Понятие и свойства электромагнитного поля
Эта мысль была высказана Ампером в гипотезе об элементарных электрических токах. Согласно гипотезе Ампера, внутри атомов и молекул вещества циркулируют элементарные электрические токи. Если эти токи расположены хаотически по отношению друг к другу, то их действие взаимно компенсируется и никакими магнитными свойствами тело не обладает. В намагниченном состоянии (например, в постоянных магнитах… Читать ещё >
Понятие и свойства электромагнитного поля (реферат, курсовая, диплом, контрольная)
Магнитное поле представляет собой особую форму материи, посредством которой осуществляется взаимодействие между движущимися заряженными частицами или телами, обладающими магнитным моментом. Термин «магнитное поле» в 1845 г. ввел М. Фарадей.
Магнитное поле образуется только вокруг движущихся электрических зарядов, и его действие распространяется тоже лишь на движущиеся заряды. Магнитное и электрические поля неразрывны и образуют совместно единое электромагнитное поле. Всякое изменение электрического поля приводит к появлению магнитного поля и, наоборот, всякое изменение магнитного поля сопровождается возникновением электрического поля. Электромагнитное поле распространяется со скоростью света, т. е. 300 000 км/с.
Экспериментальным доказательством реальности магнитного и электрического полей является факт существования электромагнитных волн. Магнитное поле, как и электрическое, является частным проявлением единого электромагнитного поля.
Характерной отличительной особенностью электрического поля является способность действовать на неподвижные заряды.
Главное свойство магнитного поля заключается в том, что оно действует на движущиеся заряды (электрический ток).
Неподвижные заряды не создают магнитного поля. Только движущиеся заряды (электрический ток) и постоянные магниты создают магнитное поле.
При изучении взаимодействия постоянных магнитов было установлено: постоянные магниты имеют два полюса: северный и южный; одноименные полюсы отталкиваются друг от друга, а разноименные притягиваются.
Это наводило на мысль о существовании «магнитных зарядов» в природе. Если бы магнитные заряды существовали в природе, то их можно было бы разделить подобно электрическим, т. е. получить постоянный магнит только с одним полюсом. Однако если разделить магнит на две половины, то каждая часть снова будет иметь два полюса. Процесс деления можно продолжать сколько угодно, и каждый полученный маленький кусочек магнита будет представлять собой магнит с двумя полюсами. Позднее было доказано, что даже электроны, протоны, нейтроны ведут себя подобно крошечным магнитам.
Если отдельные тела можно зарядить положительно или отрицательно, так как существует элементарный электрический заряд, то никогда нельзя отделить северный полюс магнита от южного. Таким образом, нет оснований считать, что в природе существуют отдельные магнитные заряды.
Эта мысль была высказана Ампером в гипотезе об элементарных электрических токах. Согласно гипотезе Ампера, внутри атомов и молекул вещества циркулируют элементарные электрические токи. Если эти токи расположены хаотически по отношению друг к другу, то их действие взаимно компенсируется и никакими магнитными свойствами тело не обладает. В намагниченном состоянии (например, в постоянных магнитах) элементарные токи ориентированы определенным образом. Следовательно, магнитные свойства любого тела объясняются замкнутыми электрическими токами внутри него, т. е. магнитное взаимодействие — это взаимодействие токов. электромагнитный поле заряженный ток Магнитное поле проявляется в воздействии на магнитные моменты частиц и тел, на движущиеся заряженные частицы (или проводники с током). Сила, действующая на движущуюся в магнитном поле электрически заряженную частицу, называется силой Лоренца, которая всегда направлена перпендикулярно к векторам v и B [3]. Она пропорциональна заряду частицы q, составляющей скорости v, перпендикулярной направлению вектора магнитного поля B, и величине индукции магнитного поля B. В системе единиц СИ сила Лоренца выражается так:
в системе единиц СГС:
где квадратными скобками обозначено векторное произведение.
Также (вследствие действия силы Лоренца на движущиеся по проводнику заряженные частицы) магнитное поле действует на проводник с током. Сила, действующая на проводник с током называется силой Ампера. Эта сила складывается из сил, действующих на отдельные движущиеся внутри проводника заряды.
Магнитное поле в макроскопическом описании представлено двумя различными векторными полями, обозначаемым как H и B.
H называется напряжённостью магнитного поля; B называется магнитной индукцией. Термин магнитное поле применяется к обоим этим векторным полям (хотя исторически относился в первую очередь к H).
Магнитная индукция B является основной [9] [10] [11] характеристикой магнитного поля, так как, во-первых, именно она определяет действующую на заряды силу, а во-вторых, векторы B и E на самом деле являются компонентами единого тензора электромагнитного поля. Аналогично, в единый тензор объединяются величины H и электрическая индукция D. В свою очередь, разделение электромагнитного поля на электрическое и магнитное является совершенно условным и зависящим от выбора системы отсчёта, поэтому вектора B и E должны рассматриваться совместно.
Впрочем, в вакууме (при отсутствии магнетиков), а значит и на фундаментальном микроскопическом уровне, H и B совпадают (в системе СИ с точностью до условного постоянного множителя, а в СГС — полностью), что позволяет в принципе авторам, особенно тем, кто не использует СИ, выбирать для фундаментального описания магнитного поля H или B произвольно, чем они нередко и пользуются (к тому же, следуя в этом традиции).
Авторы же, пользующиеся системой СИ, систематически отдают и здесь в этом отношении предпочтение вектору B, хотя бы потому, что именно через него прямо выражается сила Лоренца.