Помощь в написании студенческих работ
Антистрессовый сервис

Проектирование автоматизированной системы управления трёхфазного трансформатора

КонтрольнаяПомощь в написанииУзнать стоимостьмоей работы

Эта функциональная подсистема характеризует параметры электроэнергии сети. При этом анализируются параметры измеренных мгновенных значений токов и напряжений всех фаз (А, В, С) и сторон (НН, СН, ВН). Дискретность измерений сигналов менее 0.2мсек. По этим измеренным значениям рассчитываются: мгновенные значения фазных токов и напряжений, мгновенные значения линейных и фазных полных мощностей… Читать ещё >

Проектирование автоматизированной системы управления трёхфазного трансформатора (реферат, курсовая, диплом, контрольная)

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

«ТЮМЕНСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЕГАЗОВЫЙ УНИВЕРСИТЕТ»

Институт кибернетики, информатики и связи Кафедра Кибернетических систем КОНТРОЛЬНАЯ РАБОТА по дисциплине «Проектирование систем управления технологическими процессами»

На тему: Проектирование автоматизированной системы управления трёхфазного трансформатора Тюмень 2014

  • Введение
  • Этапы реализации

Рассмотрение функции системы мониторинга Структура аппаратного обеспечения ЭСМДУ-ТРАНС Структура программного обеспечения ЭСМДУ-ТРАНС Датчики и их описание Организация АРМ Оператора

  • Заключение
  • Список использованной литературы
  • Введение
  • В настоящее время электрическая энергия для промышленных целей и электроснабжения городов производится на крупных тепловых и гидроэлектростанциях в виде трехфазной системы переменного тока частотой 50 Гц. Для передачи электроэнергии на дальние расстояния, от производителя к потребителю, необходимо повышать напряжение (110; 220; 330; 500; 750 кВ). Эту функцию выполняют повышающие трансформаторы. Далее на распределительных подстанциях напряжение требуется понижать до 6 или 10 кВ (в городах и промышленных объектах) или 35 кВ в сельских местностях и при большой протяженности распределительных сетей. Наконец для ввода в заводские цеха и жилые квартиры напряжение сетей должно быть понижено до 380, 220 В.
  • Как уже известно, что человечество уже не может жить без электричества и все больше и больше нуждается в потребности в эксплуатации электротехники. Основным и особо важным оборудованием участвующий в передачи электроэнергии является трансформатор.
  • Что же такое трансформатор? Это электрический аппарат, который предназначен для преобразования электрической энергии одного значения напряжения в электрическую энергию другого значения напряжения.
  • Многие специалисты отмечают, что менять трехфазный трансформатор по истечении его назначенного ресурса (25 — 30 лет) зачастую оказывается нецелесообразно. Дело в том, что, если, условия работы оборудования на протяжении срока эксплуатации соответствовали расчетным, а нагрузки не превышали номинальных значений, велика вероятность того, что состояние его твердой изоляции (основной параметр, определяющий реальный срок службы трансформатора) после завершения назначенного ресурса останется удовлетворительным.
  • Актуальность Более 80% отказов в трансформаторах высших классов напряжения связано не с выработкой физического ресурса, а в результате образования и развития различных дефектов. Существующая система периодического контроля и мониторинга что позволяет выявлять лишь медленно развивающиеся дефекты в связи с тем, что минимальный период контроля превышает 6 месяцев и таким образом не позволяет выявлять до 60% дефектов, развивающихся в трехфазных.

В работе будет рассмотрена автоматизированная система управления, во избежание аварийных и предаварийных ситуациях во время эксплуатации, что снизит риск угрозы жизни человека и окружающей среды.

  • Историческая справка
  • Раньше для выяснения состояния и наличия дефектов в трёхфазного трансформатора приходилось выезжать на место установки оборудования и вручную проводить его тестирование.

Основные этапы комплексного обследования трансформаторов:

1. Подготовительный этап.

· Анализ аварийности и характерных дефектов трансформаторов аналогичной конструкции (в том числе на основании результатов обследований и проведенных ремонтов).

· Сбор и анализ эксплуатационной информации (режимов работы трансформатора, уровней токов КЗ, результатов измерений электрических параметров трансформатора, физико-химических анализов масла из бака, вводов и РПН и др.). 2. Этап полевых работ. Полевые обследования проводятся в режиме наибольшей возможной нагрузки (желательно не менее 50% номинальной, а также на отключенном трансформаторе (если запланированы электрические испытания).

