Помощь в написании студенческих работ
Антистрессовый сервис

Условия культивирования микроорганизмов

РефератПомощь в написанииУзнать стоимостьмоей работы

Выращивание в анаэростатах. Анаэробные микроорганизмы можно выращивать в анаэростатах — вакуумных металлических камерах, снабженных манометром (рис. 45). Анаэростатом может служить обычный вакуумный стеклянный эксикатор (рис. 46). Из анаэростата откачивают воздух, а затем, как правило, заполняют его газовой смесью, состоящей из азота (90−80%) и углекислоты (10−20%) до давления порядка 67*10 Па… Читать ещё >

Условия культивирования микроорганизмов (реферат, курсовая, диплом, контрольная)

Для жизнедеятельности микроорганизмов существенное значение имеют не только состав питательной среды, но и такие факторы, как кислотность среды, аэрация, температура, свет, влажность. Развитие микроорганизмов возможно лишь в определенных пределах каждого фактора, причем для различных групп микроорганизмов эти пределы часто неодинаковы.

Активная кислотность среды

Активная кислотность среды (рН) имеет решающее значение для роста многих микроорганизмов. Большинство бактерий лучше всего растет при рН, близком к 7,0, напротив, микроскопические грибы предпочитают слабокислые среды. Поэтому в приготовленных средах всегда следует определить значение рН. Измеряют рН электрометрическим методом на потенциометре. В лабораторной практике удобно использовать различные жидкие или бумажные индикаторы. Широко применяется, например, жидкий двухцветный индикатор, бромтимоловый синий (бромтимолблау). Его цвет изменяется от желтого к синему при сдвиге рН от 6,0 до 7,6. При рН 7,3 индикатор имеет сине-зеленую oкраску. Используют также универсальный индикатор, который изменяет окраску в интервале рН от 2 до 10.

В случае необходимости рН сред доводят до нужного значения растворами кислот (HCl, HSO.), щелочей (NaOH, КОН) или солей, имеющих щелочную реакцию (NаСО, NаНСО). Для корректировки рН целесообразно иметь растворы разной концентрации. рН сред может измениться в процессе стерилизации, поэтому после стерилизации его следует проверить и довести до нужного значения, если это требуется, стерильными растворами кислоты или щелочи.

Активная кислотность питательной среды, благоприятная для начального роста, достаточно часто меняется в процессе культивирования микроорганизмов. Эти изменения могут быть результатом образования продуктов метаболизма или неравномерного потребления отдельных компонентов среды. Например, при сбраживании углеводов в среде накапливаются органические кислоты, снижающие рН среды. В средах с КNО рН возрастает, как уже отмечалось, благодаря более интенсивному потреблению нитрат-иона и накоплению ионов калия.

Чтобы не допустить чрезмерного изменения рН в культурах микроорганизмов и удержать его на необходимом уровне, используют различные приемы. Иногда в среды добавляют буферные растворы (см.

Приложение). В микробиологической практике чаще других применяют фофатные буферы. Однако если рост микроорганизмов сопровождается образованием большого количества кислот, то тех количеств буферного раствора, которые можно добавлять к средам (не более 5 г фосфатов на 1 л среды), оказывается недостаточно, так как противодействие любого буфера изменению рН не беспредельно. Поэтому для микроорганизмов, активно изменяющих кислотность среды, применение буферов неэффективно. При культивировании таких микроорганизмов в среды вводят избыточное количество мела, который нейтрализует образующиеся кислоты. Можно нейтрализовать образующиеся кислоты по ходу развития культуры 10%-ным стерильным раствором NаНСО.

Поддержание определенного значения рН во время роста особенно важно для тех микроорганизмов, которые образуют в процессе жизнедеятельности кислоты, но не обладают устойчивостью к ним. К их числу относятся молочнокислые бактерии, а также многие псевдомонады. Большие затруднения встречаются, когда нужно поддерживать рН в слабощелочных средах, так как для диапазона рН от 7,2 до 8,5 подходящих буферов не существует. Поэтому иногда приходится периодически или непрерывно доводить рН до нужной величины, добавляя стерильно в среду растворы кислоты или щелочи при постоянном контроле значения рН. В современных ферментерах это достигается с помощью специальных автоматических устройств.

