Помощь в написании студенческих работ
Антистрессовый сервис

Тепло как экологический фактор для с/х культур. 
Потребности с/х культур в тепле. 
Тепловой режим почв и метод ее регулирования в земледелии. 
Воздушный режим почв, его значение для организмов и регулирование

РефератПомощь в написанииУзнать стоимостьмоей работы

Все агромелиоративные мероприятия, изменяющие водный режим, так или иначе меняют и температурный режим почв. В южных районах орошение предохраняет почву от перегрева. В северных районах для более интенсивного прогревания почв весной используют дренаж почв. Осушение торфяных почв приводит к повышению температуры верхних горизонтов в дневные часы летом и несколько снижает ночью по сравнению… Читать ещё >

Тепло как экологический фактор для с/х культур. Потребности с/х культур в тепле. Тепловой режим почв и метод ее регулирования в земледелии. Воздушный режим почв, его значение для организмов и регулирование (реферат, курсовая, диплом, контрольная)

Тепло является одним из главнейших экологических факторов. Оно необходимо для основных жизненных процессов — фотосинтеза, дыхания, транспирации, роста и развития растений. Тепло влияет на распространение растений по земной поверхности. Именно этот фактор в значительной степени определяет границы растительных зон. Границы географического распространения отдельных растений часто совпадают с изотермами.

Источник тепла — энергия солнечных лучей, которая в растении превращается в тепловую. Энергетический поток поглощается почвой и надземными частями растений. Это тепло передается нижним почвенным горизонтам, идет на обогревание приземных слоев воздуха, расходуется на испарение с поверхности почвы, излучается в атмосферу, у наземных растений тратится на испарение.

Температурные условия на суше определяются географическим положением (географической широтой и удаленностью от океана), рельефом (высотой над уровнем моря, крутизной и экспозицией склонов), сезоном, временем дня. Очень важной характеристикой температурных условий являются суточные и сезонные колебания температур.

Достаточно разнообразны тепловые условия в водоемах, но температура здесь колеблется меньше, чем на суше, особенно в морях и океанах.

В ходе эволюции растения выработали приспособления к различным температурным условиям, как к высоким, так и к низким температурам. Так, в горячих гейзерах с температурой воды до 90 °C живут сине-зеленые водоросли, у некоторых наземных растений листья прогреваются до 53 °C и не погибают (финиковая пальма). Растения приспосабливаются также к низким температурам: в Арктике и высокогорьях, на поверхности льда и снега развиваются некоторые виды водорослей. В Якутии, где морозы достигают — 68 °C, хорошо растет лиственница.

Способность растений переносить высокие и низкие температуры обусловлена как морфологическим строением (размерами, формой листьев, характером их поверхности), так и физиологическими особенностями (свойствами протоплазмы клеток).

Тепло влияет на сроки прохождения растением фенологических фаз. Так, начало развития растений на Севере, как правило, задерживается. При распространении какого-либо вида растения на север фаза цветения и плодоношения наступает все позже. Поскольку вегетационный период становится по мере движения на север все более коротким, растение не успевает сформировать плоды и семена, что препятствует его расселению. Таким образом, недостаток тепла ограничивает географическое распространение растений.

Температурный фактор влияет и на топографическое распространение растений. Даже на очень ограниченной территории температурные условия водоразделов, склонов разной экспозиции и крутизны будут различны, особенно в горных районах. Водоразделы нагреваются больше, чем склоны северной и восточной экспозиций, склоны южной экспозиции прогреваются лучше, чем водоразделы, и т. д. Поэтому в северных районах на склонах южной экспозиции могут расти виды, характерные для водораздельных условий более южных районов.

Рост и развитие растений совершаются в определенных интервалах температур воздуха и почвы.

