проводниковые функции. Важные функции моста связаны с наличием в нем ядер черепных нервов.
V пара — тройничный нерв (смешанный). Двигательное ядро нерва иннервирует жевательные мышцы, мышцы небной занавески и мышцы, напрягающие барабанную перепонку. Чувствительное ядро получает афферентные аксоны от рецепторов кожи лица, слизистой оболочки носа, зубов, 2/3 языка, надкостницы костей черепа, конъюнктивы глазного яблока.
VI пара — отводящий нерв (двигательный), иннервирует прямую наружную мышцу, отводящую глазное яблоко кнаружи.
VII пара — лицевой нерв (смешанный), иннервирует мимические мышцы лица, подъязычную и подчелюстную слюнные железы, передает информацию от вкусовых рецепторов передней части языка.
VIII пара — преддверно-улитковый (чувствительный) нерв. Улитковая часть этого нерва заканчивается в мозге в улитковых ядрах; преддверная — в треугольном ядре, ядре Дейтерса, ядре Бехтерева. Здесь происходит первичный анализ вестибулярных раздражений, их силы и направленности.
Через мост проходят все восходящие и нисходящие пути, связывающие мост с мозжечком, спинным мозгом, корой больших полушарий и другими структурами центральной нервной системы. По мостомозжечковым проводящим путям через мост осуществляется контролирующее влияние коры полушарий головного мозга на мозжечок. Кроме того, в мосте располагаются центры, регулирующие активность центров вдоха и выдоха, расположенных в продолговатом мозгу.
Мозжечок, или «малый мозг», располагается сзади от моста и продолговатого мозга. Он состоит из средней, непарной, филогенетически старой части — червя — и парных полушарий, свойственных лишь млекопитающим. Полушария мозжечка развиваются параллельно с корой больших полушарий и достигают у человека значительных размеров. Червь с нижней стороны расположен глубоко между полушариями; верхняя его поверхность переходит в полушария постепенно (рис. 11.6).
Рис. 11.6. Строение мозжечка (А — вид сбоку, Б — вертикальный разрез):
А: 1 — ножка мозга; 2 — верхняя поверхность полушария мозжечка; 3 — гипофиз; 4 — белые пластинки; 5 — мост; 6 — зубчатое ядро; 7 — белое вещество; 8 — продолговатый мозг; 9 — ядро оливы; 10 — нижняя поверхность полушария мозжечка; 11 — спинной мозг.
Б: 1 — верхняя поверхность полушария мозжечка; 2 — белые пластинки; 3 — червь; 4 — белое вещество; 5 — шатер; 6 — горизонтальная щель; 7 — нижняя поверхность полушария мозжечка В целом мозжечок имеет обширные эфферентные связи со всеми двигательными системами стволовой части мозга: кортикоспинальной, руброспинальной, ретикулоспинальной и вестибулоспинальной. Не менее разнообразными являются и афферентные входы мозжечка.
Вся поверхность мозжечка разделяется глубокими бороздами на доли. В свою очередь, каждая доля параллельными бороздками разделяется на извилины; группы извилин формируют дольки мозжечка. Полушария и червь мозжечка состоят из лежащего на периферии серого вещества — коры — и расположенного глубже белого вещества, в котором заложены скопления нервных клеток, образующие ядра мозжечка — ядра шатра, шаровидные, пробковидные и зубчатые.
Кора мозжечка имеет специфическое, нигде в ЦНС не повторяющееся строение. Все клетки коры мозжечка являются тормозящими, за исключением зернистых клеток самого глубокого слоя, которые оказывают возбуждающее воздействие.
Деятельность нейрональной системы коры мозжечка сводится к торможению нижележащих ядер, что предотвращает длительную циркуляцию возбуждения по нейронным цепям. Любой возбуждающий импульс, приходя в кору мозжечка, превращается в торможение за время порядка 100 мс. Так происходит как бы автоматическое стирание предшествующей информации, которое позволяет коре мозжечка участвовать в регуляции быстрых движений.