Аэрация

Кислород входит в состав воды и органических соединений, поэтому поступает в клетки всегда в больших количествах. Однако многие микроорганизмы нуждаются в постоянном притоке молекулярного кислорода. Такие микроорганизмы принято объединять в группу облигатных аэробов. Энергетическим процессом у них является аэробное дыхание, а молекулярный кислород играет роль терминального окислителя. Среди облигатных аэробов выделяют группу микроаэрофильных микроорганизмов, которые нуждаются в кислороде, но лучше растут при парциальном давлении меньшем, чем в воздухе. Развитие других микроорганизмов, напротив, возможно только, в отсутствие кислорода. Получение энергии у этих микроорганизмов не связано с использованием молекулярного кислорода. Для многих из них кислород токсичен — он угнетает рост или вызывает гибель клеток. Такие микроорганизмы называют облигатными анаэробами. Среди микроорганизмов выделяют также группу факультативных анаэробов, представители которой способны расти как в присутствии, так и в отсутствие молекулярного кислорода. Например, некоторые дрожжи или энтеробактерии в зависимости от наличия кислорода осуществляют аэробное дыхание или брожение.

Неодинаковые потребности микроорганизмов в свободном кислороде определяют различия и в способах их культивирования.

Способы культивирования аэробных микроорганизмов

Культивирование на поверхности плотных и жидких сред. В этом случае микроорганизмы выращиваются на поверхности плотной среды или в тонком слое жидкой среды и получают кислород непосредственно из воздуха. При поверхностном культивировании важно увеличить площадь соприкосновения среды с воздухом. Для этого среды наливают тонким слоем в посуду с широким дном — чашки Петри, колбы Виноградского, матрацы. В жидких средах аэробные микроорганизмы часто растут, образуя на поверхности пленку. Факультативные анаэробы развиваются не только на поверхности, но и в толще жидкой среды, вызывая более или менее равномерное ее помутнение. Поверхностное культивирование микроорганизмов применяется как в лабораторных условиях, так и в промышленности.

Глубинное культивирование в жидких средах. Все способы глубинного культивирования аэробных микроорганизмов сводятся к увеличению поверхности соприкосновения питательной среды с кислородом воздуха. Следует иметь в виду, что при глубинном культивировании в жидких средах микроорганизмы используют pacтворённый кислород. Вместе с тем растворимость кислорода в воде невелика. Поэтому, чтобы обеспечить рост аэробных микроорганизмов в толще среды, её необходимо постоянно аэрировать.

Наиболее простой и широко распространенный в лабораторной практике способ глубинного культивирования — выращивание на качалках, обеспечивающих встряхивание или вращение колб или пробирок со скоростью 100−200 и более оборотов в минуту. Чем больше скорость вращения, тем больше соприкосновение среды с воздухом и выше насыщение ее кислородом. Увеличить аэрацию среды при работе на одной и той же качалке можно уменьшением объема среды или применением колб с отбойниками — вдавлениями внутрь в виде 4−8 отростков 2−3 см длиной. При вращении колб с отбойниками поверхность соприкосновения среды с воздухом заметно увеличивается благодаря разбрызгиванию жидкости, тем выше аэрация.

Интенсивность аэрации при выращивании микроорганизмов на качалках характеризуют, как правило, скоростью поглощения кислорода водным раствором сульфита. Раствор сульфита наливают в сосуды для культивирования вместо питательной среды и через определенные промежутки времени измеряют количество окисленного сульфита в тех же условиях аэрации, при которых выращиваются исследуемые микроорганизмы. Метод подробно описан в «Практикуме по микробиологии» (1976). Сульфитный метод не дает возможности определить концентрацию кислорода в культуре. Концентрацию кислорода, растворенного в культуральной жидкости, определяют полярографически.