Продолжительность полевых обследований — 4−10 рабочих часов. При проведении измерений на отключенном трансформаторе время полевых обследований увеличивается до 9−18 рабочих часов. Современные условия заставляют отказаться от плановых единовременных измерений всех контрольных параметров с тем, чтобы обеспечить учащенный контроль наиболее опасных дефектов без дополнительных затрат на контроль развития дефектов, появление которых маловероятно. Появляются попытки дифференцировать интервалы измерений параметров с учетом их информативности и опасности соответствующих выявляемых дефектов: специалисты эксплуатационных служб энергетических предприятий выбирают параметры для учащенного контроля, основываясь зачастую прежде всего лишь на собственном опыте и интуиции.

Целями автоматизации является:

Автоматизация контроля состояния трёхфазного трансформатора для повышения эффективности его эксплуатации и выявления проблем в работе трёхфазного трансформатора.

Задачами автоматизации является:

· Рассмотрение функции системы мониторинга

· Структура аппаратного обеспечения ЭСМДУ-ТРАНС

· Структура программного обеспечения ЭСМДУ-ТРАНС

· Датчики и их описание

· Шкаф соединений системы мониторинга

· Организация АРМ Оператора

Этапы реализации Рассмотрение функции системы мониторинга Экспертная система мониторинга, диагностики и управления «ЭСМДУ-ТРАНС» предназначена для:

· контроля технического состояния трансформаторного оборудования в процессе эксплуатации

· формирования диагностических, предупреждающих и аварийных сообщений, ведения баз данных

· передачи информации о техническом состоянии оборудования в автоматизированную систему управления подстанции (АСУ ТП)

· Пользователями системы является персонал служб подстанции и эксперты по трансформаторам.

Структура аппаратного обеспечения ЭСМДУ-ТРАНС Аппаратное обеспечение ЭСМДУ-ТРАНС имеет 4-х уровневую структуру: 1-й уровень — датчики и первичные преобразователи измеренных сигналов; 2-й уровень — приборы сбора данных, обеспечивающие обработку и преобразование данных, реализацию управляющих алгоритмов системы охлаждения (СО) и переключающих устройств (ПУ), передачу сигналов управления исполнительным устройствам, подготовку и передачу данных на 3-й уровень системы; 3-й уровень — сбор данных от группы трансформаторов, первичные диагностические расчеты технического состояния, запись данных аварийных процессов, передача данных на 4-й уровень; 4-й уровень — расчет всех диагностических параметров группы трансформаторов, ведение долгосрочных архивов, визуализация результатов работы экспертиз, передача данных в АСУ ПС.

Структура программного обеспечения ЭСМДУ-ТРАНС Программная часть системы ЭСМДУ-ТРАНС имеет 4-х уровневую структуру:

1-й уровень — программное обеспечение интеллектуальных измерительных приборов:

· TDM-P034;

· Hydrocal 1008;

· Qualitrol.

2-й уровень — программное обеспечение контроллеров шкафа соединений и шкафа диагностики, обеспечивающее:

· постоянное считывание данных всех аналоговых, цифровых и релейных сигналов от датчиков и приборов с различной частотой опроса

· предварительную обработку и хранение данных, обмен данными с программным обеспечением уровня 3;

· формирование и выдачу сигналов для релейных защит трансформатора;

· формирование и выдачу сигналов управления механизмами системы охлаждения (насосами, вентиляторами, клапанами);

3-й уровень — программное обеспечение промышленного компьютера шкафа АРМ, обеспечивающее:

· постоянное считывание данных измерений, передаваемых контроллером шкафа диагностики, первичный анализ и запись этой информации в актуальную базу данных; периодический ввод в справочную базу данных системы информации о результатах диагностики физико-химических свойств трансформаторного масла и результатах хроматографического анализа газов растворенных в масле, выполненных на основе исследования проб масла в специализированных лабораториях;

· непрерывный расчет диагностических параметров электроэнергии, соответствующий реальным установившимся и переходным режимам работы трансформатора на основе данных измерений, запись этой информации в актуальную базу данных;

· непрерывный расчет диагностических параметров, характеризующих

· техническое состояние функциональных подсистем трансформатора на основе справочных данных и данных измерений, запись этой информации в актуальную базу данных (при необходимости);

· непрерывную экспертную оценку текущих значений диагностических параметров электроэнергии и всех функциональных подсистем трансформатора;

· формирование заключения о степени риска продолжения нормальной работы отдельных подсистем и трансформатора в целом;

· визуализацию информации для пользователя АРМ о измеренных и рассчитанных значениях диагностических параметров и результатах проведения экспертиз по оценке технического состояния трансформатора.

· 4-й уровень — программное обеспечение WEB сервера или локальной вычислительной сети, обеспечивающие одновременную визуализацию информации для нескольких пользователей АСУ ТП об измеренных и рассчитанных значениях диагностических параметров и результатах проведения экспертиз по оценке технического состояния трансформатора.

Датчики и их описание Датчик температуры с интерфейсом RS-485, датчик влаги растворенной в масле Vaisala, первичные датчики индикаторов температуры обмоток и масла Mesko, датчик тока проводимости ввода и частичных разрядов ДВ2, оптоволоконные датчики и приборы измерения температур.

