Помощь в написании студенческих работ
Антистрессовый сервис

Научная новизна и значимость проекта

РефератПомощь в написанииУзнать стоимостьмоей работы

Продукты фотосинтеза, в данный момент излишние, сохраняются в форме различных запасных веществ: крахмала, гликогена, других полисахаридов, липидов. Запасание липидов больше свойственно морским формам (особенно планктонным диатомовым, которые за счёт масла держатся на плаву со своим тяжёлым панцирем), а запасание полисахаридов (включая крахмал и гликоген) больше свойственно пресноводным. Клетки… Читать ещё >

Научная новизна и значимость проекта (реферат, курсовая, диплом, контрольная)

Водоросли — группа организмов различного происхождения, объединённых следующими признаками: наличие хлорофилла и фотоавтотрофного питания; у многоклеточных — отсутствие чёткой дифференцировки тела (называемого слоевищем, или талломом) на органы, отсутствие ярко выраженной проводящей системы. Сюда относятся пять-шесть (в зависимости от классификации) отделов эукариот, многие из которых не связаны общим происхождением. Также к водорослям часто относят сине-зелёные водоросли, являющиеся прокариотами. Традиционно водоросли причисляются к растениям. В современной систематике есть тенденция к выделению их в отдельный таксон или даже несколько отдельных царств.

Некоторые водоросли способны к гетеротрофии (питанию готовой органикой), как осмотрофной или адсорбтивной (поверхностью клетки), так и путём заглатывания через клеточный рот (эвглены, динофитовые).

Размеры водорослей колеблются от долей микрометра (кокколитофориды и некоторые диатомовые) до 40 м (макроцистис). Среди многоклеточных водорослей наряду с крупными есть микроскопические (например, спороносная стадия ламинариевых). Таллом бывает как одноклеточный, так и многоклеточный. Среди одноклеточных есть колониальные формы, когда отдельные клетки тесно связаны между собой (соединены стенками или погружены в общую слизь, иногда соединены цитоплазматическими выростами).

Цитология.

Клетки водорослей — вполне типичные для эукариот. Очень похожи на клетки наземных растений (мхов, плаунов, папоротникообразных, покрытосеменных и цветковых). Основные отличия — на биохимическом уровне (различные фотосинтезирующие и маскирующие пигменты, запасающие вещества, основы клеточной стенки и т. д.) и в цитокинезе (процессе деления клетки).

Фотосинтезирующие (и «маскирующие» их) пигменты находятся в особых пластидах — хлоропластах. Хлоропласт имеет две (красные, зелёные, харовые водоросли), три (эвглены, динофлагелляты) или четыре (охрофитовые водоросли) мембраны. Также он имеет собственный сильно редуцированный генетический аппарат, что позволяет предположить его симбиогенез (происхождение от захваченной прокариоты). Внутренняя мембрана выпячивается внутрь, образуя складки — тилакоиды, собранные в стопки — ламеллы: монотилакоидные у красных и сине-зелёных, двух — и больше у зелёных и харовых, трёхтилакоидные у остальных. На тилакоидах, собственно, и расположены пигменты. Хлоропласты у водорослей имеют различную форму (мелкие дисковидные, спиралевидные, чашевидные, звёздчатые и т. д.).

У многих в хлоропласте имеются плотные образования — пиреноиды.

Продукты фотосинтеза, в данный момент излишние, сохраняются в форме различных запасных веществ: крахмала, гликогена, других полисахаридов, липидов. Запасание липидов больше свойственно морским формам (особенно планктонным диатомовым, которые за счёт масла держатся на плаву со своим тяжёлым панцирем), а запасание полисахаридов (включая крахмал и гликоген) больше свойственно пресноводным. Клетки водорослей (за исключением амёбоидного типа) покрыты клеточной стенкой и/или клеточной оболочкой. Стенка находится снаружи мембраны клетки, обычно содержит структурный компонент (например, целлюлозу) и аморфный матрикс (например, пектиновые или агаровые вещества); также в ней могут быть дополнительные слои (например, спорополлениновый слой у хлореллы). Клеточная оболочка представляет из себя или внешний кремнийорганический панцирь (у диатомей и некоторых других охрофитовых), или уплотнённый верхний слой цитоплазмы (плазмалемму), в котором могут быть дополнительные структуры, например, пузырьки, пустые или с целлюлозными пластинками (своеобразный панцирь, тека, у динофлагеллятов). Если клеточная оболочка пластичная, клетка может быть способна к так называемому метаболическому движению — скольжению за счёт небольшого изменения формы тела.

Морфологическая организация таллома.

