Магнитное экранирование.
Экранирование магнитного поля
Все сказанное выше о магнитных экранах справедливо в отношении слабых магнитных полей помех. Если же экран находится вблизи от мощных источников помех и в нем возникают магнитные потоки с большой магнитной индукцией, то, как известно, приходится учитывать изменение магнитной динамической проницаемости в зависимости от индукции; необходимо также учитывать при этом потери в толще экрана… Читать ещё >
Магнитное экранирование. Экранирование магнитного поля (реферат, курсовая, диплом, контрольная)
Экранирование магнитных полей может быть осуществлено двумя методами:
- 1) Экранирование с помощью ферромагнитных материалов.
- 2) Экранирование с помощью вихревых токов.
Первый метод применяется обычно при экранировании постоянных МП и полей низкой частоты. Второй метод обеспечивает значительную эффективность при экранировании МП высокой частоты.
1) Защита от внешнего магнитного поля.
Магнитные силовые линии внешнего магнитного поля (линии индукции магнитного поля помех) будут проходить в основном по толще стенок экрана, обладающего малым магнитным сопротивлением по сравнению с сопротивлением пространства внутри экрана. В результате внешнее магнитное поле помех не будет влиять на режим работы электрической цепи.
2) Экранирование собственного магнитного поля.
Если ставится задача предохранения внешних электрических цепей от воздействия магнитного поля, создаваемого током катушки. Индуктивности L, т. е. когда требуется практически локализовать помехи, создаваемые индуктивностью L, то такая задача решается при помощи магнитного экрана, как это схематически показано на рисунке. Здесь почти все силовые линии поля катушки индуктивности будут замыкаться через толщу стенок экрана, не выходя за их пределы вследствие того, что магнитное сопротивление экрана намного меньше сопротивления окружающего пространства.
3) Двойной экран.
В двойном магнитном экране можно представить себе, что часть магнитных силовых линий, которые выйдут за толщу стенок одного экрана, замкнутся через толщу стенок второго экрана. Точно также можно представить себе действие двойного магнитного экрана при локализации магнитных помех, создаваемых элементом электрической цепи, находящимся внутри первого (внутреннего) экрана: основная масса магнитных силовых линий (линии магнитного рассеяния) замкнется через стенки наружного экрана. Разумеется, что в двойных экранах должны быть рационально выбраны толщины стенок и расстояние между ними.
Общий коэффициент экранирования достигает наибольшей величины в тех случаях, когда толщина стенок и промежуток между экранами увеличивается пропорционально расстоянию от центра экрана, причем величина промежутка является средней геометрической величиной толщин стенок примыкающих к нему экранов. При этом коэффициент экранирования:
L = 20lg (H/Нэ) Изготовление двойных экранов в соответствии с указанной рекомендацией практически затруднено из технологических соображений. Значительно целесообразнее выбрать расстояние между оболочками, прилегающими к воздушному промежутку экранов, большим, чем толщина первого экрана, приблизительно равным расстоянию между стенкой первого экрана и краем экранируемого элемента цепи (например, катушки индуктивности). Выбор той или иной толщины стенок магнитного экрана нельзя сделать однозначным. Рациональная толщина стенок определяется. материалом экрана, частотой помехи и заданным коэффициентом экранирования. При этом полезно учитывать следующее.
- 1. При повышении частоты помех (частоты переменного магнитного поля помех) магнитная проницаемость материалов падает и вызывает снижение экранирующих свойств этих материалов, так как по мере снижения магнитной проницаемости возрастает сопротивление магнитному потоку, оказываемое экраном. Как правило, уменьшение магнитной проницаемости с повышением частоты идет наиболее интенсивно у тех магнитных материалов, у которых имеется наибольшая начальная магнитная проницаемость. Например, листовая электротехническая сталь с малой начальной магнитной проницаемостью мало изменяет величину jx с повышением частоты, а пермаллой, имеющий большие начальные значения магнитной проницаемости, весьма чувствителен к повышению частоты магнитного поля; магнитная проницаемость у него резко падает с частотой.
- 2. В магнитных материалах, подверженных действию высокочастотного магнитного поля помех, заметно проявляется поверхностный эффект, т. е. вытеснение магнитного потока к поверхности стенок экрана, вызывая увеличение магнитного сопротивления экрана. При таких условиях кажется, что почти бесполезно увеличивать толщину стенок экрана за пределы тех величин, которые заняты магнитным потоком при данной частоте. Такой вывод неправилен, ибо увеличение толщины стенок приводит к снижению магнитного сопротивления экрана даже при наличии поверхностного эффекта. При этом одновременно следует учитывать и изменение магнитной проницаемости. Так как явление поверхностного эффекта в магнитных материалах обычно начинает сказываться заметнее, чем снижение магнитной проницаемости в области низких частот, то влияние обоих факторов на выбор толщины стенок экрана будет различным на разных диапазонах частот магнитных помех. Как правило, снижение экранирующих свойств с повышением частоты помехи сильнее проявляется в экранах из материалов с высокой начальной магнитной проницаемостью. Указанные выше особенности магнитных материалов дают основание для рекомендаций по выбору материалов и толщины стенок магнитных экранов. Эти рекомендации могут быть сведены к следующим:
- А) экраны из обычной электротехнической (трансформаторной) стали, обладающие малой начальной магнитной проницаемостью, можно применять при необходимости обеспечить малые коэффициенты экранирования (Кэ 10); такие экраны обеспечивают почти неизменный коэффициент экранирования в достаточно широкой полосе частот, вплоть до нескольких десятков килогерц; толщина таких экранов зависит от частоты помехи, причем чем ниже частота, тем большая толщина экрана требуется; например, при частоте магнитного поля помех 50—100 гц толщина стенок экрана должна быть приблизительно равна 2 мм; если требуется увеличение коэффициента экранирования или большая толщина экрана, то целесообразно применять несколько экранирующих слоев (двойных или тройных экранов) меньшей толщины;
- Б) экраны из магнитных материалов с высокой начальной проницаемостью (например пермаллой) целесообразно применять при необходимости обеспечения большого коэффициента экранирования (Кэ > Ю) в сравнительно узкой полосе частот, причем толщину каждой оболочки магнитного экрана нецелесообразно выбирать больше 0,3—0,4 мм; экранирующее действие таких экранов начинает заметно падать на частотах, выше нескольких сот или тысяч герц, в зависимости от начальной проницаемости этих материалов.
Все сказанное выше о магнитных экранах справедливо в отношении слабых магнитных полей помех. Если же экран находится вблизи от мощных источников помех и в нем возникают магнитные потоки с большой магнитной индукцией, то, как известно, приходится учитывать изменение магнитной динамической проницаемости в зависимости от индукции; необходимо также учитывать при этом потери в толще экрана. Практически же с такими сильными источниками магнитных полей помех, при которых надо было бы считаться с их действием на экраны, не встречаются, за исключением некоторых специальных случаев, не предусматривающих радиолюбительскую практику и нормальные условия работы радиотехнических устройств широкого применения.