Наименование датчика

Характеристики

RS-485 Датчик температуры с интерфейсом TS-RS485

Цифровой датчик температуры с интерфейсом RS-485

Техническая спецификация датчика TS-RS485

Параметры электропитания:

Потребляемая мощность — не более 0,3 Вт Рабочий диапазон напряжения питания: от 8 до 30 В Защита от перегрузок по току и коротких замыканий Защита от смены полярности Защита входов питания от импульсных перенапряжений Сетевые интерфейсы:

SBus: RS-485

Поддерживаемы протоколы: IM, ModBus RTU

Максимальное число датчиков на шине при работе по протоколу IM: 8 (задается джамперами) Максимальное число датчиков на шине при работе по протоколу ModBus RTU: 254 (задается программно) Параметры измерения и контроля:

Диапазон измеряемых значений температуры: от -40°С до +80°С Погрешность измерения температуры, не более: ±1°С (по согласованию с заказчиком — ±0,5 °С) Условия работы:

Рабочая температура окружающего воздухаот -40 до +80°С Степень защиты по ГОСТ 14 254– — IP 20

Размеры и масса:

Габаритные размеры ШxДxВ — не более 46×70×31мм Масса — не более 0,1 кг

Датчик влаги растворенной в масле Vaisala

Измерение активности воды Диапазон измерений активности воды 0 … 1 ±0,02 Точность ±0,030 … 0,9 Vaisala HUMICAP®0,9 … 1,0Датчик Входы и выходы Рабочее напряжение

10 … 35 В постоянного тока, 24 В переменного тока с дополнительным источником питания

100 … 240 В переменного тока 50/60 Гц Модуль питания Потребляемая мощность при 20 °C (Uвход 24 В постоянного тока)

RS-232 макс. 25 мA

Uвыход 2×0 … 1 В / 0 … 5 В /0 … 10 В (макс. 25 мA)

Iout 2×0 … 20 мA (макс. 60 мА) дисплей и подсветка+20 мА

Оптоволоконные датчики и приборы измерения температур и оптоволоконного датчика температуры ДТП-1

Диапазон измеряемых температур 60…+200 оС Погрешность измерения температур 0,1% (от полной шкалы) Длина линии связи датчик-спектрометр, м до 500

Тип выходного сигнала от датчика Оптический Степень защиты по ГОСТ 14 254–96 IP55

Диапазон рабочих температур −60…+200 оС

Шкаф соединений системы мониторинга Первая стойка (согласующие трансформаторы тока, индикаторы температуры обмоток и масла фирмы Mesko; клеммы для подключения входных сигналов). Вторая стойка (преобразователи датчиков температуры масла и обмотки; преобразователи аналоговых входных и релейных входных/выходных сигналов с интерфейсом RS-485, блок питания; контроллер и индикаторы предварительного сбора информации и управления системой охлаждения; клеммы для подключения входных сигналов).

Третья стойка (быстродействующие реле, автоматические выключатели; прибор измерения влаги, растворенной в масле Vaisala; клеммы для подключения входных сигналов).

Шкаф диагностики Шкаф диагностики обеспечивает:

прием сигналов от датчиков и приборов,

математическую и алгоритмическую обработку сигналов, вычисление ряда параметров, запись и хранение информации,

передачу данных в АРМ системы по оптоволоконным линиям связи. Все элементы промышленного исполнения с диапазоном рабочих температур от минус 40 до +70С;

Шкаф диагностики содержит:

· Электротехнический шкаф из нержавеющей стали наружной установки;

· Систему обеспечения микроклимата;

· Промышленные разъемные соединители для ввода входных сигналов;

· Автоматические выключатели для включения первичного питания аппаратуры;

· Блоки вторичного электропитания c обеспечением гальванической развязки;

· Нормирующие преобразователи входных аналоговых сигналов с гальванической развязкой и частотой преобразования 100кГц;

· Преобразователи входных/выходных релейных сигналов 220 В с выходом RS-485, и Modbus;

· Промышленный контроллер Compakt RIO

· производства National Instruments, США;

· Управляемый Ethernet коммуникатор.

Организация АРМ Оператора трансформатор аппаратный автоматизация эксплуатация Стойка автоматизированного рабочего места (АРМ) обеспечивает:

Прием информации от устройств шкафа диагностики, выполнение ряда математических расчетов и экспертных диагностических алгоритмов, ведение архивов и баз данных, отображение информации о техническом состоянии объекта в реальном масштабе времени, передачу текущих и архивных данных в системы более высокого уровня.