Функционально мозжечок можно разделить на три части: архиоцеребеллум (древний мозжечок), палеоцеребеллум (старый мозжечок) и неоцеребеллум (новый мозжечок). Архиоцеребеллум является вестибулярным регулятором, его повреждения приводят к нарушению равновесия. Функция палеоцеребеллума — взаимная координация позы и целенаправленного движения, а также коррекция выполнения относительно медленных движений по механизму обратной связи. При повреждении структур этой части мозжечка человеку трудно стоять и ходить, особенно в темноте, при отсутствии зрительной коррекции. Неоцеребеллум участвует в программировании сложных движений, выполнение которых идет без использования механизма обратных связей. В итоге возникает целенаправленное движение, выполняемое с большой скоростью, например игра на фортепиано. При нарушении структур неоцеребеллума нарушаются сложные последовательности движений, они становятся аритмичны и замедлены.
Мозжечок участвует в регуляции движений, делая их плавными, точными, соразмерными, обеспечивая соответствие между интенсивностью мышечного сокращения и задачей выполняемого движения. Мозжечок оказывает влияние также на ряд вегетативных функций, например, желудочно-кишечного тракта, на уровень кровяного давления, на состав крови.
Долгое время мозжечок считался структурой, ответственной исключительно за координацию движений. Сегодня признано его участие в процессах восприятия, когнитивной и речевой деятельности.
Средний мозг расположен над мостом и представлен ножками мозга и четверохолмием. Ножки мозга состоят из основания и покрышки, между которыми находится черная субстанция, содержащая сильно пигментированные клетки. В покрышке мозга располагаются ядра блокового (IV пара) и глазодвигательного (III пара) нервов. Полость среднего мозга представлена узким каналом — сильвиевым водопроводом, который соединяет III и IV мозговые желудочки. Длина среднего мозга у взрослого человека около 2 см, вес — 26 г. В процессе эмбрионального развития средний мозг формируется из среднего мозгового пузыря, боковые выпячивания которого перемещаются вперед и образуют сетчатку глаза, структурно и функционально представляющая собой вынесенный на периферию нервный центр среднего мозга.
Наиболее крупными ядрами среднего мозга являются красные ядра, черпая субстанция, ядра черепных (глазодвигательного и блокового) нервов и ядра ретикулярной формации. Через средний мозг проходят восходящие пути к таламусу, большим полушариям и мозжечку и нисходящие пути к продолговатому и спинному мозгу.
Средний мозг выполняет проводниковую, двигательную и рефлекторную функции.
Проводниковая функция среднего мозга заключается в том, что через него проходят все восходящие пути к вышележащим отделам: таламусу (медиальная петля, спиноталамический путь), большому мозгу и мозжечку. Нисходящие пути идут через средний мозг к продолговатому и спинному мозгу. Это пирамидный путь, корково-мостовые волокна, руброретикуло-спинальный путь.
Двигательная функция среднего мозга реализуется за счет ядер блокового нерва, ядер глазодвигательного нерва, красного ядра, черной субстанции.
Красные ядра, получая информацию от двигательной зоны коры головного мозга, подкорковых ядер и мозжечка о готовящемся движении и состоянии опорно-двигательного аппарата, регулируют тонус мускулатуры, подготавливая его уровень к намечающемуся произвольному движению. Черпая субстанция связана с лежащими в основании полушарий переднего мозга базальными ганглиями — полосатым телом и бледным шаром — и регулирует акты жевания, глотания (их последовательность), обеспечивает тонкую регуляцию пластического тонуса мышц и точные движения пальцев кисти руки, например, при письме. Нейроны ядер глазодвигательного и блокового нервов регулируют движение глаза вверх, вниз, наружу, к носу и вниз к углу носа. Нейроны добавочного ядра глазодвигательного нерва (ядро Якубовича) регулируют просвет зрачка и кривизну хрусталика. Со средним мозгом связано также осуществление выпрямительных и статокинетических рефлексов. Выпрямительные рефлексы состоят из двух фаз: подъема головы и последующего подъема туловища. Первая фаза осуществляется вследствие рефлекторных влияний рецепторов вестибулярного аппарата и кожи, вторая — связана с проприорецепторами мышц шеи и туловища. Статокинетические рефлексы направлены на возвращение тела в исходное положение при перемещении тела в пространстве, при вращении.