Помимо перемешивания, аэрировать культуру микроорганизмов можно продуванием через толщу среды стерильного воздуха. Этот способ часто используется в лабораторных исследованиях, но особенно широкое применение он нашел в промышленной микробиологии при получении биомассы и различных продуктов жизнедеятельности микроорганизмов — антибиотиков, ферментов, кислот. Скорость протекания воздуха через среду необходимо контролировать. Для этого используют различные приборы: газовые часы, реометры и другие. В ферментерах количество пропускаемого воздуха поддерживается на заданном уровне автоматически. Воздух стерилизуется путем прохождения через активированный древесный уголь, стеклянную вату, пропитанную антисептиком, или специальные ткани из полимеров. В лабораторных опытах, когда объем и скорость поступления воздуха невелики, используют заранее простерилизованные ватные фильтры. Для возможно более сильного распыления воздух пропускают через мелкопористые пластинки — барбатеры; в лабораторных опытах с этой целью применяют стеклянные фильтры.

Схема ферментера для глубинного культивирования аэробных микроорганизмов.

Рисунок 42. Схема ферментера для глубинного культивирования аэробных микроорганизмов: 1 — вход для воздуха, 2 — выход воздуха, 3 — барбатер, 4 -отбойники, 5 — мешалка Для аэрации культур микроорганизмов, как правило, используют обычный воздух. Продувание сред Кислородом не рекомендуется, так как чрезмерное насыщение среды кислородом (до 40 мг/л) может привести к угнетению роста микроорганизмов. В ферментерах принудительную аэрацию обычно совмещают с механическим перемешиванием среды мешалками, скорость вращения которых может достигать сотен и даже тысяч оборотов в минуту. Схема ферментера для глубинного культивирования аэробных микроорганизмов приведена на рис. 42.

Необходимо помнить, что потребности в свободном кислороде у различных аэробных микроорганизмов неодинаковы, поэтому степень аэрации следует подбирать экспериментально для каждой культуры.

Способы культивирования анаэробных микроорганизмов

Выращивание анаэробных микроорганизмов более сложно, чем культивирование аэробов, так как соприкосновение культур анаэробов с кислородом воздуха должно быть сведено к минимуму или даже полностью исключено. Для этого используют различные приемы, нередко комбинируя их друг с другом.

Выращивание в высоком слое среды. Это наиболее простой способ ограничения доступа воздуха к культуре. Жидкую среду наливают в сосуды для культивирования высшим слоем. Так как нельзя стерилизовать среды, если они занимают более половины высоты сосуда, часть среды стерилизуют отдельно и стерильно доливают ею сосуд для культивирования сразу же после посева. Непосредственно перед посевом среду кипятят или прогревают на кипящей водяной бане 30−40 мин, затем быстро охлаждают, чтобы в ней не успел раствориться кислород воздуха, и вносят на дно посевной материал.

Если развитие микроорганизмов не сопровождается газообразованием, поверхность среды можно залить слоем стерильного вазелинового масла, парафина или их смесью (соотношение 1: 3), слоем стерильного водного агара либо закрыть сосуды для культивирования стерильными пробками: стеклянной притертой или резиновой.

Культивирование в вязких средах. Диффузия кислорода в жидкость уменьшается с увеличением ее вязкости. Поэтому в вязких средах, таких как картофельная или среды с кукурузной либо другой мукой, хорошо развиваются некоторые облигатные анаэробы, например, возбудители маслянокислого или ацетонобутилового брожения. Вязкость жидких сред легко увеличить, если добавить к ним 0,2−0,3% агара.

Выращивание в толще плотной среды. Этим приемом пользуются для получения изолированных колоний при выделении чистых культур или определении численности анаэробных микроорганизмов. Посевной материал вносят в расплавленную и остуженную до 48−50 агаризованную, желательно осветленную среду, тщательно перемешивают и оставляют в пробирках или переливают стерильной пипеткой в заранее простерилизованные трубки Бурри или чашки Петри. Поверхность среды в пробирках заливают парафином. Трубки Бурри — это стеклянные трубки, длиной 20−25 см, диаметром 1,0- 1,5 см. Трубки стерилизуют, закрыв oба конца ватными пробками. Перед посевом ватную пробку у одного конца заменяют стерильной резиновой, через другой конец трубки вносят среду с посевным материалом и закрывают этот конец также резиновой пробкой (рис. 43).