При слишком низких температурах физиологические процессы в растениях замедляются, а слишком высокие температуры приводят к разрушению сложных белковых структур, в том числе ферментов. Нижний предел осуществления физиологических процессов определяется температурой замерзания воды в клетках, а верхний — температурой, при которой белки подвергаются необратимой денатурации. Утрата нативной (природной) структуры белков у большинства сельскохозяйственных растений начинается при температуре 45−50°С.

Зависимость скорости роста растений от температуры, так же как и активность ферментов, подчиняется правилу Вант-Гоффа: в зоне оптимальных значений температуры увеличении её на 10° сопровождается увеличением скорости роста в 2 раза.

Между отдельными культурами существуют значительные различия по их потребности в тепле. При этом наблюдается четко выраженная закономерность, характеризующая чувствительность растений к температурному фактору в зависимости от фазы онтогенеза: более низкие положительные температуры требуются при прорастании семян, более высокие — при переходе к репродуктивному развитию и формированию плодов. Например, у гороха посевного минимальная температура, необходимая для развития всходов и формирования вегетативных органов — 4−5 °С. Всходы большинства сортов гороха могут переносить кратковременное понижение температуры до -4°С, но в процессе роста растения они теряют свойства холодостойкости. Оптимальная среднесуточная температура в период формирования вегетативных органов — 12−16 °С, для формирования генеративных органов — 16−20 °С, в период роста бобов и налива семян — 16−22 °С. При температуре выше 26 °C пыльца у гороха утрачивает жизнеспособность, снижается урожайность и накопление белка в семенах.

Наиболее устойчивы растения в период покоя. Так, сухие семена могут переносить как низкие температуры (до температуры жидкого азота: -196°С), так и высокие (+ 50 °C и выше). Но в период активной вегетации растения могут повреждаться даже слабыми заморозками.

Прорастание семян невозможно при температуре ниже 0 °C, так как для набухания семян и активирования гидролитических ферментов необходима вода в жидком состоянии.

Растения южного происхождения, такие как просо, соя, фасоль, сорго, кукуруза, рис и другие, прорастают и дают всходы при температуре не ниже 10 °C, тогда как культуры умеренного пояса — рожь, пшеница, ячмень, овес, клевер, горох, вика и др. — начинают прорастать и дают всходы уже при температуре от 1 до 3 °C. Поэтому для теплолюбивых культур, которые обладают, как правило, низкой холодостойкостью и чувствительны к низким температурам, срок посева весной должен быть приурочен к достижению почвой оптимальной температуры. Это даст возможность получить дружные всходы и избежать попадания их под возвратные весенние заморозки. Каждый вид растений имеет свои температурные оптимумы для прорастания.

Совокупность явлений поступления, переноса, аккумуляции и отдачи тепла называется тепловым режимом почвы. Он формируется под влиянием климата (потока солнечной радиации, условий увлажнения, континентальности и др.), а также условий рельефа, растительности и снежного покрова. Основным показателем теплового режима почвы, который характеризует ее тепловое состояние, является температура почвы.

Температура почвы определяется притоком солнечной радиации и тепловыми свойствами самой почвы. В связи с суточной и годичной цикличностью в поступлении радиации Солнца для температуры почвенного профиля характерна суточная и годовая периодичность.

Наибольшие суточные колебания температуры наблюдаются на поверхности почвы и имеют синусоидальный характер. Максимальная температура поверхности почвы наблюдается около 13 ч, минимальная — ночью. С глубиной суточная амплитуда изменений температуры значительно снижается и затухает на глубине около 50 см. Скорость передачи тепла вглубь профиля замедляется, поэтому максимум и минимум суточных температур на разных глубинах почвы наступает в разное время. В среднем имеет место запаздывание в 2 — 3 ч на каждые 10 см глубины. В связи с особенностями каждого типа почв на фоне общего характера суточного хода температур каждому из типов присущи свои особенности.