Функционально самостоятельными структурами среднего мозга являются бугры четверохолмия. Верхние из них участвуют в деятельности первичных подкорковых центров зрительного анализатора, нижние — слухового. В них происходит первичное переключение зрительной и слуховой информации. Основная функция бугров четверохолмия — организация реакции настораживания и так называемых старт-рефлексов на внезапные, еще не распознанные, зрительные (верхнее двухолмие) или звуковые (нижнее двухолмие) сигналы. Активация среднего мозга при действии настораживающих факторов через гипоталамус приводит к повышению тонуса мышц, учащению сокращений сердца; происходит подготовка к избеганию или к оборонительной реакции. Кроме того, при нарушении четверохолмного рефлекса человек не может быстро переключаться с одного вида движения на другое.
Промежуточный мозг располагается под мозолистым телом и сводом, срастаясь по бокам с полушариями головного мозга. К нему относятся: таламус (зрительные бугры), гипоталамус (подбугорная область), эпиталамус (надбугорная область) и метаталамус (забугорная область) (рис. 11.7). Полостью промежуточного мозга является III желудочек мозга.
Рис. 11.7. Структуры, образующие ствол мозга (сагиттальный разрез):
1 — продолговатый мозг; 2 — мост; 3 — ножки мозга; 4 — таламус; 5 — гипофиз; 6 — проекция ядер подбугорной области; 7 — мозолистое тело; 8 — эпифиз; 9 — бугорки четверохолмия; 10 — мозжечок.
Эпиталамус включает в себя железу внутренней секреции — эпифиз (шишковидное тело). В темноте она вырабатывает гормон мелатонин, который участвует в организации суточного ритма организма, влияет на регуляцию многих процессов, в частности на рост скелета и скорость полового созревания (см. Эндокринная система).
Метаталамус представлен наружными и срединными коленчатыми телами. Наружное коленчатое тело является подкорковым центром зрения, его нейроны по-разному реагируют на цветовые раздражения, включение, выключение света, т. е. могут выполнять детекторную функцию.
Срединное коленчатое тело — подкорковый, таламический центр слуха. Эфферентные пути от медиальных коленчатых тел идут в височную долю коры головного мозга, достигая там первичной слуховой зоны.
Таламус, или зрительный бугор, — парный орган яйцевидной формы, передняя часть которого заострена (передний бугорок), а задняя расширенная часть (подушка) нависает над коленчатыми телами. Срединная поверхность таламуса обращена в полость III желудочка мозга.
Таламус называют «коллектором чувствительности», так как к нему сходятся афферентные (чувствительные) пути от всех рецепторов, кроме обонятельных. В ядрах таламуса происходит переключение информации, поступающей от различных видов рецепторов, на начинающиеся здесь таламокортикальные пути, обращенные к коре головного мозга.
Главной функцией таламуса является интеграция (объединение) всех видов чувствительности. Для анализа внешней среды недостаточно сигналов от отдельных рецепторов. В таламусе происходит сопоставление информации, получаемой по различным каналам, и оценка ее биологического значения. В зрительном бугре насчитывается около 40 пар ядер, которые подразделяются на специфические (на нейронах этих ядер заканчиваются восходящие афферентные пути), неспецифические (ядра ретикулярной формации) и ассоциативные.
Отдельные нейроны специфических ядер таламуса возбуждаются рецепторами только своего типа. От специфических ядер информация о характере сенсорных стимулов поступает в строго определенные участки III-IV слоев коры головного мозга (соматотопическая локализация). Нарушение функции специфических ядер приводит к выпадению конкретных видов чувствительности, так как ядра таламуса, как и кора головного мозга, имеют соматотопическую локализацию. К специфическим ядрам таламуса идут сигналы от рецепторов кожи, глаз, уха, мышечной системы. Сюда же поступают сигналы от интерорецепторов зон проекции блуждающего и чревного нервов, гипоталамуса.
Нейроны неспецифических ядер образуют свои связи по сетчатому типу. Их аксоны поднимаются в кору головного мозга и контактируют со всеми ее слоями, образуя не локальные, а диффузные связи. К неспецифическим ядрам поступают связи из ретикулярной формации ствола мозга, гипоталамуса, лимбической системы, базальных ганглиев, специфических ядер таламуса. Усиление активности неспецифических ядер вызывает снижение активности коры головного мозга (развитие сонного состояния).