Трубка Бури.

Рисунок 43. Трубка Бури: 1 — трубка. Подготовленная к стерилизации; 2 — колонии анаэробных микроорганизмов в толще агаризованной среды При использовании чашек Петри для выращивания анаэробов засеянную агаризованную среду наливают в крышку чашки и, после того как среда застынет, плотно прижимают к ее поверхности дно чашки. Зазор между стенками дна и крышки, где среда соприкасается с воздухом, заливают стерильным парафином (рис. 44).

Культивирование анаэробов в чашке Петри.

Рисунок 44. Культивирование анаэробов в чашке Петри: 1- агаризованная среда, 2 — парафин.

Микроанаэростат.

Рисунок 45. Микроанаэростат.

Стеклянный вакуумный эксикатор.

Рисунок 46. Стеклянный вакуумный эксикатор.

Выращивание в анаэростатах. Анаэробные микроорганизмы можно выращивать в анаэростатах — вакуумных металлических камерах, снабженных манометром (рис. 45). Анаэростатом может служить обычный вакуумный стеклянный эксикатор (рис. 46). Из анаэростата откачивают воздух, а затем, как правило, заполняют его газовой смесью, состоящей из азота (90−80%) и углекислоты (10−20%) до давления порядка 67*10 Па (500 мм рт. ст.). Избыточное давление исключает возможность диффузии кислорода воздуха. Для заполнения анаэростатов газовой смесью используют газометры (рис. 47). Газометр (А) заполняется отдельным газом или газовой смесью через кран 1. Жидкость, первоначально заполняющая газометр, через кран 2 (кран 3 при этом закрыт) вытесняется в сосуд Б. Затем кран 1 закрывают, осторожно открывают кран 3, и жидкость из сосуда Б поступает в газометр и вытесняет газ в анаэростат (В). Объем газа, заполняющего анаэростат, измеряют по объему жидкости, поступившей из сосуда Б в газометр. Необходимо помнить, что выпускаемые промышленностью газы даже высокой чистоты содержат, как правило, небольшие количества кислорода. Поэтому, чтобы очистить газы от остатков кислорода, их пропускают через химические поглотители, например, через колонки с раскаленной восстановленной металлической медью.

Для удаления кислорода из окружающей среды при культивировании анаэробов иногда используют вещества, поглощающие кислород. Эти вещества можно поместить на дно большой пробирки, имеющей специальную подставку, на которую ставят пробирку с бактериальной культурой. Удобно использовать специальные сосуды, во внешнюю расширенную часть которых вносят поглощающую смесь, а во внутреннюю — питательную среду с микроорганизмами. Культуральный сосуд закрывают ватной пробкой, а сосуд с поглотителем — резиновой, что обеспечивает герметичность системы (рис. 48). Применяют также вакуумные или обычные эксикаторы, в которые на дно или в специальные сосуды помещают поглощающие кислород вещества.

Газометр (А) и анаэростат (В).

Рисунок 47. Газометр (А) и анаэростат (В).

В качестве поглотителя в лабораторной практике используют щелочной раствор пирогаллола, дитионита натрия (NaSO), металлическое железо и некоторые другие реактивы. При этом необходимо учитывать поглощающую способность реактивов и объем замкнутого пространства, в котором выращиваетсякультура. Например, на каждые 100 мл емкости используют 1 г пирогаллола и 10 мл 2,5 н. растворагидроксиданатрия. Поскольку многие анаэробы нуждаются в углекислоте для биосинтеза веществ клетки, пирогаллол растворяют не в щелочи, а в насыщенном растворе бикарбоната натрия. Полноту поглощения кислорода химическими веществами контролируют, используя раствор, содержащий окислительно-восстановительный индикатор. Для приготовления раствора смешивают равные объемы 0,024%-ного раствора NaOH, 0,015%-ного водного раствора метиленового синего и 6%-ного раствора глюкозы;

в качестве антисептика к раствору добавляют тимол. Перед употреблением в пробирку наливают 5 мл смеси и нагревают в кипящей водяной бане до обесцвечивания, быстро охлаждают и помещают в анаэростат. В анаэробных условиях раствор остается бесцветным.