Годовая динамика температуры зависит от природной зоны, имеет большую амплитуду колебаний и выражена на большей глубине, чем суточные. Наиболее резкие годовые колебания температуры происходят на поверхности почв, с глубиной они затухают. Зона активной выраженности сезонной динамики ограничена 3 — 4 метровым слоем, на глубине 6 м годовая температура колеблется менее чем на 1 оС.

Годовой ход температуры характеризуется проявлением двух периодов: летнего с потоком тепла от верхних горизонтов к нижним (период нагревания почвы) и зимнего — с потоком тепла от нижних к верхним (период охлаждения почвы). В умеренных широтах максимум среднесуточной температуры поверхности почвы наблюдается обычно в июле — августе, а минимум — в январе — феврале. Летом самая высокая температура отмечается в верхних горизонтах, с глубиной она снижается; зимой верхние горизонты имеют наименьшую температуру, а с глубиной она повышается. Вследствие инерционности теплопереноса в почвенной толще установление максимальной температуры почв отстает от максимума температур воздуха (на глубине 3 м максимум устанавливается на несколько месяцев позже, чем на поверхности).

Большое влияние на годовое изменение температуры почвы оказывает растительность, она предохраняет поверхность почвы от резких колебаний температуры. В районах с холодными зимами и выпадением снега значение для формирования температурного режима имеют промерзание почвы, мощность и длительность сохранения снежного покрова (чем он мощнее, рыхлее и чем длительнее сохраняется, тем больше утепляет почву и снижает глубину ее промерзания). Почва начинает замерзать при температуре несколько ниже 0 °C, поскольку в почвенном растворе всегда содержатся растворимые вещества, понижающие температуру замерзания. Под снегом почва промерзает на незначительную глубину, а в бесснежные зимы или при сдувании снега ветром почва может промерзать на глубину 0,7 — 0,9 м и более. Вот почему снегозадержание проводят не только для накопления влаги в почве, но и для сохранения тепла.

Растительный покров, задерживая и накапливая снег, резко ослабляет промерзание почвы. На наименьшую глубину почва промерзает в лесу и среди лесных и кустарниковых насаждений. Рельеф влияет на приток солнечной радиации, накопление снега и увлажнение почвы. Поэтому наибольшая глубина промерзания почвы наблюдается на выпуклых формах рельефа, наветренных склонах, где сдувается снег. В понижениях (лощинах, западинах) глубина промерзания почв наименьшая. Почвы северных склонов промерзают более глубоко, южные — на меньшую глубину. Чем влажнее почва, тем меньше она промерзает. Замерзание почвы начинается до или после установления снежного покрова и продолжается до января или февраля, когда она начинает оттаивать снизу. Оттаивание идет за счет передачи тепла из нижних горизонтов, когда приток тепла от нижних слоев почв превышает его потери поверхностью почвы. В северных и северо-восточных районах страны, в зоне «вечной» мерзлоты оттаивает лишь верхний слой почвы.

Влияние деятельности человека на промерзание почвы связано с изменением состояния растительного покрова, условий увлажнения на территории. Уничтожение растительности (вырубка леса и пр.) уменьшает накопление снега и способствует увеличению глубины промерзания.

Каждый почвенный тип в соответствии с зональностью поступления солнечной радиации, распространением растительности характеризуется определенным температурным режимом. В настоящее время принята следующая систематика тепловых режимов почвы (В.Н. Димо, 1972):

  • 1) мерзлотный тип характерен для территорий с многолетней мерзлотой, где среднегодовая температура профиля почвы отрицательная, преобладает процесс охлаждения. Сезонное промерзание и оттаивание наблюдается до верхней границы многолетнемерзлых пород. Распространен в Евроазиатской полярной и Восточно-Сибирской мерзлотно-таежной почвенных областях.
  • 2) длительно сезоннопромерзающий тип характерен для областей, где преобладает положительная среднегодовая температура почвенного профиля, длительность промерзания не менее 5 месяцев. Глубина проникновения отрицательных температур не менее 1 м, но до многолетнемерзлотных пород не доходит (их может и не быть).
  • 3) сезоннопромерзающий тип отличается положительной годовой температурой; вечная мерзлота отсутствует, промерзание почвы продолжается не более 4 — 5 мес.
  • 4) непромерзающий тип имеет положительную среднегодовую температуру по профилю, промерзание почв не проявляются даже в самый холодный месяц. Наблюдается в областях субтропических, тропических поясов, теплая европейская часть умеренного пояса.