Сложное строение таламуса, наличие в нем взаимосвязанных специфических, неспецифических и ассоциативных ядер позволяет ему организовывать такие двигательные реакции, как сосание, жевание, глотание, смех, обеспечивать связь вегетативных и двигательных актов.
Через ассоциативные ядра таламус связан со всеми двигательными ядрами подкорки — полосатым телом, бледным шаром, гипоталамусом и с ядрами среднего и продолговатого мозга. Таламус является центром организации и реализации инстинктов, влечений, эмоций. Возможность получать информацию о состоянии множества систем организма позволяет таламусу участвовать в регуляции и определении функционального состояния организма в целом.
Гипоталамус (подбугорье) — структура промежуточного мозга, входящая в лимбическую систему и организующая эмоциональные, поведенческие, гомеостатические реакции организма. Гипоталамус имеет большое число нервных связей с корой головного мозга, подкорковыми узлами, зрительным бугром, средним мозгом, мостом, продолговатым и спинным мозгом. Ядра гипоталамуса имеют мощное кровоснабжение, его капилляры легко проницаемы для высокомолекулярных белковых соединений, что объясняет высокую чувствительность гипоталамуса к гуморальным сдвигам.
У человека гипоталамус окончательно созревает к 13−14 годам, когда заканчивается формирование гипоталамо-гипофизарных нейросекреторных связей. За счет мощных афферентных связей с обонятельным мозгом, базальными ганглиями, таламусом, гиппокампом, корой головного мозга гипоталамус получает информацию о состоянии практически всех структур мозга. В то же время гипоталамус посылает информацию к таламусу, ретикулярной формации, вегетативным центрам ствола мозга и спинного мозга.
Нейроны гипоталамуса имеют особенности, которые и определяют специфику функций самого гипоталамуса.
К ним относятся отсутствие гематоэнцефалического барьера между нейронами и кровью, высокая чувствительность нейронов гипоталамуса к составу омывающей их крови и способность к секреции гормонов и нейромедиаторов. Это позволяет гипоталамусу воздействовать на вегетативные функции организма гуморальным и нервным путями.
В целом гипоталамус выполняет регуляцию функций нервной и эндокринной систем, в нем располагаются центры гомеостаза, теплорегуляции, голода и насыщения, жажды и ее удовлетворения, полового поведения, страха, ярости. Особое место в функциях гипоталамуса занимает регуляция деятельности гипофиза. В гипоталамусе и гипофизе образуются нейрорегуляторные вещества — энкефалины, Эндорфины, обладающие морфиноподобным действием и способствующие снижению стресса.
Нейроны ядер передней группы гипоталамуса продуцируют вазопрессин, или антидиуретический гормон (АДГ), окситоцин и другие гормоны, которые по аксонам попадают в заднюю долю гипофиза — нейрогипофиз. Нейроны ядер срединной группы гипоталамуса продуцируют так называемые рилизинг-факторы, стимулирующие (либерины) и ингибирующие (статины) активность передней доли гипофиза — аденогипофиз, в котором образуются соматотропный, тиреотропный и другие гормоны (см. Эндокринная система). Нейроны гипоталамуса также обладают функцией детектора гомеостаза: реагируют на изменения температуры крови, электролитного состава и осмотического давления плазмы, количества и состав гормонов крови. Гипоталамус принимает участие в осуществлении половой функции и половом созревании, в регуляции цикла «бодрствование — сон»: задние отделы гипоталамуса активизируют бодрствование, стимуляция передних вызывает сон, повреждение гипоталамуса может вызвать так называемый летаргический сон.
Конечный мозг является наиболее молодым в филогенетическом отношении. Он состоит из двух полушарий, каждое из которых представлено плащом, обонятельным мозгом и базальными или подкорковыми ганглиями (ядрами). Длина полушарий в среднем — 17 см, высота — 12 см. Полостью конечного мозга являются боковые желудочки, находящиеся в каждом из полушарий. Полушария головного мозга отделены друг от друга продольной щелью головного мозга и соединяются при помощи мозолистого тела, передней и задней спаек и спайки свода. Мозолистое тело состоит из поперечных волокон, которые в латеральном направлении идут в полушария, образуя лучистость мозолистого тела.