Удобен в обращении анаэростат системы Газ Пак (Gas Pak), кoторый снабжен палладиевым катализатором, поглощающим кислород, и химическими генераторами водорода (таблетка борогидрида натрия — NaHB) и углекислоты (таблетка бикарбоната натрия и лимонной кислоты). После загрузки анаэростата таблетки смачивают водой и тотчас герметически закрывают его крышкой. В таком анаэростате анаэробные условия создаются через 16−20 мин.

Культивирование в средах с восстановителями. Рост многих облигатных анаэробов возможен только в средах с низким окислительновосстановительным потенциалом (Eh). Поэтому в среды для культивирования анаэробов рекомендуется добавлять восстановители, например, цистеин, тиогликолевую кислоту или ее натриевую соль, сульфид натрия (NaS), аскорбиновую кислоту или дитиотреитол. Чаще других используют сульфид и тиогликолат натрия. Обычно готовят 1% -ные растворы этих восстановителей в 5% -ном растворе бикарбоната натрия, стерилизуют автоклавированием и добавляют к средам сульфид Na из расчета 250−500 мг, а тиогликолат натрия от 250 мг до 1 г на 1 л среды. Восстановители следует использовать в концентрациях, не влияющих на рост микроорганизмов.

Сосуды для выращивания анаэробов.

Рисунок 48. Сосуды для выращивания анаэробов: 1 — бактериальная культура, 2 — химический поглотитель молекулярного кислорода Функции восстановителей выполняют и такие компоненты среды, как глюкоза и другие восстанавливающие сахара, а также пептон. С целью снижения окислительно-восстановительного потенциала к средам для культивирования анаэробов можно добавлять убитые клетки дрожжей, кусочки свежевырезанных тканей паренхиматозных органов животных (почки, печень, сердце) или растительных тканей (клубни картофеля, корнеплоды).

Степень поглощения кислорода и соответственно степень восстановленности среды определяется окислительно-восстановительным потенциалом — Eh, который измеряют электрометрически на потенциометре или с помощью индикаторов таких, как резазурин, феносафранин и нейтральный красный, изменяющих окраску при изменении Eh. Особенно удобен резазурин, который добавляют к средам в концентрации 0,0001% и стерилизуют вместе с минеральными компонентами среды. В окисленной форме он окрашен в слабо-розовый цвет, восстановленная форма его бесцветна. Резазурин регистрирует окислительно-восстановительный потенциал выше — 420 В. Феносафранин регистрирует более низкие значения потенциала — 252 В.

Успешному выращиванию облигатных анаэробов способствует внесение в среду большого количества посевного материала. Это объясняется тем, что при развитии анаэробов в культуральной жидкости накапливаются восстановители, которые связывают часть растворенного кислорода новой среды.

Некоторые экстремальные анаэробы, к которым относятся, например, метанобразующие бактерии и микроорганизмы рубца, погибают даже при кратковременном соприкосновении с кислородом воздуха. Работа с такими микроорганизмами представляет большие трудности и требует специального оборудования. Техника работы с экстремальными анаэробами была разработана Хангейтом. Она включает совокупность нескольких приемов, главными из которых являются следующие:

  • — среды перед употреблением кипятят для освобождения от растворенного кислорода;
  • — к средам обязательно добавляют восстановители — цистеин,

сульфид Na, тиогликолат Na;

— пересевы, посевы, разлив сред в сосуды для культивирования осуществляют в токе углекислоты или водородуглекислотной смеси;

  • — культуры выращивают в герметически закрытых сосудах в атмосфере газовой смеси, часто с избыточным давлением;
  • — газы Н, СО или их смеси используют только после очистки от следов кислорода.