Содержит:

· Электротехнический шкаф в комплекте с системой вентиляции и кондиционирования;

· Автоматические выключатели для включения первичного питания аппаратуры АРМ;

· Блок вторичного электропитания, обеспечивающий гальваническую развязку;

· Управляемый Ethernet коммуникатор;

· Жидкокристаллический монитор;

· Промышленный компьютер с дублированным жестким диском;

· Источник бесперебойного питания.

Главная панель АРМ Главная панель системы (экранная форма), которая отображается на экране промышленного компьютера АРМ (третий уровень системы), установленного в помещении подстанции и соединенного с контроллерами второго уровня с помощью оптоволоконного кабеля. На главной панели обслуживающий персонал наблюдает текущее состояние всех 9 функциональных подсистем для каждого подключенного к системе объекта трансформаторного оборудования.

Функциональная подсистема «Параметры электроэнергии сети

Эта функциональная подсистема характеризует параметры электроэнергии сети. При этом анализируются параметры измеренных мгновенных значений токов и напряжений всех фаз (А, В, С) и сторон (НН, СН, ВН). Дискретность измерений сигналов менее 0.2мсек. По этим измеренным значениям рассчитываются: мгновенные значения фазных токов и напряжений, мгновенные значения линейных и фазных полных мощностей, действующие, максимальные и минимальные значения всех сигналов, гармонический состав установившихся сигналов, в том числе: расчет амплитуд, фаз, активных и реактивных составляющих, гармоник токов, напряжений и мощностей фаз сторон.

Функциональная подсистема «Приборы сигнализации и защиты»

Функциональная подсистема «Приборы сигнализации и защиты» определяет даты и время срабатывания релейных сигналов устройств защиты и сигнализации, установленных на трансформаторном оборудовании. В том числе: сигналы срабатывания газового реле, клапанов сброса давления, реле быстрого роста давления, указателей уровня и потока масла в баке и другие.

Функциональная подсистема «Магнитная система»

Функциональная подсистема определяет следующие диагностические параметры магнитопровода: температуру в местах наиболее нагретых точек магнитопровода, измеренную оптоволоконными датчиками; текущие диагностические и базовые значения намагничивающего тока; текущие диагностические и базовые значения потерь в магнитопроводе.

Заключение

В результате реализации поставленных задач была достигнута главная цель автоматизации объекта, а именно:

1. Выполнена автоматизация контроля состояния трехфазного трансформатора для повышения эффективности его эксплуатации и выявления проблем в работе трехфазного трансформатора, а также выявления и своевременного устранения дефектов, снижения трудоёмкости обследования его состояния;

2. Сократилось время на диагностику состояния оборудования, и реагирования на появление неисправностей в трехфазном трансформаторе;

3. Был обеспечен контроль над состоянием автотрансформатора с участием минимума персонала, а именно одним оператором, производящим мониторинг состояния трехфазного трансформатора исходя из показаний установленных датчиков.

1. Китаев Е. В Электротехника с основами промышленной электроники М.: Высшая школа, 2002

2. Дьяков В. И. Типовые расчёты по электрооборудованию 2004.

3. Гроднев И. И, верник С. М. Линии связи_ М радио связь 2004

4. Токарёв Б. Ф Электрические машины-М:Энергоатаниздат, 2003

5. Алексеев, Б. А. Контроль состояния (диагностика)' крупных силовых трансформаторов. М: Изд-во НЦ ЭНАС, 2002. — 216 с.

6. О проблеме координации уровней токов короткого замыкания в энергосистемах/ К. М. Антипов, А. А. Востросаблин, В. В. Жуков и, др.// Электрические станции. — 2005. — № 4. С. 19−32.

7. РД 34.45−51.300−97. Объем и, нормы. испытаний электрооборудования.6-е изд. — М.: ЭНАС, 1998. — 256 с.

8. Сборник методических пособий по контролю состояния электрооборудования. М.: ОРГРЭС, 1997. 67 с.

9. Чернев, К. К. Мощные трансформаторы// Библиотека электромонтера: -М.: «Энергия». 1972. — вып. 360: — 120 с.

10. Петров, Г. Н., Окунь, С. С. Об отрицательном сопротивлении вторичной-обмотки трансформатора// Электричество. 1950. -№ 5. — С. 3−5.

11. Хоанг Ван Нью, Малиновский, В. Н. Методы и средства. Контроля и диагностики состояния обмоток мощных силовых трансформаторов// Электротехника. 2009. — № 10. — С. 36−41.

12. ГОСТ 11 677–85. Трансформаторы силовые. Общие технические условия. -М.: Изд-во стандартов, 1985.-39 с.

13. ГОСТ 13 109–97. Электрическая энергия. Совместимость технических средств электромагнитная. Нормы качества электрической энергии в системах электроснабжения общего назначения. — М.: Изд-во стандартов 1997. — 33 с.

Показать весь текст
Заполнить форму текущей работой