Обонятельный мозг представлен обонятельными луковицами, обонятельным бугорком, прозрачной перегородкой и прилежащими областями коры (препериформной, периамигдалярной и диагональной). Это меньшая часть конечного мозга, он обеспечивает функцию первого органа чувств, появившегося у живых существ, — функцию обоняния и, кроме того, входит в состав лимбической системы. Повреждение структуры лимбической системы вызывает глубокое нарушение эмоций и памяти.
Базальные ганглии (ядра серого вещества) расположены в глубине больших полушарий. Они составляют примерно 3% их объема. Базальные ганглии образуют многочисленные связи как между структурами, входящими в их состав, так и другими отделами мозга (корой больших полушарий, таламусом, черной субстанцией, красным ядром, мозжечком, двигательными нейронами спинного мозга). К базальным ганглиям относятся сильно вытянутое в длину и изогнутое хвостатое ядро и заложенное в толще белого вещества чечевицеобразное ядро. Двумя белыми пластинками оно подразделяется на скорлупу и бледный шар. Вместе хвостатое ядро и скорлупа носят название полосатого тела, связаны анатомически и характеризуются чередованием белого и серого вещества (рис. 11.8).
Рис. 11.8. Базальные ганглии.
Полосатое тело принимает участие в организации и регуляции движений и обеспечении перехода одного вида движения в другое. Стимуляция хвостатого ядра тормозит восприятие зрительной, слуховой и других видов сенсорной информации, угнетает активность коры, подкорки, безусловные рефлексы (пищевой, оборонительный и др.) и выработку условных рефлексов, приводит к наступлению сна. При поражении полосатого тела наблюдается выпадепие памяти на события, предшествующие травме. Двустороннее повреждение полосатого тела побуждает к стремлению движения вперед, одностороннее — приводит к манежным движениям (ходьба по кругу). С нарушением функций полосатого тела связывают заболевание нервной системы — хорею (непроизвольные движения лицевых мышц, мышц рук и туловища). Скорлупа обеспечивает организацию пищевого поведения. При ее поражении наблюдаются трофические нарушения кожи, а ее раздражение вызывает слюноотделение и изменение дыхания. Функции бледного шара заключаются в провоцировании ориентировочной реакции, движения конечностей, пищевого поведения (жевание, глотание).
Плащ, или кора больших полушарий, — пластинка серого вещества, отделенная от полости желудочков белым веществом, которое содержит огромное количество нервных волокон, подразделяемых на три группы:
- 1. Пути, соединяющие различные отделы коры головного мозга внутри одного полушария, — ассоциативные пути. Выделяют короткие, или дугообразные, ассоциативные волокна, связывающие две лежащие рядом извилины, и длинные — протягивающиеся из одной доли в другую, оставаясь в пределах одного полушария.
- 2. Комиссуральные, или спаечные, волокна связывают кору обоих полушарий. Самой большой комиссурой головного мозга является мозолистое тело.
- 3. Проекционные пути связывают кору головного мозга с периферией. Существуют центробежные (эфферентные, двигательные) волокна, несущие нервные импульсы из коры на периферию, и центростремительные (афферентные, чувствительные) волокна, несущие импульсы с периферии в кору больших полушарий.
Кора больших полушарий является высшим отделом ЦНС. Она обеспечивает совершенную организацию поведения животных на основе врожденных и приобретенных в онтогенезе функций. Она делится на древнюю (archicortex), старую (paleocortex) и новую (neocortex). Древняя кора участвует в обеспечении обоняния и взаимодействия различных систем мозга. Старая кора включает поясную извилину, гиппокамп и участвует в реализации врожденных рефлексов и эмоционально-мотивационной сферы. Новая кора представлена основной частью коры больших полушарий головного мозга и осуществляет высший уровень координации работы мозга и формирования сложных форм поведения. Наибольшее развитие функций новой коры отмечается у человека, ее толщина во взрослом возрасте колеблется от 1,5 до 4,5 мм и максимальна в передней центральной извилине.