В последнее время для культивирования экстремальных анаэробов предложены специальные камеры, которые содержат внутри все необходимое для выполнения бактериологических работ, включая термостат. Камера заполняется газовой смесью, состоящей из 10% Н, 10% СО и 80% N, освобожденной от примеси кислорода. Работу в камере исследователь проводит, надевая перчатки, вмонтированные в камеру. Это оборудование достаточно сложно и дорого, но оно имеет одно неоспоримое преимуществоконтакт клеток микроорганизмов с воздухом исключается на всех этапах работы.

Температура

Интервалы температур, в которых возможен рост различных микроорганизмов, заметно варьируют. У мезофилов, к которым относится большинство известных нам форм, температурный оптимум лежит в интервале от 25 до 37°С. У термофилов он значительно выше — от 45 до 60−70°С. Психрофилы хорошо развиваются в интервале температур 5−10°С. Отклонения температуры от оптимальной неблагоприятно влияют на развитие микроорганизмов. Поэтому микроорганизмы выращиваются в термостатах (рис. 49) или специальных термостатированных комнатах, где с помощью терморегуляторов поддерживается соответствующая оптимальная температура. Мезофильные бактерии, естественным местом обитания которых является вода и почва, выращивают в интервале от 20 до 30 °C, тогда как бактерии кожных покровов, слизистой или кишечника человека и животных культивируют при более высокой температуре — 35 — 37 °C.

Для выращивания психрофилов используют холодильные камеры.

Свет

Для роста подавляющего большинства микроорганизмов освещение не требуется. Напротив, прямые солнечные лучи отрицательно влияют на их развитие. Поэтому такие микроорганизмы выращивают в темноте. Свет необходим для роста фототрофных микроорганизмов. Однако естественное освещение используют редко, так как оно непостоянно и плохо контролируемо. Как правило, фототрофы выращивают в люминостатах, то есть в камерах, освещенных лампами накаливания или флуоресцентными лампами дневного света. Необходимая температура в люминостатах создается благодаря вентиляции или холодильному устройству.

Выбор источника освещения определяется спектром его излучения и длинами волн, при которых осуществляют фотосинтез культивируемыe микроорганизмы. Для выращивания пурпурных и зелёных бактерий лучше использовать лампы накаливания; для культивирования микроводорослей и цианобактерий можно применять флуоресцентные лампы дневного света. Помимо спектрального состава света обращают внимание на интенсивность освещения, которую измеряют с помощью люксметра Ю-16.

Термостат для культивирования микроорганизмов.

Рисунок 49. Термостат для культивирования микроорганизмов.

Вода

Рост и размножение микроорганизмов невозможны без присутствия в окружающей среде воды, причем вода должна находиться в доступной для клетки форме, т. е. в жидкой фазе. Однако в природных субстратах и питательных средах часть воды ассоциирована с молекулами растворенных веществ и не может быть использована микроорганизмами. Доступность воды в субстрате для развития микроорганизмов выражают величиной активности воды (а). а= Р/Р, где Р — давление пара раствора (мм рт. ст.), Р — давление пара чистой воды (мм рт. ст.) при данной температуре. Значение, а для дистиллированной воды равно 1,00. При растворении различных веществ в воде эта величина уменьшается и соответственно падает доступность для клетки воды.

Микроорганизмы могут расти на средах со значеннем, а от 0,99 до 0,63. Потребности в доступной воде у бактерий, как правило, выше, чем у дрожжей и микроскопических грибов. Так, большинство бактерий, за исключением галофилов, хорошо растет на средах с вeличиной, а от 0,99 до 0,95, минимальная величина а, обеспечивающая рост дрожжей, лежит в пределах от 0,91 до 0,88.

Активность воды в среде можно определить по формуле а=А/100, где, А — относительная влажность (%) атмосферы, которую измеряют при равновесии в закрытом сосуде, содержащем среду. Paзличную активность воды в питательной среде или субстрате создают добавлением к ним таких соединений, как NaCl, глюкоза, глицерин, полиэтиленгликоль, или уравновешиванием небольшого объема среды с большим объемом раствора HSO или солей NaCl, KCl, КNО), имеющих определенную активность воды.

Показать весь текст
Заполнить форму текущей работой