При определении тепловых условий почвы определяют: сумму температур выше 10 оС в горизонте почвы 0 — 20 см, длительность вегетационного периода (выше 10 оС) на той же глубине, длительность и глубину промерзания.

Существенное изменение в характер теплового режима почвы вносит их распашка. Температурный режим становиться более контрастным. Так, на пахотном типичном черноземе под пропашными культурами суточная амплитуда достигает 35 — 57 оС, в то время как на целине не более 18 — 23 оС. В холодное полугодие они охлаждаются быстрее и глубже, а сам период с отрицательными температурами на 20 — 30 дней длиннее, чем у целинных.

Под разными культурами температурный режим пахотных почв также различается.

Регулирование теплового режима почв. Регулирование теплового режима имеет важное значение для обеспечения оптимальных условий роста растений. Улучшение теплового режима почв основывается на осуществлении приемов, регулирующих приток солнечной радиации, и приемов, ослабляющих или повышающих ее потери за счет теплоотдачи в атмосферу. В летнее время в северных районах с повышенным увлажнением почв и меньшим притоком солнечной радиации эти мероприятия преследуют цель повышения температуры почвы, в южных засушливых — понижение.

Различают агротехнические, агромелиоративные и агрометеорологические приемы регулирования теплового режима почв. К агротехническим приемам относят прикатывание, гребневание, оставление стерни, мульчирование; к агромелиоративным — орошение, осушение, лесные полосы, борьбу с засухой; к агрометеорологическим — борьбу с заморозками, меры по снижению излучения тепла из почвы и др.

К приемам, регулирующим приток солнечного тепла к поверхности почвы, относятся затенение почвы растительностью, мульчей, рыхление и прикатывание поверхности почвы, гребневые и грядковые посевы.

Растительный покров затеняет поверхность почвы, ослабляет приток к ней солнечного тепла и способствует понижению температуры. Поэтому в жарких районах ряд культур (табак, кофе) возделывают под пологом древесных пород (в затенении). В этих же целях создают кулисы из высокостебельных растений и устраивают легкие навесы.

В районах с недостатком тепла посевы высокостебельных растений (кукурузы, подсолнечника и др.) создают «парниковый эффект», сопровождающийся повышением температуры почвы, этот прием применяют для увеличения урожайности овощных культур.

В летний период лесные полосы понижают температуру почвы не только в самой полосе, но и в межполосном пространстве, что способствует большей устойчивости посевов к действию суховеев. В зимнее время способствуют накоплению снега, который утепляет почву, уменьшает скорость ветра и тем самым снижает вертикальный обмен приземного слоя воздуха с атмосферой.

Гребневание способствует лучшему прогреванию почвы, усиливает теплообмен воздуха с почвой, повышает устойчивость растений к заморозкам. Прикатывание повышает среднесуточную температуру на 3 — 5 °C в 10 см слое, залегающем ниже уплотненной прослойки. Мульчирование поверхности почвы торфом, соломой и другими материалами широко применяют для регулирования температуры почвы, особенно в овощеводстве. Белое покрытие применяют для снижения избыточного нагревания почвы и, наоборот, темные материалы (черная бумага, темная торфяная крошка) способствуют большему притоку тепла. Любое мульчирующее покрытие заметно снижает испарение, а следовательно, и расход тепла. При мульчировании сглаживаются суточные колебания температуры почвы. Органические удобрения повышают температуру почвы.