У водорослей выделяют несколько основных типов организации таллома:

1. Амёбоидный (ризоподиальный) Одноклеточные организмы, лишённые твёрдой клеточной оболочки и вследствие этого, не способные сохранять постоянную форму тела. Благодаря отсутствию клеточной стенки и наличию особых внутриклеточных структур клетка способна к ползающему движению посредством псевдоподий или ризоподий. Для некоторых видов характерно образование многоядерного плазмодия путём слияния нескольких амёбоидных клеток. Амёбоидное строение могут вторично приобретать некоторые монадные форму путём отбрасывания или втягивания жгутиков.

2. Монадный.

Одноклеточные водоросли, имеющие постоянную форму тела, жгутик (и), часто стигму, а пресноводные — сократительную вакуоль. Клетки активно двигаются в вегетативном состоянии. Часто встречается объединение нескольких монадных клеток в колонию, окружённую общей слизью, в некоторых случаях даже соединяясь между собой посредством плазмодесм. У высокоорганизованных форм с многоклеточным талломом часто имеются расселительные стадии — зооспоры и гаметы, имеющие монадную структуру.

3. Коккоидный.

Одноклеточные, лишённые каких-либо органоидов передвижения и сохраняющие постоянную форму тела в вегетативном состоянии клетки. Чаще всего имеется утолщённая клеточная стенка или панцирь, могут быть различные выросты, поры и пр. для облегчения парения в толще воды. Многим водорослям с данной структурой свойственно образование колоний. Некоторые диатомеи и десмидиевые способны к активному передвижению путём выделения слизи.

4. Пальмеллоидный.

Постоянное, достаточно крупное, как правило, прикреплённое к субстрату, образование из нескольких коккоидных клеток, погружённых в общую слизистую массу. Клетки непосредственно между собой не объединяются — отсутствуют плазмодесмы. Временную стадию жизненного цикла с аналогичной морфологией называют пальмеллевидным состоянием. В такое состояние могут переходить многие монадные и коккоидные водоросли при наступлении неблагоприятных условий, образующиеся при этом пальмеллевидные образования, как правило, мелкие и не имеют постоянной формы.

5. Нитчатый (трихальный).

Клетки соединены в нить, простую или разветвлённую. Нити могут свободно плавать в толще воды, прикрепляться к субстрату, либо объединяться в колонию. Вегетативно нитчатые водоросли размножаются обычно распадом нити на отдельные фрагменты. Рост нитей может идти четырьмя путями: диффузным — делятся все клетки нити, интеркалярным — зона роста расположена в середине нити, апикальным — делением конечных клеток, и базальным — делением клеток у основания таллома. Клетки в нити не имеют жгутиков и могут быть связаны между собой плазмодесмами.

6. Разнонитчатый (гетеротрихальный).

Есть две системы нитей: стелющиеся по субстрату горизонтальные и отходящие от них вертикальные. Горизонтальные нити тесно смыкаются, либо могут сливаться в псевдопаренхиматозную пластинку и выполняют, в основном, опорную функцию и функцию вегетативного размножения, вертикальные нити — преимущественно ассимиляторную функцию. Иногда может наблюдаться редукция, либо чрезмерное развитие тех или иных нитей, приводящее к вторичной утрате или нарушению характерных черт гетеротрихального строения (при редукции вертикальных нитей, например, таллом может представлять собой простую однослойную пластинку, полностью прикреплённую к субстрату.

7. Пластинчатая.

Многоклеточные талломы в форме пластинок из одного, двух или нескольких слоёв клеток. Возникают при продольном делении клеток, составляющих нить. Число слоёв зависит от характера образования перегородок при делении клеток. Иногда слои могут расходиться, и таллом тогда приобретает трубчатую форму (полый внутри), стенки при этом становятся однослойными.

8. Сифональный (неклеточный).

Отсутствуют клеточные перегородки, в результате чего таллом, часто крупный и внешне дифференцированный, формально представляет собой одну клетку с большим количеством ядер.

9. Сифонокладальный.

Таллом представлен многоядерными клетками, соединёнными в нитчатые или иной формы многоклеточные талломы (Siphonocladales).

10. Харофитный (членисто-мутовчатый).

Свойственна только харовым водорослям. Таллом крупный, многоклеточный, состоит из главного побега с ветвями и отходящими от него, иногда ветвящимися, членистыми боковыми побегами. Боковые побеги отходят от главного в области узлов, часть побега между узлами состоит, как правило, из одной крупной клетки и называется междоузлием.

У части сине-зелёных, зелёных и красных водорослей в слоевище откладываются соединения кальция, и оно становится твёрдым. Водоросли лишены корней и поглощают нужные им вещества из воды всей поверхностью. Крупные донные водоросли имеют органы прикрепления — подошву (уплощённое расширение в основании) или ризоиды (разветвлённые выросты). У некоторых водорослей побеги стелются по дну и дают новые слоевища.

Впервые изучено влияние введения в рацион лактирующих коров спирулины на переваримость и усвояемость питательных веществ кормов рациона, молочную продуктивность животных, качество молока и молочных продуктов. Обоснована целесообразность введения в рацион лактирующих коров микроводоросли Spirulina Platensis в качестве комплексной биологически активной добавки в оптимальной дозе.

Практическая значимость работы и реализация результатов исследований. Результаты проведенных исследований позволили получить экспериментальные данные по эффективности скармливания микроводоросли спиру-лина и влиянию на переваримость и усвояемость кормов рациона лактирующих коров, повысить качество молока и молочных продуктов, снизить расход молока на единицу продукции.

Водоросли — главные производители органических веществ в водной среде. Около 80% всех органических веществ, ежегодно создающихся на земле, приходится на долю водорослей и других водных растений. Водоросли прямо или косвенно служат источником пищи для всех водных животных. Известны горные породы (диатомиты, горючие сланцы, часть известняков), возникшие в результате жизнедеятельности водорослей в прошлые геологические эпохи. Водоросли участвуют в образовании лечебных грязей.

Пищевое применение.

Некоторые, в основном морские, употребляются в пищу (морская капуста, порфира, ульва). В приморских районах водоросли идут на корм скоту и удобрение. В ряде стран водоросли культивируют для получения большого количества биомассы, идущей на корм скоту и используемой в пищевой промышленности.

Съедобные водоросли — богатый минеральными веществами, особенно йодом, продукт — используются в восточноазиатских кухнях. Одно из самых популярных блюд с водорослями — суши.

Многие водоросли — важный компонент процесса биологической очистки сточных вод.

В фармацевтической промышленности.

Из водорослей получают: студне — и слизеобразующие вещества — агар-агар (анфельция, гелидиум), агароиды (филлофора, грацилярия), карраген (хондрус, гигартина, фурцелярия), альгинаты (ламинариевые и фукусовые), кормовую муку, содержащую микроэлементы и йод.

Биотопливо.

Из-за высокой скорости размножения водоросли нашли применение для получения биомассы на топливо.

Водоросли широко применяют в экспериментальных исследованиях для решения проблем фотосинтеза и выяснения роли ядра и других компонентов клетки.

При производстве кормовых добавок, перспективным является использование природных биологически активных субстанций, которые обеспечивают коррекцию стандартного кормового рациона и состава получаемых продуктов птицеводства по недостающим нутриентам.

В связи с этим большой интерес представляет использование сине-зеленой микроводоросли спирулины платенсис. Спирулина имеет уникальный биохимический состав, содержит широкий набор биологически активных веществ — витаминов, макрои микроэлементов, аминокислот и функциональных пигментов.

В настоящее время имеются сведения о применении биомассы спирулины в птицеводстве в качестве источника каротина и средства повышения выводимости и сохранности цыплят, прироста живой массы и снижения кормовых затрат.

Уникальность состава спирулины сочетается с уникальностью и многообразием ее фармакологических свойств. Результаты исследований ученых различных областей доказывают, что спирулина малотоксична, не оказывает негативного влияния на животных в условиях субхронического поступления в организм. Также не выявлено местного раздражающего действия и аллергических свойств спирулины, она не изменяет суточный диурез.

Спирулина, многократно вводимая в организм животных, не оказывает негативного влияния на белоксинтезирующую и детоксицирующую функции печени, не вызывает мембранотоксического эффекта, то есть не обладает гепатотоксическим действием.

Спирулина, используемая в качестве биологически активной добавки, способствует поддержанию высокого уровня гемоглобина и эритроцитов в крови. Наиболее ценными считаются иммуномодулирующие, липидокоррегирующие и антикоагулянтные свойства спирулины.

Ценный минеральный состав водоросли значительно изменяет показатели минерального обмена организма.

В настоящее время спирулина широко применяется как в промышленном, так и любительском птицеводстве. Она оказывает положительное влияние на продуктивность бройлеров. Цыплята, получавшие в качестве добавки к основному рациону биомассу спирулины, имеют массу в убойном весе на 150−200 г больше, чем контрольные. Прирост живой массы цыплят — бройлеров увеличивается на 3−5%.

Включение биомассы спирулины в рацион кур-несушек в концентрации 0,1% от веса корма способствует повышению яйценоскости и снижению кормовых затрат.

Добавка спирулины в рацион кур-несушек в количестве 2% от веса корма приводит к повышению интенсивности яйцекладки и увеличению массы яиц.

В птицеводстве рассматривают спирулина еще и как источник каротиноидов. Добавка 1% биомассы спирулины в рацион кур-несушек способствует повышению уровню каротиноидов в желтке яиц, стимулирует образование фолликулов и гормональную активность.

К важнейшим преимуществам использования спирулины в качестве кормовой добавки относят легкость разрушения клеточной оболочки, простоту выделения белка из клеток и его большую биологическую ценность, усвояемость и перевариваемость. К тому же, белок спирулины содержит все необходимые для жизнедеятельности организма аминокислоты, обеспечивающие нормальное развитие клеток и организма в целом.

Показать весь текст
Заполнить форму текущей работой