Рыхление поверхностного слоя способствуют более быстрому обмену тепла в почве. Шероховатая поверхность обработанной почвы днем сильнее поглощает солнечную энергию, но ночью больше ее и излучает по сравнению с плотной поверхностью. Рыхление почвы увеличивает ее теплопроводность и уменьшает альбедо. Этот прием способствует снижению температуры почвы днем и сохранению тепла ночью.

Все агромелиоративные мероприятия, изменяющие водный режим, так или иначе меняют и температурный режим почв. В южных районах орошение предохраняет почву от перегрева. В северных районах для более интенсивного прогревания почв весной используют дренаж почв. Осушение торфяных почв приводит к повышению температуры верхних горизонтов в дневные часы летом и несколько снижает ночью по сравнению с неосушенными почвами. В районах северного земледелия при осушении торфяных почв заметно ухудшается их прогревание в весенне-летний период, так как улучшается аэрация и снижается теплопроводность. Поэтому на некоторой глубине осушенных почв длительно сохраняются мерзлотные прослойки, что замедляет развитие активных микробиологических процессов.

Действенным приемом регулирования теплового режима в холодный период являются снежные мелиорации, которые одновременно являются и важным средством накопления в почве влаги. Его широко применяют в засушливых и континентальных районах Земли — на юге и юго-востоке Украины, России, в Западной Сибири, Северном Казахстане и других регионах, где снежный покров обычно невелик, а сильные морозы при небольшом снежном покрове могут сильно повредить посевы озимых, плодово-ягодные и другие культуры. Снегозадержание проводят с помощью лесных полос, кулис, высокой стерни, щитов и др.

Приемы регулирования теплового режима осуществляют с учетом почвенно-климатических и погодных условий и особенностей растений.

Воздушный редким почвы — это совокупность всех явлений поступления воздуха в почву, его передвижения в ней и расхода, а также явлений обмена газами между почвенным воздухом, твердой и жидкой фазами, потребления и выделения отдельных газов живым населением почвы.

Воздушный режим почв подвержен суточной, сезонной, годовой и многолетней изменчивости и находится в прямой зависимости от различных свойств почв, погодных условий, характера растительности, агротехники.

Для нормального произрастания растений необходимо оптимизировать воздушный режим почвы. Улучшение воздушного режима почв особенно важно там, где распространены почвы с временным избыточным увлажнением и при сельскохозяйственном использовании болотных почв.

В почвах легкого гранулометрического состава, а также в суглинистых и глинистых, но обладающих агрономически ценной структурой в верхних горизонтах содержание воздуха поддерживается на высоком уровне (20−25% объема почвы). В бесструктурных почвах тяжелого гранулометрического состава содержание почвенного воздуха зависит от состояния и увлажнения почвы. При относительной влажности, равной НВ, содержание воздуха в таких почвах может достигать критической величины (менее 15% объема почвы).

На бесструктурных почвах суглинистого и глинистого гранулометрического состава нередко образуется почвенная корка. Обладая высокой плотностью и низкой пористостью, почвенная корка уже при влажности 17% (22% объема почвы) препятствует нормальной аэрации.

Поскольку оптимальный воздушный режим в основном зависит от состояния увлажнения почвы, то приемы регулирования водного и других режимов являются и приемами регулирования воздушного режима.

Такие приемы, как окультуривание почв, регулирование их реакции, применение органических и минеральных удобрений, орошение или осушение почв, активизируют биологические процессы в почвах, повышают интенсивность дыхания в них при наличии доступной влаги. Важными приемами регулирования воздушного режима, особенно на малогумусных почвах тяжелого гранулометрического состава, также являются создание глубокого пахотного слоя, рыхление подпахотного, ликвидация почвенной корки. Для минеральных почв большое значение в создании оптимального воздушного режима имеет улучшение их гумусного состояния и структуры.

Показать весь текст
Заполнить форму текущей работой